
CIS 122

That's the Key

The Big Picture

The Next Step

● We can turn a file into a list of words and periods

● Now we'd like to turn that list into a markov dictionary
○ Associate each word with words that follow it

 fuzzy → [wuzzy, wuzzy, wuzzy, was]

● How do we represent this information?
○ Need a new type

Beyond Lists

● Lists associate values with specific indices
○ ['A', 'B', 'C']
○ The 0th element is 'A'
○ The 2th element is 'C'

● What if we want to associate values with other keys
○ The 42 element
○ The -12 element
○ The 'a' element
○ The 'elephant' element

Dictionaries

● Dictionaries to the rescue!
○ Associate keys with values
○ Keys can have any (immutable) type
○ Values can have any type

fruitColors = { 'apple' : 'red', 'pear' : 'green', 'banana' : 'yellow' }

>> fruitColors['apple']
'red'

Dictionaries

dictionary = { key1 : value1, key2 : value2, key3 : value3, ... }

 key1 → value1
 key2 → value2
 key3 → value3

Dictionaries

● Dictionaries act a lot like lists

● We can access specific elements
○ But we access them with keys, not indices
○ fruitColors['apple']

● We can modify values
○ fruitColors['apple'] = 'green'

● Keys cannot be modified
○ If you want a different key, make a new one
○ fruitColors['grape'] = 'purple'

Dictionaries

● Let's write a function to give the number of days in a month
○ daysInMonth('January') → 31
○ daysInMonth('February') → 28

● One approach would be to use a ton of if statements

 def daysInMonth(month):
 if month == 'January':
 return 31
 elif month == 'February':
 return 28

● How could we use dictionaries to simplify our code?

Dictionaries

● Store number of days per month in a dictionary
○ Then look up the month we're interested in

def daysInMonth(month):
monthDict = {'January' : 31, 'February' : 28, ... }
return monthDict[month]

Dictionaries

● We can also build up dictionaries from scratch

shoeSize = { }

shoeSize['Bob'] = 10

shoeSize['Betty'] = 7

shoeSize['Bertha'] = 8

Have I Seen this Key Before?

● We can only look up keys already in our dictionary

 >>> coinValue = { 'penny' : 1, 'nickel' : 5, 'dime' :10 }
 >>> coinValue['quarter']
 <ERROR>

● How do we tell if a key is present?
○ Use the in keyword

 >>> 'penny' in coinValue
 True

 >>> 'quarter' in coinValue
 False

Have I Seen this Key Before?

● The in keyword works on any kind of sequence

5 in [1, 2, 3, 4, 5]
True

6 in [1,2,3,4,5]
False

'a' in 'lighthouse'
False

'light' in 'lighthouse'
True

Markov Time

● Let's use a Python dictionary to represent a Markov
Dictionary

● What would our keys be?

● What would our values be?

Markov Time

● Let's write a function makeMarkovDict(wordList)
○ Takes a processed word list as input
○ Return a Markov Dictionary

■ Keys are words in list
■ Values are lists of words following that key

● Where do we start?

