
CIS 122

Random Text Generation

Logistics

● General trouble on Assignment 4
○ Few homework submissions

● Few signs of trouble beforehand
○ Few people in office hours
○ Few emails

● Assignment 4 deadline extension
○ Submit by tonight

● Assignment 5 posted soon

Random Paper Generator

● http://pdos.csail.mit.edu/scigen/

● Generates random academic computer science papers
○ Randomly generated graphs
○ Randomly generated tables
○ Randomly generated citations

● 2005 paper accepted to conference

http://pdos.csail.mit.edu/scigen/
http://pdos.csail.mit.edu/scigen/

This week's project

● Write a text generator

● Using same general methods as SCIgen
○ A little less coherent
○ But still cool

● We have many of the tools we need already

○ We'll pick up more as the week progresses

Markov Text Generation

● How do we generate random text?
○ Start by generating a single sentence

● Find a word that could start a sentence
○ Put it at the beginning

● Find words which could come after that word
○ Pick one to continue the sentence

● Repeat until you've formed a sentence
○ Now do it again!

Markov Text Generation

● How do we know which words come after other words?
○ Need a reference corpus

fuzzy wuzzy was a bear.
fuzzy wuzzy had no hair.

fuzzy wuzzy wasn't very fuzzy was he.

Markov Text Generation

● For each word in corpus, see what words come afterwards

fuzzy wuzzy was a bear.
fuzzy wuzzy had no hair.

fuzzy wuzzy wasn't very fuzzy was he.

Markov Text Generation

● For each word in corpus, see what words come afterwards

fuzzy wuzzy was a bear.
fuzzy wuzzy had no hair.

fuzzy wuzzy wasn't very fuzzy was he.

Markov Text Generation

● For each word in corpus, see what words come afterwards

fuzzy wuzzy was a bear.
fuzzy wuzzy had no hair.

fuzzy wuzzy wasn't very fuzzy was he.

fuzzy → [wuzzy, wuzzy, wuzzy, was]

Markov Text Generation

● For each word in corpus, see what words come afterwards

fuzzy → [wuzzy, wuzzy, wuzzy, was]
wuzzy → [was, had, wasn't]
was → [a, he]
a → [bear]
bear → [.]
had → [no]
no → [hair]
hair → [.]
wasn't → [very]
very → [fuzzy]
he → [.]

Markov Text Generation

● Given a word, we can look up which words come next
○ And pick one of them randomly

● How do we know where to start/stop?

● Treat the '.' character as a special kind of word
○ Any word following a '.' can start a sentence
○ Reaching a period ends a sentence

Markov Text Generation

● This is a large problem
○ Where do we start?

● Break it down into pieces
○ What components do we need?
○ What do we need to be able to do?

One possible problem breakdown

● Read in corpus text from file as string

● Break string into list of words

● Process word list to separate out periods

● Produce markov dictionary from processed word list

● Produce single sentence from markov dictionary

● Generate text by producing as many sentences as desired

Back to Lists

● We saw lists briefly last week
○ Lets take a closer look

● Lists are sequences of values
○ [1, 2, 3]
○ ["apple", "banana", "carrot"]
○ [True, 'B', 3]

Back to Lists

● Lists are mutable
○ We can modify them

 >>> L = [1, 2, 3]
 >>> L[0] = 99
 >>> L
 [99, 2, 3]

● What happens if we try this with a string?

Back to Lists

● Lists are mutable
○ We can grow them

 >>> L = [1, 2, 3]
 >>> L.append(4)
 >>> L
 [1, 2, 3, 4]

● The append method doesn't return anything
○ But it changes the list

Back to Lists

● Modifying a list is not the same as performing reassignment

● The variable still points to the same object
○ But that object has changed!

 >>> original = [1, 2, 3]
 >>> copy = original
 >>> copy.append(4)
 >>> original
 [1, 2, 3, 4]

Back to Lists

● Appending is a great tool for constructing lists
○ Start with an empty list
○ Repeatedly append elements

● The accumulator pattern for lists!

List Practice

● Let's get some list-building practice!

● Write a method zeros(n)
○ Returns a list containing n zeros

 >>> zeros(5)
 [0, 0, 0, 0, 0]

 >>> zeros(0)
 []

List Practice

● Let's get some list-building practice!

● Write a method zeros(n)
○ Returns a list containing n zeros

 def zeros(n):
 """Returns a list containing n 0's"""
 zeroList = []
 for x in range(n):
 zeroList.append(0)
 return zeroList

