
CIS 122

Final Review (part 2)

Types

● Integers

● Floats

● Strings

● Booleans

● Lists
○ Nested Lists

● Dictionaries

Programming Concepts

● Variables

● Functions

● Conditionals

● Recursion

● Iteration
○ Nested Loops

● Classes

Variables

● Store values

● Define using assignment operator (=)
○ color = "blue"
○ x = 5

● Reassign previously assigned variables
○ color = "red"
○ x = x + 1
○ x += 1

Variables

● Reassigning variable does not change object
 num1 = 5
 num2 = num1
 num1 = 6

 print num2

● Modifying an object does
 list1 = [1,2,3]
 list2 = list1
 list1.append(4)

 print list2

Functions

● Blocks of code
○ Take input (zero or more arguments)
○ Return output

 def addOne(myNum):
 nextNum = myNum + 1
 return nextNum

● What happens when we call a function?
>>> x = addOne(5) myNum → 5
 nextNum → 6

 x → 6

Conditionals

● Conditionally execute blocks of code
○ if
○ elif
○ else

if x > 90:
 return "A"
elif x > 80:
 return "B"
elif x > 70:
 return "C"
else:
 return "D"

Recursion

● A function which solves a problem by calling itself
○ Solving a smaller version of the problem

● Base Case
○ Some trivial case
○ Solve for 0
○ Solve for empty list

● Recursive Step
○ Solve problem by calling function again
○ Reduce problem towards base case

Recursion

● Define a function count(L, element)
○ Return number of times element occurs in L

● Base Case
○ element never occurs in the empty list

● Recursive Step
○ Check the first element of the list
○ Check the rest of the list
○ Return the sum

Iteration

● Repeating the same block of code over and over

● Two kinds of loops

● for loop
○ Keep looping for each element in a sequence
○ Good for well specified loops

● while loop
○ Keep looping while some condition is true
○ Good for indeterminite loops

Iteration

● for loops

● Good for iterating directly over sequences
○ for char in string:
○ for element in list

● Good for repeating a task a certain number of times
○ for i in range(10):

● Good for iterating over indices
○ for i in range(len(string))

 print string[i]

Iteration

● while loops

● Good for arbitrarily long loops
○ while True:
○ while game.allOff() == False:

● If you can't phrase it as a for loop, use a while loop

Iteration

● Define a function count(L, element)
○ Return number of times element occurs in L

● Set up a tally

● Loop through L examining each element
○ Increment tally if necessary

● After loop, return the tally

● What sort of loop should we use?

Nested Loops

● To examine all the elements in a nested list
○ You need a nested loop

 nestedList = [[10, 20, 30, 40],
 [11, 21, 31, 41],
 [12, 22, 32, 42],
 [13, 23, 33, 43]]

 for row in nestedList:
 print row

Nested Loops

● To examine all the elements in a nested list
○ You need a nested loop

 nestedList = [[10, 20, 30, 40],
 [11, 21, 31, 41],
 [12, 22, 32, 42],
 [13, 23, 33, 43]]

 for row in nestedList:
 for element in row:
 print element

Nested Loops

● To examine all the elements in a nested list
○ You need a nested loop

 nestedList = [[10, 20, 30, 40],
 [11, 21, 31, 41],
 [12, 22, 32, 42],
 [13, 23, 33, 43]]

 for row in range(len(nestedList)):
 for col in range(len(nestedList[0])):
 print nestedList[row][col]

Classes

● Custom Types
○ Collection of attributes and methods

● Attributes - nouns
○ grid
○ numRows

● Methods - verbs
○ toggle
○ press

Classes

● Class methods
○ Special first argument
○ Refers to object calling method

def toggle(self, row, col):
 <code goes here>

>>> game = LightsOut()
>>> game.toggle(3, 5)

self → game
row → 3
col → 5

Classes

● Important Methods

● __init__(self)
○ Constructor
○ Instantiates a new object (but does not return it)
○ Called with ClassName()

● __repr__(self)
○ Print method
○ Returns string representation of object
○ Called whenever object is printed

Classes

● Important Methods

● __cmp__(self, other)
○ Comparison method
○ Returns a number

■ Positive if self > other
■ Negative if self < other
■ 0 if self == other

○ Called whenever two objects are compared

