CIS 122

Lists Within Lists

Logistics

- Entering week 7
- Last week of new material
- Nested lists
- Classes
- Next week is Finals week
- Review Monday, Tuesday
- Break Wednesday, Thursday
- Final Friday
- Final exam
- Friday, August 17
- 1:00-3:00

Logistics

- Assignment 5 received
- Will post grades/solution later this week
- Assignment 6 has been posted
- Lights Out
- Relatively large problem
- Deals with nested lists / classes
- Look it over

Lists Within Lists

- So far, we've used flat lists
- Useful for representing a sequence of values
- Storing a group of things
- What if we want to represent a 2D structure?
- Pixels in an image
- Moves in a game of tic tac toe
- Nested lists
- Represent information on multiple levels

Lists Within Lists

[[0, 1, 0, 1, 0], [$0,0,0,0,0$], [$0,0,1,0,0$], [1, 0, 0, 0, 1],
[$0,1,1,1,0$]]

Lists Within Lists

[[0, 1, 0, 1, 0], [$0,0,0,0,0$], $[0,0,1,0,0]$,
$[1,0,0,0,1]$,
[$0,1,1,1,0$]]

Lists Within Lists

[$0,1,0,1,0$.

[$0,0,0,0,0$],
[$0,0,1,0,0$],
[1, 0, 0, 0, 1],
[$0,1,1,1,0$]]

Lists within Lists

- Each element of our nested list is another entire list - One row of our picture
- We can access these rows with list indexing
bitmap $=[[0,1,0,1,0]$,
[$0,0,0,0,0$],
[$0,0,1,0,0$],
[$1,0,0,0,1$],
[$0,1,1,1,0]]$
bitmap[0] \rightarrow [0, 1, 0, 1, 0]

Lists within Lists

- Each element of our nested list is another entire list - One row of our picture
- We can access individual elements by indexing again

$$
\begin{aligned}
\text { bitmap }= & {[[0,1,0,1,0],} \\
& {[0,0,0,0,0], } \\
& {[0,0,1,0,0], } \\
& {[1,0,0,0,1], } \\
& {[0,1,1,1,0]] }
\end{aligned}
$$

bitmap[0][2] $\rightarrow 0$

Lists within Lists

- How large is our nested list?
- How many rows does it have?
- How many columns does it have?
- Assuming all columns have the same size...

Lists within Lists

- How large is our nested list?
- How many rows does it have?
- How many columns does it have?
- Assuming all columns have the same size...
\# Each element in list is a row
numRows $=$ len(nestedList)
\# Each row has one element per column numCols $=$ len(nestedList[0])

Nested List Quiz

$\mathrm{L}=[[1,2,3,4,5],[11,12,13,14,15],[21,22,23,24,25]]$
print L[0]
print L[2]
print L[0][3]
print L[1][1]
print len(L)
print len(L[1])

Looping through Lists

- We can use for loops to iterate through lists
- How would we iterate through a nested list?
- With nested for loops!
- Iterating by elements:
for row in nestedList:
for element in row:
< do stuff with element>

Looping through Lists

- We can use for loops to iterate through lists
- How would we iterate through a nested list?
- With nested for loops!
- Iterating by indices:

```
numRows = len(nestedList))
numCols = len(nestedList[0]))
for row in range(numRows)):
    for col in range(numCols):
        element = nestedList [ row ] [ col ]
        <do stuff with element>
```


Are you in there?

- Let's write a function contains(nestedList, element)
- Takes a nested list as input
- Returns True if element is in nestedList
- False otherwise

Nested Lists, Assemble!

- Typing out a nested list by hand is tedious
- How might we automatically construct a nested list?
- Start with an empty list
- Construct one row
- Add it to the list
- Repeat
- How do we construct a row?
- Start with an empty list
- Add on element
- Repeat
- This sounds like a job for nested for loops

