
CIS 122

A Class of One's Own

Classes

● Custom objects
○ Composed of properties and methods

● Properties store information
○ Coordinates
○ Names

● Methods tell object how to act
○ __init__
○ __repr__

Classes

Class Methods Under the Surface

● Class methods all start with a special argument
○ Generally named "self"
○ Refers to the object calling the method

● What really happens when we call a class method?

○ What happens to that first argument?

Class Methods Under the Surface

class Point:

 def __init(self, x, y):
 <init code>

 def __repr__(self):
 return "(" + str(self.xcor) + ", " + str(self.ycor) + ")"

 def absValue(self):
 return math.sqrt(self.xcor**2 + self.ycor**2)

print p

Class Methods Under the Surface

class Point:

 def __init(self, x, y):
 <init code>

 def __repr__(self):
 return "(" + str(self.xcor) + ", " + str(self.ycor) + ")"

 def absValue(self):
 return math.sqrt(self.xcor**2 + self.ycor**2)

print p.__repr__()

Class Methods Under the Surface

class Point:

 def __init(self, x, y):
 <init code>

 def __repr__(self):
 return "(" + str(self.xcor) + ", " + str(self.ycor) + ")"

 def absValue(self):
 return math.sqrt(self.xcor**2 + self.ycor**2)

print p.__repr__()
print Point.__repr__(p)

Class Methods Under the Surface

● When Python calls a class method
○ The object gets substituted in for the first argument

 p.__repr__() → print Point.__repr__(p)
 p.absVal() → Point.absVal(p)

● The constructor is a little strange
○ But works the same way

Adding up your Points

● How do we add two points?
○ Sum their x coordinates
○ Sum their y coordinates

● For example
○ (1, 3) + (10, 20) = (11, 23)
○ (2, 2) + (-2, -2) = (0, 0)
○ (0, 0) + (0, 0) = (0, 0)

Adding up your Points

● Let's define addition for our Point class

● __add__ method
○ Defines "+" operator for our class
○ Takes two arguments

 def __add__(self, other):

Adding up your Points

● Let's define addition for our Point class

● __add__ method
○ Defines "+" operator for our class
○ Takes two arguments

 def __add__(self, other):
 newX = self.xcor + other.xcor
 newY = self.ycor + other.ycor
 newPoint = Point(newX, newY)
 return newPoint

Comparing Points

● How does Python compare objects?

● Everything boils down to numbers
○ Ints - compare values
○ Floats - compare values
○ Characters - compare ord values
○ Strings - compare characters

● To compare points, we'll need a basis for comparison
○ How would we like to compare two points?

Comparing Points

● Python has special comparison methods
○ __gt__ → >
○ __ge__ → >=
○ __lt__ → <
○ __le__ → <=
○ __eq__ → ==
○ __ne__ → !=

● That's a lot of methods to define
○ It would be nice if we could define just one

Comparing Points

● Python has one method covering all comparisons

● __cmp__(a,b)
○ Takes two arguments
○ Returns a number

■ Negative if a < b
■ Positive if a > b
■ 0 if a == b

● Let's write a __cmp__ method for our point class

Get the Point

● We now have a functioning Point class
○ Constructor
○ Representation
○ Distance from origin
○ Addition
○ Comparison

● We could add more functionality
○ Depends on what we're using it for

