
CIS 122

Logical Conditioning

Homework Note

● Last week, your code did something when you ran it
○ Printed out an info sheet
○ Printed out some skittle counts

● This week's homework is more passive

○ Less printing
○ More defining

● It's ok if nothing happens when you run your code

○ Check your definitions in the shell
○ Test your functions in the shell

Functions so far

● Take values as input

● Perform a set of operations
○ Assignments
○ Other function calls

● Return some value as output

Functions so far

● Currently, functions always follow the same steps

● Great if we want to treat every input the same way
○ addOne - Given a number, return its successor
○ Temperature Conversion

● But what if we want different things in different situations?
○ abs - Given a number, return its absolute value
○ longer - Given two strings, return the longer one

Conditional Logic

● We'd like to allow our programs to branch

 if <something is true>:
 <do one thing>

 else:
 <do something else>

● But what is truth?
○ We need a new object type

Booleans

● A very simple object type

● Most types have infinitely many values
○ Booleans only have two
○ True / False

Comparisons

● We produce booleans when we compare objects

○ a > b - greater than

○ a < b - less than

○ a >= b - greater than or equal to

○ a <= b - less than or equal to

○ a == b - equal to

○ a != b - not equal to

Comparisons

● Note, the equality operator is ==
○ = was already taken for assignment
○ When you compare values, make sure to use ==
○ Strange things will happen otherwise

>>> a = 5
Assigns the value 5 to the variable a

>>> a == 5
Returns True if a holds the value 5, False otherwise

Comparisons

● Any two objects can be compared to return a boolean
○ 1 > 2
○ 3.5 <= 8.0
○ 'a' == 'b'
○ True != False

● We can even compare multiple objects simultaneously
○ 1 < x < 5

● Which is greater, True or False?

Conditional Logic

● What can we do with booleans?
○ Branch!

● The if keyword runs code only if some condition is true
○ Always followed by a boolean condition

 if x == 0:
 print "x is zero"

● Note the colon
○ About to define a block of code
○ Indented text

Conditional Logic

 <code>

 if x == 0:
 print "x is zero"

 <code>

Conditional Logic

● The else keyword runs code if a condition is false
○ Always paired with an if
○ Not followed by a condition

 if x == 0:
 print "x is zero"
 else:
 print "x is not zero"

Conditional Logic

 <code>

 if x == 0:
 print "x is zero"
 else:
 print "x is not zero"

 <code>

Conditional Logic

● What if we want to choose between multiple conditions?
○ We could nest if statements...

if x == 0:
 print "x is zero"
else:
 if x == 1:
 print "x is one"
 else:
 if x == 2:
 print "x is two"
 else:
 print "beats me"

Conditional Logic

● Python provides a shortcut for nesting if statements
○ The elif keyword acts as a combined else and if

if x == 0:
 print "x is zero"
elif x == 1:
 print "x is one"
elif x == 2:
 print "x is two"
else:
 print "beats me"

Conditional Logic

<code>

if x == 0:
 print "x is zero"
elif x == 1:
 print "x is one"
elif x == 2:
 print "x is two"
else:
 print "beats me"

<code>

