CIS 122

Logical Conditioning

Homework Note

e Last week, your code did something when you ran it
o Printed out an info sheet
o Printed out some skittle counts

e This week's homework is more passive
o Less printing
o More defining

e It's ok if nothing happens when you run your code
o Check your definitions in the shell
o Test your functions in the shell

Functions so far

e Take values as input

e Perform a set of operations
o Assignments
o Other function calls

e Return some value as output

Functions so far

e Currently, functions always follow the same steps

e Great if we want to treat every input the same way
o addOne - Given a number, return its successor
o Temperature Conversion

e But what if we want different things in different situations?
o abs - Given a number, return its absolute value
o longer - Given two strings, return the longer one

Conditional Logic

e \We'd like to allow our programs to branch

I <something is true>:
<do one thing>

else:
<do something else>

e But what is truth?
o We need a new object type

Booleans

e A very simple object type

e Most types have infinitely many values
o Booleans only have two
o True / False

Comparisons

e \We produce booleans when we compare objects
oa>b -greaterthan
oa<b -lessthan
o a >= b - greater than or equal to
oa <=Db - less than or equal to
oa==Db-equalto

oal!=Db -notequalto

Comparisons

e Note, the equality operator is ==
o = was already taken for assignment
o When you compare values, make sure to use ==
o Strange things will happen otherwise

>>> g =5
Assigns the value 5 to the variable a

>>> g ==
Returns True if a holds the value 5, False otherwise

Comparisons

e Any two objects can be compared to return a boolean
o01>2
03.5<=8.0
O lal —_— Ibl
o True != False

e \We can even compare multiple objects simultaneously
01<x<5

e \Which is greater, True or False?

Conditional Logic

e \What can we do with booleans?
o Branch!

e The i keyword runs code only if some condition is true
o Always followed by a boolean condition

Tx==0:
print "x is zero"

e Note the colon
o About to define a block of code
o Indented text

Conditional Logic

<code>

print "x is zero" [==

<code> F3|SGL/

<code>

_True print
) "X is zero"

Conditional Logic

e The c/se keyword runs code if a condition is false
o Always paired with an if
o Not followed by a condition

Tx==0:

print "x is zero"
else:

print "x is not zero”

Conditional Logic

<code>

If x == 0:
print "x is zero" print print
else: "X is not zero" "X is zero"

print "x is not zero" \/
<code>

Conditional Logic

e \What if we want to choose between multiple conditions?
o We could nest i statements...

Tx==0:
print "X is zero"
else:
Tx==1:
print "x is one”
else:
Tx==2:
print "x is two"
else:
print "beats me"

Conditional Logic

e Python provides a shortcut for nesting i’ statements
o The ¢lif keyword acts as a combined ¢/sc and i

Tx==0:

print "X is zero"
elif x == 1:

print "x is one"
elif x == 2:

print "x is two"
else:

print "beats me"

Conditional Logic

<code>

Tx==0:

print "X is zero"
elif x == 1:

print "x is one”
elif x == 2:

print "x is two"

<code>

:

x==

Falsel

True
print

"X is zero"

=

Falsel

True
print

"X is one"

=

Falsel

True
print

else:
print "beats me'

print

"beats me"

"X is two"

<code>

'

<code>

