
CIS 122

Coding with Class

Personalized Objects

● We've seen a lot of types of objects...
○ Integers
○ Floats
○ Strings
○ Booleans
○ Lists
○ Dictionaries

● Different objects are good for different purposes
○ Integers - performing calculations
○ Booleans - conditional code
○ Lists - grouping things together

Personalized Objects

● Python objects are general purpose

● But what if we're performing some specific task?
○ It might be nice to have more specialized objects

● If we're working with coordinate systems...
○ It might be nice to have a Point object

● If we're writing music...
○ It might be nice to have a Note object

● If we're studying genetics...
○ It might be nice to have a Chromosome object

Personalized Objects

● Python can't include all these objects
○ There are far too many

● Fortunately, it lets you define your own objects
○ Classes
○ Custom objects for specific tasks

● Classes are collections of attributes and methods
○ Attributes - What does my object store?
○ Methods - What can my object do?

Turtle Aside

● The turtle module defines a Turtle class
○ Allows you to make individual Turtle objects

 t1 = turtle.Turtle()

 t2 = turtle.Turtle()

 t1.forward(10)

 t2.backward(10)

Turtle Aside

● Turtle attributes
○ x coordinate
○ y coordinate
○ heading

● Turtle methods
○ forward
○ backward
○ left
○ right
○ ...

Making a Point

● Suppose we wanted a Point class

● What attributes would we want to store?
○ x coordinate
○ y coordinate

● What would we like to be able to do with points?
○ find distance to origin
○ find distance between points
○ add points

Making a Point

● Where do we start?

● Need to define our Point class

class Point:

 <Point code goes here>

Making a Point

● Now what?

● Need a method for constructing new Points
○ A "constructor"

● __init__ method
○ _ _ i n i t _ _
○ (special methods are surrounded by underscores)

● The first argument to __init__ is special
○ It refers to the object being created
○ Customary to call it self

Making a Point

class Point:

 def __init__(self):
 """Point constructor"""
 self.xcor = 0 # Set point's x coordinate to 0
 self.ycor = 0 # Set point's y coordinate to 0

Making a Point

● We can now construct new Points
○ p = Point()

● Our constructor doesn't take any arguments right now
○ self doesn't count

● So right now, all Points default to (0, 0)

● What if we wanted to be able to construct a point with
specific coordinates?

○ Add some more arguments to our constructor
○ Any arguments after the first act normally

Making a Point

class Point:

 def __init__(self):
 """Point constructor"""
 self.xcor = 0 # Set point's x coordinate to 0
 self.ycor = 0 # Set point's y coordinate to 0

Making a Point

class Point:

 def __init__(self, x, y):
 """Point constructor"""
 self.xcor = x # Set point's x coordinate
 self.ycor = y # Set point's y coordinate

You've Made Your Point

● We can now construct Points with arguments
○ p = Point(1,2)

● We can see those arguments if we ask for them
○ p.xcor
○ p.ycor

● But what if we try to print p itself?
○ Python doesn't tell us anything useful right now
○ But we can fix that

You've Made Your Point

● The __repr__ method tells Python how to print an object
○ Short for represenation

● The first argument to repr refers to the object being printed
○ Same for all class methods

● The __repr__ method doesn't print anything
○ It returns a string

● When python wants to print an object
○ It calls the object's __repr__ method
○ And prints the string it returns

Making a Point

class Point:

 def __init__(self, x, y):
 """Point constructor"""
 self.xcor = x # Set point's x coordinate
 self.ycor = y # Set point's y coordinate

 def __repr__(self):
 """Return string representation of Point"""

Making a Point

class Point:

 def __init__(self, x, y):
 """Point constructor"""
 self.xcor = x # Set point's x coordinate
 self.ycor = y # Set point's y coordinate

 def __repr__(self):
 """Return string representation of Point"""
 return "(" + str(self.xcor) + ", " + str(self.ycor) + ")"

Special Class Methods

● __init__
○ Constructor
○ Produces new objects

● __repr__
○ Print method
○ Returns a string for displaying object

● __cmp__
○ Comparison method
○ Defines comparisons between objects

● Many others...

