
CIS 122

A Class of One's Own

Representing a Student

● Suppose I was writing a grading program

● I might want a student class
○ Keep track of students scores
○ Calculate grades

● What properties should a student have?

Representing a Student

● Student Class

● Properties
○ Name
○ Grades

● Methods
○ Add grade
○ Calculate average grade
○ Get letter grade

Representing a Student

● Let's start at the beginning

● Define a student class
○ With a student constructor

● What information do we need to make a student?

● What information do we want our student to store?

Representing a Student

class Student:

 def __init__(self, studentName):
 self.name = studentName
 self.grades = []

Representing a Student

● Now let's print out our student
○ What should a student look like?

 def __repr__(self):
 return self.name

Representing a Student

● Now we can make students and display students

● Let's add some functionality
○ addGrade
○ averageGrade
○ letterGrade

Student Class So Far...

class Student:

 def __init__(self, studentName):
 self.name = studentName
 self.grades = []

 def __repr__(self):
 return self.name

 def addGrade(self, grade):
 self.grades.append(grade)

Finishing Touches

● Let's add an averageGrade function
○ Reads through student's list of grades
○ Returns average grade

 def averageGrade(self):

Finishing Touches

● Let's add an averageGrade function
○ Reads through student's list of grades
○ Returns average grade

 def averageGrade(self):
 count = 0.0
 total = 0.0
 for grade in self.grades:
 count += 1
 total += grade
 return total / count

Finishing Touches

● Let's add a letterGrade function
○ Determines letter grade based on average grade

 def letterGrade(self):

Finishing Touches

● Let's add a letterGrade function
○ Determines letter grade based on average grade

 def letterGrade(self):
 average = self.averageGrade()
 if average > 90:
 return 'A'
 elif average > 80:
 return 'B'
 elif average > 70:
 return 'C'
 else:
 return 'D'

What's so special about classes?

● Why are classes useful?

● Our student objects are just collections of smaller objects
○ String
○ List of floats

● Could have just used lists instead
○ s1 = ['Alice', [90, 80, 70]]
○ s2 = ['Bob', [60, 70, 75]]

● Could write functions designed for this representation
 def displayStudent(student)
 print student[0]

What's so special about classes?

● Classes don't make our code any more powerful
○ Unlike conditionals, recursion, iteration, ...

● Anything we can represent as a class...
○ We could also represent as a list

● Methods are just fancy functions

● So what's the point?

What's so special about classes

● Classes make code more clear

● Suppose we want to print out a student

● If we store student as a fancy list...
 def displayStudent(student):
 print student[0]

● If we store student as a class (with named properties)
 def __repr__(self):
 print student.name

What's so special about classes

● Classes abstract away implementation

● Outsiders don't need to worry about how a class is written

● If I want a student's grade, I call student.letterGrade()
○ Don't care what data is stored
○ Don't care what computation is involved

● Similar to calling turtle functions
○ What really happens when you call turtle.forward(10)?
○ It doesn't matter to us
○ We just see the end result

What's so special about classes

● Classes package similar code together

● All Student methods are located in my Student class
○ No choice involved

● Other class methods are located in their respective classes

● Keeps code organized
○ Easy to find things
○ Easy to connect things

● Similar motivation for modules

