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Understanding Software Requirements 
Stuart R. Faulk 

 
“The hardest single part of building a software system is decid-
ing precisely what to build. No other part of the conceptual 
work is as difficult as establishing the detailed technical re-
quirements...No other part of the work so cripples the resulting 
system if done wrong. No other part is as difficult to rectify 
later.” [Brooks 87]   

1. Introduction 
Deciding precisely what to build and documenting 
the results is the goal of the requirements phase of 
software development. For many developers of 
large, complex software systems, requirements are 
their biggest software engineering problem. While 
there is considerable disagreement on how to 
solve the problem, few would disagree with 
Brooks’ assessment that no other part of a devel-
opment is as difficult to do well or as disastrous in 
result when done poorly. The purpose of this tuto-
rial is to help the reader understand why the ap-
parently simple notion of “deciding what to build” 
is so difficult in practice, where the state of the art 
does and does not address these difficulties, and 
what hope we have for doing better in the future.  
This paper does not survey the literature but seeks 
to provide the reader with an understanding of the 
underlying issues. There are currently many more 
approaches to requirements than one can cover in 
a short paper. This diversity is the product of dif-
ferent views about which of the many problems in 
requirements are pivotal and of different assump-
tions about the desirable characteristics of a solu-
tion. This paper attempts to impart a basic under-
standing of the many facets of the requirements 
problem and the tradeoffs involved in attempting 
a solution. Thus forearmed, the reader may make 
his own assessment of the claims of different re-
quirements methods and their likely effectiveness 
in addressing his particular needs. 
We begin with basic terminology and some histor-
ical data on the requirements problem. We exam-
ine the goals of the requirements phase and the 
problems that can arise in attempting to meet 
those goals. As in Brooks’ article [Brooks 87], 
much of the discussion is motivated by the dis-
tinction between the difficulties inherent in what 
one is trying to accomplish (the “essential” diffi-
culties) and those one creates through inadequate 
practice (“accidental” difficulties). We discuss 
how a disciplined software engineering process 

helps address many of the accidental difficulties 
and why the focus of such a disciplined process is 
on producing a written specification of the de-
tailed technical requirements. We examine current 
technical approaches to requirements in terms of 
the specific problems each approach seeks to ad-
dress. Finally, we examine technical trends and 
discuss where significant advances are likely to 
occur in the future. 

 
Figure 1: System vs. software requirements 

2. Requirements and the Software Life Cycle 
A variety of software life–cycle models have been 
proposed with an equal variety of terminology. 
While differing in the detailed decomposition of 
the steps (e.g., prototyping models) or in the sur-
rounding management and control structure (e.g., 
to manage risk), there is general agreement on the 
core elements of the model. Figure 1 is a version 
of the model that illustrates the relationship be-
tween the software development stages and the 
related testing and acceptance phases  
When software is created in the context of a larger 
hardware and software system, system require-
ments are defined first followed by system design. 
System design includes decisions about which 
parts of the system requirements will be allocated 
to hardware and which to software. For software–
only systems, the life cycle model begins with 
analysis of the software requirements. From this 
point on, the role of software requirements in the 
development model is the same whether or not the 
software is part of a larger system, as shown in 
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Figure 2. For this reason, the remainder of our 
discussion does not distinguish whether or not 
software is developed as part of a larger system. 
For an overview of system versus software issues, 
the reader is referred to Dorfman and Thayer’s 
survey [Thayer 90].  
In a large system development, the software re-
quirements specification may play a variety of 
roles: 

• For customers, the requirements typically 
document what should be delivered and 
may provide the contractual basis for the 
development.  

• For managers it may provide the basis for 
scheduling and a yardstick for measuring 
progress.  

• For the software designers, it may provide 
the “design–to” specification.  

• For coders it defines the range of accepta-
ble implementations and is the final au-
thority on the outputs that must be pro-
duced. 

• For quality assurance personnel, it is the 
basis for validation, test planning and veri-
fication.  

Such diverse groups as marketing and 
governmental regulators may also use 
the requirements. These, and any oth-
ers with a interest in the outcome of 
system development are collectively 
referred to as the system’s stakehold-
ers. 
It is common practice (e.g., see 
[Thayer 90]) to classify software re-
quirements as “functional” or “non-
functional.” While definitions vary 
somewhat in detail, “functional” typi-
cally refers to requirements defining 
the acceptable mappings between sys-
tem input values and corresponding 
output values. “Non-functional” then 
refers to all other constraints including, 
but not limited to, performance, de-
pendability, maintainability, reusabil-
ity, and safety. 
While widely used, the classification of 
requirements as ”functional” and ”non-

functional” is confusing in its terminology and of 
little help in understanding common properties of 
different kinds of requirements. The word “func-
tion” is one of the most overloaded in computer 
science and its only rigorous meaning, that of a 
mathematical function, is not what is meant here. 
The classification of requirements as functional 
and non–functional offers little help in under-
standing common attributes of different types of 
requirements since it partitions classes of re-
quirements with markedly similar qualities (e.g., 
output values and output deadlines) while group-
ing others that have common only what they are 
not (e.g., output deadlines and maintainability 
goals). 
A more useful distinction is between what can be 
described as “behavioral requirements” and “de-
velopmental quality attributes” with the following 
definitions [Bass 03]: 

• Behavioral requirements - Behavioral re-
quirements include any and all information 
necessary to determine if the run–time be-
havior of a given implementation is ac-
ceptable. The behavioral requirements de-
fine all constraints on the system outputs 
(e.g., value, accuracy, timing) and result-
ing system state for all possible inputs and 
current system state. By this definition, se-

Figure 2: A conventional life-cycle model 
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curity, safety, performance, timing, and 
fault–tolerance are all behavioral require-
ments. 

• Developmental quality attributes - Devel-
opmental quality attributes include any 
constraints on the attributes of the system’s 
static construction. These include proper-
ties like testability, changeability, main-
tainability, and reusability. 

Behavioral requirements have in common that 
they are properties of the run–time behavior of the 
system and can (at least in principle) be validated 
objectively by observing the behavior of the run-
ning system, independent of its method of imple-
mentation. In contrast, developmental quality at-
tributes are properties of the system‘s static struc-
tures (e.g., modularization) or representation. De-
velopmental quality attributes have in common 
that they are functions of the development process 
and methods of construction. Assessment of de-
velopmental quality attributes is necessarily rela-
tivistic - for example, we do not say that a design 
is or is not maintainable but that one design is 
more maintainable than another. 
In addition, there may be constraints on the devel-
opment process itself. For example, that the soft-
ware must reuse certain legacy code, be developed 
on a particular platform, or be written in a specific 
language. Such requirements may be collectively 
referred to as process requirements [SWEBOK 
04]. Process requirements are often imposed by 
regulatory agencies or internal company stand-
ards. 

3. A Big Problem 
Requirements problems are persistent, pervasive, 
and costly. Evidence is most readily available for 
the large software systems developed for the U.S. 
Government since the results are a matter of pub-
lic record. As soon as software became a signifi-
cant part of such systems, developers identified 
requirements as a major source of problems. For 
example, developers of the early Ballistic Missile 
Defense System noted that: 
In nearly every software project that fails to meet 
performance and cost goals, requirements inade-

quacies play a major and expensive role in project 
failure [Alford 79]. 

Nor has the problem been mitigated over the in-
tervening years. A study of problems in mission 
critical defense systems identified requirements as 
a major problem source in two thirds of the sys-
tems examined [GAO 92]. This is consistent with 
results of a survey of large aerospace firms that 
identified requirements as the most critical soft-
ware development problem [Faulk 92]. Likewise, 
studies by Lutz [Lutz 92] identified functional and 
interface requirements as the major source of safe-
ty-related software errors in NASA’s Voyager and 
Galileo spacecraft. The GAO again identified re-
quirements as a major issue in defense acquisition 
[GAO 04]. Requirements errors have also been 
cited as a major cause in the very public losses of 
the Mars Climate Orbiter and Mars Polar Lander 
spacecraft [Bahill 05]. 
Results of industry studies described by Boehm 
[Boehm 81], and since replicated a number of 
times, showed that requirements errors are the 
most costly. These studies all produced the same 
basic result: the earlier in the development process 
an error occurs and the later the error is detected, 
the more expensive it is to correct. Moreover, the 
relative cost rises quickly. As shown in Figure 3, 
an error that costs a dollar to fix in the require-
ments phase may cost 100 to 200 dollars to fix if 
it is not corrected until the system is fielded or in 
the maintenance phase. 
Stage Relative Repair Cost 
Requirements  1-2 
Design ˜ 5 
Coding ˜ 10 
Unit test ˜ 20 
System test ˜ 50 
Maintenance ˜ 200 
Figure 3: Relative cost to repair a requirements error 

The costs of such failures can be enormous. For 
example, a 1992 GAO report noted that one sys-
tem, the Cheyenne Mountain Upgrade, would be 
delivered eight years late, exceed budget by $600 
million, and had less capability than originally 
planned, largely due to requirements-related prob-
lems. Recently, requirements problems have been 
cited in cost overruns projected for the 2010 Cen-
sus of up to $2 billion [GAO 08]. Broader GAO 
reviews (e.g. of troubled weapons programs 
[GAO 10]) suggest that such problems are the 
norm rather than the exception. While data from 
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private industry is less readily available, there is 
little reason to believe that the situation is signifi-
cantly different. 
In spite of advances in software engineering 
methodology and tool support, the requirements 
problem has not diminished. This does not mean 
that the apparent progress in software engineering 
is illusory. While the features of the problem have 
not changed, the applications have grown signifi-
cantly in capability, scale, and complexity. A rea-
sonable conclusion is that the growing ambitious-
ness of our software systems has outpaced the 
gains in requirements technology; at least as such 
technology is applied in practice. 

4. Why are Requirements Hard? 
It is generally agreed that the goal of the require-
ments phase is to establish and specify precisely 
what the software must do without describing how 
to do it. So simple seems this basic intent that it is 
not at all evident why it is so difficult to accom-
plish in practice. If what we want to accomplish is 
so clear, why is it so hard? To understand this, we 
must examine more closely the goals of the re-
quirements phase, where errors originate, and why 
the nature of the task leads to some inherent diffi-
culties. 
Most authors agree in principle that requirements 
should specify “what” rather than “how.” In other 
words, the goal of requirements is to understand 
and specify the problem to be solved rather than 
the solution. For example, the requirements for an 
automated teller system should talk about custom-
er accounts, deposits, and withdrawals rather than 
the software algorithms and data structures. The 
most basic reason for this is that a specification in 
terms of the problem captures the actual require-
ments without over-constraining the subsequent 
design or implementation. Further, solutions in 
software terms are typically more complex, more 
difficult to change, and harder to understand (par-
ticularly for the customer) than a specification of 
the problem.  
Unfortunately, distinguishing “what” from “how” 
itself represents a dilemma. As Davis [Davis 88], 
among others, points out, the distinction between 
what and how is necessarily a function of perspec-
tive. A specification at any chosen level of system 
decomposition can be viewed as describing the 
“what” for the next level. Thus customer needs 

may define the “what” and the decomposition into 
hardware and software the corresponding “how.” 
Subsequently, the behavioral requirements allo-
cated to a software components define its “what,” 
the software design, the “how, and so on. In other 
words, one person’s design becomes the next per-
son’s requirements. 
The upshot is that requirements cannot be effec-
tively discussed at all without prior agreement on 
which system one is talking about and at what 
level of decomposition. One must agree on what 
constitutes the problem space and what constitutes 
the solution space - the analysis and specification 
of requirements then properly belongs in the prob-
lem space. 
In discussing requirements problems one must 
also distinguish the development of large, com-
plex systems from smaller efforts (e.g., develop-
ments by a single or small team of programmers). 
Large system developments are multi–person ef-
forts. They are developed by teams of tens to 
thousands of programmers. The programmers 
work in the context of an organization typically 
including management, systems engineering, 
marketing, accounting, and quality assurance. The 
organization itself must operate in the context of 
outside concerns also interested in the software 
product, including the customer, regulatory agen-
cies, and suppliers.  
Even where only one system is intended, large 
systems are inevitably multi–version as well. As 
the software is being developed, tested, and even 
fielded, it evolves. Customers understand better 
what they want, developers understand better 
what they can and cannot do within the constraints 
of cost and schedule, and circumstances surround-
ing development change. The results are changes 
in the software requirements and, ultimately, the 
software itself. In effect, several versions of a giv-
en program are produced, if only incrementally. 
Such unplanned changes occur in addition to the 
expected variations of planned improvements. 
The multi-person, multi-version nature of large 
system development introduces problems that are 
both quantitatively and qualitatively different 
from those found in smaller developments. For 
example, scale introduces the need for administra-
tion and control functions with the attendant man-
agement issues that do not exist on small projects. 
The quantitative effects of increased complexity 
in communication when the number of workers 
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rises are well documented by Brooks [Brooks 95]. 
The effort required for communication and other 
overhead tasks such as documentation or configu-
ration management tend to rise exponentially with 
the size and complexity of the system. In the fol-
lowing discussion, it is this large system devel-
opment context we will assume since that is the 
one in which the worst problems occur and where 
the most help is needed.  
Given the context of multi–person, multi–version 
development, our basic goal of specifying what 
the software must do can be decomposed into the 
following subgoals: 

 1. Understand precisely what is required of 
the software. 

 2. Communicate the understanding of what is 
required to all of the parties involved in the 
development. 

 3. Control the software production to ensure 
that the final system satisfies the requirements 
(including managing the effects of changes). 

It follows that the source of most requirements 
errors is in the failure to adequately accomplish 
one of these goals, i.e.: 

 1. The developers failed to understand what 
was required of the software by the customer, 
end user, or other parties with a stake in the fi-
nal product. 

 2. The developers did not adequately capture 
the requirements or subsequently communicate 
the requirements effectively to other parties 
involved in the development.  

 3. The developers did not effectively manage 
the effects of changing requirements or ensure 
the conformance of down–stream development 
steps including design, code, integration, test, 
or maintenance to the system requirements. 

The end result of such failures is a software sys-
tem that does not perform as desired or expected, 
a development that exceeds budget and schedule, 
or, all too frequently, failure to deliver any work-
ing software at all. 

4.1 Essential Difficulties 
Even our more detailed goals appear reasonably 
straightforward; why then do so many develop-
ment efforts fail to achieve them? The short an-
swer is that the mutual satisfaction of these goals, 

in practice, is inherently difficult. To understand 
why, it is useful to reflect on some points raised 
by Brooks [Brooks 87] on why software engineer-
ing is hard and on the distinction he makes be-
tween essential difficulties - those inherent in the 
problem, and the accidental difficulties - those 
introduced through imperfect practice. For though 
requirements are inherently difficult, there is no 
doubt that these difficulties are many times multi-
plied by the inadequacies of current practice. 
The following essential difficulties attend each (in 
some cases all) of the requirements goals: 

• Comprehension. People do not know what 
they want. This does not mean that people 
do not have a general idea of what the 
software is for. Rather, they do not begin 
with a precise and detailed understanding 
of what functions belong in the software, 
what the output must be for every possible 
input, how long each operation should 
take, how one decision will affect another, 
and so on. Indeed, unless the new system 
is simply a reconstruction of an old one, 
such a detailed understanding at the outset 
is unachievable. Many decisions about the 
system behavior will depend on other deci-
sions yet unmade, and expectations will 
change as the problem (and attendant costs 
of alternative solutions) is better under-
stood. Nonetheless, it is a precise and rich-
ly detailed understanding of expected be-
havior that is needed to create effective de-
signs and develop correct code. 

• Communication. Software requirements 
are difficult to communicate effectively. 
As Brooks points out, the conceptual struc-
tures of software systems are complex, ar-
bitrary, and difficult to visualize. The large 
software systems we are now building are 
among the most complex structures ever 
attempted. That complexity is arbitrary in 
the sense that it is an artifact of people’s 
decisions and prior construction rather 
than a reflection of fundamental properties 
(as, for example, in the case of physical 
laws). To make matters worse, many of the 
conceptual structures in software have no 
readily comprehensible physical analogue 
so they are difficult to visualize.  
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In practice, comprehension suffers under 
all of these constraints. We work best with 
regular, predictable structures, can com-
prehend only a very limited amount of in-
formation at one time, and understand 
large amounts of information best when 
we can visualize it. Thus the task of cap-
turing and conveying software require-
ments is inherently difficult. 
The inherent difficulty of communication 
is compounded by the diversity of purpos-
es and audiences for a requirements speci-
fication. Ideally a technical specification is 
written for a particular audience. The brev-
ity and comprehensibility of the document 
depend on assumptions about common 
technical background and use of language. 
Such commonality typically does not hold 
for the many diverse groups (e.g., custom-
ers, systems engineers, managers) that 
must use a software requirements specifi-
cation. 

• Control. Inherent difficulties attend control 
of software development as well. The arbi-
trary and invisible nature of software 
makes it difficult to anticipate which re-
quirements will be met easily and which 
will decimate the project’s budget and 
schedule if, indeed, they can be fulfilled at 
all. The low fidelity of software planning 
has become a cliché yet the requirements 
are often the best available basis for plan-
ning or for tracking to a plan. 
This situation is made incalculably worse 
by software’s inherent malleability. Of all 
the problems bedeviling software mangers, 
few evoke such passion as the difficulties 
of dealing with arbitrary requirements 
changes. For most systems, such changes 
remain a fact of life even after delivery. 
The continuous changes make it difficult 
to develop stable specifications, plan effec-
tively, or control cost and schedule. For 
many industrial developers, change man-
agement is the most critical problem in re-
quirements. 

• Inseparable concerns. In seeking solutions 
to the foregoing problems, we are faced 
with the additional difficulty that the issues 
cannot easily be separated and dealt with 

piecemeal. For example, developers have 
attempted to address the problem of chang-
ing requirements by baselining and freez-
ing requirements before design begins. 
This proves impractical because of the 
comprehension problem - the customer 
may not fully know what he wants until he 
sees it. Similarly, the diversity of purposes 
and audiences is often addressed by writ-
ing a different specification for each. Thus 
there may be a system specification, a set 
of requirements delivered to customer, a 
distinct set of technical requirements writ-
ten for the internal consumption of the 
software developers, and so on. However, 
this solution vastly increases the complexi-
ty, provides an open avenue for inconsist-
encies, and multiplies the difficulties of 
managing changes. 
These issues represent only a sample of the 
inherent dependencies between different 
facets of the requirements problem. The 
many distinct parties with an interest in a 
system’s requirements, the many different 
roles the requirements play, and the inter-
locking nature of software’s conceptual 
structures, all introduce dependencies be-
tween concerns and impose conflicting 
constraints on any potential solution. 
The implications are twofold. First we are 
constrained in the application of our most 
effective strategy for dealing with complex 
problems - divide and conquer. If a prob-
lem is considered in isolation, the solution 
is likely to aggravate other difficulties. Ef-
fective solutions to most requirements dif-
ficulties must simultaneously address more 
than one problem. Second, developing 
practical solutions requires making diffi-
cult tradeoffs. Where different problems 
have conflicting constraints, compromises 
must be made. Because the tradeoffs result 
in different gains or losses to the different 
parties involved, effective compromise re-
quires negotiation. These issues are con-
sidered in more detail when we discuss the 
properties of a good requirements specifi-
cation. 
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4.2 Accidental Difficulties 
While there is no doubt that software require-
ments are inherently difficult to do well, there is 
equally no doubt that common practice unneces-
sarily exacerbates the difficulty. We use the term 
“accidental” in contrast to “essential,” not to im-
ply that the difficulties arise by chance, but that 
they are the product of common failings in man-
agement, elicitation, specification, or use of re-
quirements. It is these failings that are most easily 
addressed by improved practice. 

• Written as an afterthought. It remains 
common practice that requirements docu-
mentation is developed only after the soft-
ware has been written. For many projects, 
the temptation to rush into implementation 
before the requirements are adequately un-
derstood proves irresistible. This is under-
standable. Developers often feel like they 
are not really doing anything when they 
are not writing code; managers are con-
cerned about schedule when there is no 
visible progress on the implementation. 
Then too, the intangible nature of the 
product mitigates toward early implemen-
tation. Developing the system is an obvi-
ous way to understand better what is need-
ed and make visible the actual behavior of 
the product. The result is that requirements 
specifications are written as an after-
thought (if at all). They are not created to 
guide the developers and testers but treated 
as a necessary evil to satisfy contractual 
demands.  
Such after–the–fact documentation inevi-
tably violates the principle of defining 
what the system must do rather than the 
how since it is a specification of the code 
as written. It is produced after the fact so it 
is not planned or managed as an essential 
part of the development but is thrown to-
gether.  In fact, it is not even available in 
time to guide implementation or manage 
production. 

• Confused in purpose. Because there are so 
many potential audiences for a require-
ments specification, with different points 
of view, the exact purpose of the document 
becomes confused. An early version is 
used to sell the product to the customer so 

it includes marketing hype extolling the 
product’s virtues. It is the only documenta-
tion of what the system does so it provides 
introductory, explanatory, and overview 
material. It is a contractual document so it 
is intentionally imprecise to allow the de-
veloper latitude in the delivered product or 
the customer latitude in making no–cost 
changes. It is the vehicle for communi-
cating decisions about software to design-
ers and coders so it incorporates design 
and implementation details. The result is a 
document in which it is unclear which 
statements represent real requirements and 
which are more properly allocated to mar-
keting, design, or other documentation. It 
is a document that attempts to be every-
thing to everyone and ultimately serves no 
one well. 

• Not designed to be useful. Often in the 
rush to implementation little effort is ex-
pended on requirements. The requirements 
specification is not expected to be useful 
and, indeed, this turns out to be a self–
fulfilling prophecy. Little effort is expend-
ed on designing it, writing it, checking it, 
or managing its creation and evolution. 
The most obvious result is poor organiza-
tion. The specification is written in English 
prose and follows the author’s stream of 
consciousness or the order of execution 
[Heninger 80].  
The resulting document is ineffective as a 
technical reference. It is unclear which 
statements represent actual requirements. 
It is unclear where to put or find particular 
requirements. There is no effective proce-
dure for ensuring that the specification is 
consistent or complete. There is no sys-
tematic way to manage requirements 
changes. The specification is difficult to 
use and difficult to maintain. It quickly be-
comes out of date and loses whatever use-
fulness it might originally have had. 

• Lacks essential properties. Lack of fore-
thought, confusion of purpose, or lack of 
careful design and execution all lead to re-
quirements that lack properties critical to 
good technical specifications. The re-
quirements, if documented at all, are re-
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dundant, inconsistent, incomplete, impre-
cise, and inaccurate.  

Where the essential difficulties are inherent in the 
problem, the accidental difficulties result from a 
failure to gain or maintain intellectual control over 
what is to be built. While the presence of the es-
sential difficulties means that there can be no “sil-
ver bullet” that will suddenly render requirements 
easy, we can remove at least the accidental diffi-
culties through a well though out, systematic, and 
disciplined development process. Such a disci-
plined process then provides a stable foundation 
for attacking the essential difficulties. 

5. Role of a Disciplined Approach 
The application of discipline in analyzing and 
specifying software requirements can address the 
accidental difficulties.  While there is considera-
ble agreement on the desirable qualities of a soft-
ware development approach, development pro-
cesses have not been standardized. Further, the 
context and qualities of developments can differ 
such that no single process model will suit all de-
velopments. Nonetheless, it is useful to examine 
the characteristics of an idealized process and its 
products to understand where current approaches 
are weak and which current trends are promising. 
In general, a complete requirements approach will 
define: 

• Process: The (partially ordered) sequence 
of activities, entrance and exit criteria for 
each activity, which work products are 
produced in each activity, and what skill 
sets are needed do the work. 

• Products: The work products to be pro-
duced and, for each product, the resources 
needed to produce it, the information it 
contains, the expected audience, and the 
acceptance criteria the product must satis-
fy. 

Conceptually, the requirements phase consists of 
two distinct but overlapping activities correspond-
ing to the first two goals for requirements enu-
merated previously: 
1. Problem analysis: The goal of problem analy-

sis is to understand precisely what problem is 
to be solved. It includes identifying the sys-
tem’s stakeholders and eliciting their require-
ments. It also includes deciding the exact pur-

pose of the system, who will use it, the con-
straints on acceptable solutions, and the pos-
sible tradeoffs between conflicting con-
straints.  

2. Requirements specification: The goal of re-
quirements specification is to capture the re-
sults of problem analysis in a transferable 
form. The products of this activity typically 
include a written specification of precisely 
what is to be built in the form of a Software 
Requirements Specification (SRS). The SRS 
captures the decisions made during problem 
analysis and characterizes the set of accepta-
ble solutions to the problem. 

In practice, the distinction between these activities 
is conceptual rather than temporal. Where both are 
needed, the developer typically switches back and 
forth between analysis of the problem and docu-
mentation of the results. When problems are well 
understood, the analysis phase may be virtually 
non–existent. When the system model and docu-
mentation are standardized or based on existing 
specifications, the documentation paradigm may 
guide the analysis [Hester 81].  

5.1 Problem Analysis  
Problem analysis lies at the boundary between 
human concerns and the realization of some soft-
ware system that seeks to address those concerns. 
It is necessarily informal in the sense that there is 
no effective, closed end procedure that will guar-
antee success. It is an information acquiring, col-
lating, and structuring process through which one 
attempts to understand all the various parts of a 
problem and their relationships.  
Problem analysis may be further divided into two 
closely related sub-activities: requirements elicita-
tion and requirements modeling and analysis. Re-
quirements elicitation focuses on the human side 
of problem analysis. It seeks to answer the ques-
tion “What are the behavioral and developmental 
qualities of an acceptable system?” Modeling and 
analysis supports elicitation by capturing the an-
swers to this question in a form that allows the 
stakeholders to understand, communicate, and 
reason about the results. 
Requirements Elicitation 
As our discussion of the essential difficulties sug-
gests, understanding what constitutes an “accepta-
ble system” to its stakeholders can be a daunting 



9 
 

task. People do not really know what they want in 
sufficient detail. Moreover, different people or 
types of stakeholders often have different and in-
compatible views of the problem, the purposes for 
developing the system, and what it should accom-
plish.  In fact, since the scope of the system may 
be undetermined, it may not even be clear who the 
stakeholders are. 
The purpose of a disciplined elicitation process is 
to systematically remove the uncertainty from 
problem understanding, resolve conflicting views, 
and arrive at a set of behavioral and developmen-
tal requirements that the stakeholders will agree 
to. To do so, the process must answer the follow-
ing questions: 

• What are the system boundaries? 
• What is the rationale for creating the sys-

tem? What are the current problems and 
what are the goals for the proposed sys-
tem? 

• What are the constraints on acceptable so-
lutions? 

• Who are the stakeholders? 
• What are the different stakeholders’ views 

of the problem and the system require-
ments? 

• Where does the understanding differ or 
requirements conflict and how can those 
conflicts be resolved? 

Developments differ in the extent to which the 
process must address such questions. For exam-
ple, where there is a single customer, it may be 
unnecessary to expend any effort establishing who 
the stakeholders are or managing stakeholder con-
flicts. Thus, the activities necessary to answering 
these questions are incorporated into the elicita-
tion process as needed. 
Establish system boundaries: The purpose of this 
activity is to establish where system concerns 
properly begin and end. In practice, this means 
characterizing the system’s external interfaces. It 
delimits and defines how the software interacts 
with users or with other systems (software or 
hardware).  
In addition, establishing the system boundaries 
sets boundaries on the elicitation process itself. By 
defining what is inside the system and what is 
outside, it bounds the scope of inquiry about the 

problem and the system requirements. By identi-
fying which concerns properly belong to the soft-
ware it helps establish who the stakeholders are 
and which views or concerns are relevant. By es-
tablishing bounds on which persons and issues are 
relevant, it helps determine when elicitation is 
done.  
Rationale and goal understanding: Fully under-
standing the problem requires understanding the 
rationale - why the system is being built in the 
first place. Understanding the rationale can be 
necessary for establishing system requirements 
and for maintaining consistency as real-world ob-
jectives or constraints change over time.  
The rationale encompasses both the problems with 
any current system (automated or manual) and the 
objectives for the new system.  System objectives 
may be codified in the form of goals where a goal 
characterizes “an objective the system under con-
sideration should achieve” [Lamsweerde 01].  
Goals provide a link between broader concerns 
like business objectives and the requirements that 
instantiate those concerns in the software context. 
Defining goals and providing traceability to the 
software requirements supports managing re-
quirements changes as business objectives mature.  
Likewise, understanding the overall system goals 
and their relative priorities provides a basis for 
choosing among likely alternatives and resolving 
conflicting requirements. Specific approaches to 
goal-based requirements are discussed in the sub-
sequent section on the state of practice. 
Stakeholder identification: fully understanding the 
problem necessitates identifying all of the sys-
tem’s stakeholders, then understanding their inter-
est in the system. In stakeholder identification, it 
is important to include both the individuals (or 
organizations) who stand to lose, as well as those 
who stand to gain, from development success or 
failure [Gause 89].  
For many large developments it is not immediate-
ly obvious who all the stakeholders are, even to 
the stakeholders themselves. Further, the set of 
stakeholders may change as requirements evolve, 
system boundaries change, or the individual fill-
ing those organizational roles are replaced.  
Since different stakeholders will have different 
attributes, concerns, and views of the system, 
identifying them is a necessary step toward select-
ing appropriate elicitation methods, gathering a 
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complete set of requirements, establishing priori-
ties, and negotiating conflicts. 
Elicitation: The core of requirements elicitation is 
the process of working with the stakeholders to 
obtain their understanding of the problem, goals, 
and system requirements. Since different classes 
of stakeholders typically have different perspec-
tives on the problem, have different cultures, and 
communicate in different languages, a number of 
different elicitation methods may have to be used 
as part of an effective elicitation process. Deter-
mining which methods to use, incorporating them 
in the requirements process, and synthesizing the 
results are the concerns of effective practice (e.g, 
[Lauesen 02]). 
Requirements Negotiation: Different stakeholders 
necessarily have different perspectives on the sys-
tem requirements. For most real developments, 
there is no single set of requirements waiting to be 
discovered. Rather, there are many potential mani-
festations of stakeholder desires that lead to dif-
ferent, and often conflicting, sets of requirements.  
Before development can proceed to implementa-
tion, there must be agreement on a single, con-
sistent set of requirements. Modeling and analyz-
ing the requirements can help identify where con-
flicts occur but does not resolve them. This almost 
always requires tradeoffs and compromises be-
tween conflicting goals. It follows that arriving at 
agreement requires an effective process for nego-
tiating requirements tradeoffs among stakeholders 
(e.g., [Boehm 94]). 
Requirements Modeling and Analysis 
The inherent difficulties of software complexity 
and invisibility are typically addressed by devel-
oping one or more abstract models. “Model,” in 
this sense, means a representation of some aspect 
of the software system, the system’s context, or 
both. It is abstract in that it represents certain in-
formation (entities and relationships) about the 
system while omitting others.  
The use of models can help make the intangible 
objects and relationships in a software system vis-
ible. For example, a behavioral model might show 
the required system transitions and the observable 
behavior in response to user inputs. Such models 
aid elicitation and understanding by providing a 
transferable representation of the problem or sys-
tem requirements. The use of models also reduces 
complexity by allowing the user to focus on and 

reason about a limited, related set of information 
at one time.  
That said, not all models or modeling languages 
are equal. In some cases, “abstract” is interpreted 
to mean vague, not well defined, or inaccurate. To 
support reasoning about a system, any model 
should have the property that anything that is true 
of the model is also true of the system it repre-
sents. One can then manipulate the model to 
achieve particular developmental goals with the 
understanding that corresponding transformations 
to the system will yield corresponding real-world 
properties. In many cases, modeling languages 
(e.g., UML) lack sufficiently well defined seman-
tics to achieve this property. The result is a model 
that is open to conflicting interpretations. 
In addition to supporting problem understanding, 
the creation of models can support various kinds 
of analysis. Where models provide a formal syn-
tax and semantics, they may support analysis for 
properties like consistency and completeness, as 
well as reasoning about requirements like safety 
properties. Such analyses can help identify miss-
ing requirements, inconsistencies, and require-
ments conflicts during elicitation. While informal 
models may not support formal reasoning, they 
can be useful aids for visualizing and reasoning 
about system requirements, as long as their limita-
tions are understood. 

5.2 Requirements Specification 
For substantial developments, the effectiveness of 
the requirements effort depends on how well the 
SRS captures the results of analysis and how use-
able the specification is. There is little benefit to 
developing a thorough understanding of the prob-
lem if that understanding is not effectively com-
municated to customers, designers, implementers, 
testers, and other stakeholders. The larger and 
more complex the system, the more important a 
good specification becomes. This is a direct result 
of the many roles the SRS plays in a multi–
person, multi–version development [Parnas 86]: 

 1. The SRS is the primary vehicle for 
agreement between the developer and custom-
er on exactly what is to be built. It is the doc-
ument reviewed by the customer or his repre-
sentative and often is the basis for judging ful-
fillment of contractual obligations. 
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 2. The SRS records the results of problem 
analysis. It is the basis for determining where 
the requirements are complete and where addi-
tional analysis is necessary. Documenting the 
results of analysis allows questions about the 
problem to be answered only once during de-
velopment. 

 3. The SRS defines what properties the 
system must have and the constraints on its de-
sign and implementation. It defines where 
there is, and is not, design freedom. It helps 
ensure that requirements decisions are made 
explicitly during the requirements phase, not 
implicitly during design or programming. 

 4. The SRS is the basis for estimating cost 
and schedule. It is management’s primary tool 
for tracking development progress and ascer-
taining what remains to be done. 

 5. The SRS is the basis for test plan 
development. It is the tester’s chief tool for de-
termining the acceptable behavior of the soft-
ware. 

 6. The SRS provides the standard definition 
of expected behavior for the system’s main-
tainers and is used to record engineering 
changes. 

For a disciplined software development, the SRS 
is the primary technical specification of the soft-
ware and the primary control document. This is an 
inevitable result of the complexity of large sys-
tems and the need to coordinate multi–person de-
velopment teams. To ensure that the right system 
is built, one must first understand the problem. To 
ensure agreement on what is to be built and the 
criteria for success, the results of that understand-
ing must be recorded.  The goal of a systematic 
requirements process is thus the development of a 
set of specifications that effectively communicate 
the results of analysis. The SRS is the primary 
vehicle for communicating requirements between 
the developers, managers, and customers so the 
document is designed to be useful to that purpose. 
A useful document is maintained. 

5.3 Requirements Process and Plan 
Requirements’ accidental difficulties are ad-
dressed through the careful analysis and specifica-
tion of a disciplined process. Rather than develop-
ing the specification as an afterthought, require-
ments are understood and specified before devel-

opment begins. One knows what one is building 
before attempting to build it. Where requirements 
cannot be completely known in advance the pro-
cess systematically revisits the requirements pro-
cess and downstream activities (e.g., iterative de-
velopment). 
The facts that requirements cannot be fully known 
in advance, and often change, are sometimes used 
as justification for expending little effort on re-
quirements planning. The thought is that the pro-
ject will deal with requirements when and if they 
become manifest. Such an approach surrenders 
the notion of a controlled engineering process to 
chance.  
As a system goes to code, every decision about 
the requirements necessarily gets made (by defini-
tion). The question is not whether any particular 
requirements decision will be made but when it 
will be made and by whom. By default, any deci-
sion that is not made earlier in the process will be 
made by the programmers. In many cases, the 
programmers have little visibility into the business 
implications of such decisions or their effects on 
stakeholder goals. This is seldom a desirable out-
come. 
Being in control of the process means that re-
quirements decisions, including postponing or not 
making decisions, are conscious choices. Each 
decision is made at the appropriate time by those 
with the knowledge and skills necessary to choose 
the best available alternative. This kind of control 
requires that the complex activities around re-
quirements be planned in advance. 
While organizations that develop complex soft-
ware systems should employ a disciplined re-
quirements process, no one process will meet the 
needs of every organization. A company that is 
developing an application where development 
cost and time to market are primary business driv-
ers should not use the same process as an organi-
zation developing safety critical aerospace soft-
ware with a long life expectancy. 
It follows that the requirements process is some-
thing that should be chosen or designed to fit the 
organizational and even developmental contexts. 
While every development will typically go 
through some form of elicitation, modeling, anal-
ysis, and specification, the emphasis on the differ-
ent phases and products will differ from one situa-
tion to the next. Likewise, the choices among 
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methods, technologies, notations, and tools will 
vary. 
For deploying processes that are a good fit for a 
particular organization or situation, it is useful to 
think of processes as products. That is, we want a 
process that meets particular organizational and 
developmental goals (e.g., short time-to-market). 
To meet those goals, the process will need to sat-
isfy certain requirements (e.g., contain certain 
milestones or satisfy particular standards). We 
then must create (build) or choose (buy) a process 
that satisfies the requirements. We must com-
municate that process to those who will enact it, 
manage it, or monitor it. We must validate the 
process against the goals, verify its enactment, 
and so on. 
In a disciplined organization, this means that there 
must be a written specification that records deci-
sions about the process and provides a baseline for 
enactment, tailoring, or process improvement. 
While treating a process as a product in this man-
ner may seem alien, in fact many organizations 
that have embarked on systematic process im-
provement (e.g., [SEI 06]) have done all of this 
and more. Thinking about the process as a product 
helps ensure that adequate consideration is given 
to planning, budgeting for, and managing process 
development or improvement. 
At the project level, the requirements process 
should be instantiated in the form of a require-
ments plan [Young 04]. The requirements plan 
makes the abstract requirements processes con-
crete by mapping activities to tasks, people to 
roles, and artifacts to deliverables. It describes 
who will do what using which specific methods 
and tools. For example, it should describe which 
elicitation methods will be used to obtain which 
kinds of requirements information and which 
modeling methods will be used to capture that 
information. 
 The plan serves as the basis for team consensus 
on exactly what will be done, provides a yardstick 
for tracking progress, and serves as a guide to new 
personnel and other stakeholders. The exact plan 
contents should vary depending on the organiza-
tion’s process and the specific characteristics of 
the project. In general, however, it should answer 
the following kinds of questions for the reader: 

• Roles and Responsibilities – Who is re-
sponsible for what? 

• Project Background – What background 
information will help understand this pro-
ject? 

• Requirements Process – What idealized 
requirements process will we follow? 

• Mechanisms, methods, techniques – How 
will we elicit, identify, analyze, define, 
specify, prioritize, track, etc.? 

• Quality assessment – What methods will 
be used to assess requirements qualities 
and what are the acceptance criteria for 
the products produced? 

• Detailed schedule, milestones – How are 
the activities and artifacts mapped to the 
project schedule and milestones? 

• Resources and References – Who or what 
resources can answer questions about the 
product or process? 

The instantiation of a well-defined process in the 
project plan helps ensure that the process actually 
enacted by project personnel will be consistent 
with the organization’s overall process goals. Ob-
serving and measuring the results then provides 
metrics for systematic process improvement. 
The final key to implementing the plan is provid-

ing adequate resources. Historical data from a 
large set NASA projects (Figure 4) shows that, in 
general, the projects that spent the least on devel-
oping requirements tended to have the highest 
cost overruns. Projects that spend 8% to 14% of 

Figure 4: Requirements spending vs. cost overruns 
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the total project budget on acquiring and manag-
ing requirements reduced cost overruns by 50% 
([NASA 05], [Young 06]).   

6. Requirements for the Software Require-
ments Specification 

The goals of the requirements process, the at-
tendant difficulties, and the role of the require-
ments specification in a disciplined process de-
termine the properties of a “good” requirements 
specification. These properties do not mandate 
any particular specification method but do de-
scribe characteristics an effective method should 
possess. 
SRS Semantic Properties SRS Packaging Properties 
Complete Modifiable 
Implementation independent Readable 
Unambiguous and consistent 
Precise 
Verifiable 

Organized for reference and 
review 

Table 1: Semantic properties vs. packaging properties 

In discussing the properties of a good SRS, it use-
ful to distinguish semantic properties from pack-
aging properties [Faulk 92]. Semantic properties 
are a consequence of what the specification says 
(i.e., its meaning or semantics). Packaging proper-
ties are a consequence of how the requirements 
are written down - the format, organization, and 
presentation of the information. The semantic 
properties determine how effectively an SRS cap-
tures the software requirements. The packaging 
properties determine how useable the resulting 
specification is. Table 1 illustrates the classifica-
tion of properties of a good SRS. An SRS that 
satisfies the semantic properties of a good specifi-
cation is: 

• Complete. The SRS defines the set of ac-
ceptable implementations. It should con-
tain all the information needed to write 
software that is acceptable to the customer 
and no more. Any implementation that sat-
isfies every statement in the requirements 
is an acceptable product. Where infor-
mation is not available before development 
begins, areas of incompleteness must be 
explicitly indicated [Parnas 86].  

• Implementation independent. The SRS 
should be free of design and implementa-
tion decisions unless those decisions re-
flect actual requirements. 

• Unambiguous and Consistent. If the SRS 
is subject to conflicting interpretation, the 
different parties will not agree on what is 
to be built or whether the right software 
has been built. Every requirement should 
have only one possible interpretation. Sim-
ilarly, no two statements of required be-
havior should conflict. 

• Precise. The SRS should define exactly 
the required behavior. For each output, it 
should define the range of acceptable val-
ues for every input. The SRS should define 
any applicable timing constraints such as 
minimum and maximum acceptable delay. 

• Verifiable. A requirement is verifiable if it 
is possible to determine unambiguously 
whether a given implementation satisfies 
the requirement or not. For example, a be-
havioral requirement is verifiable if it is 
possible to determine, for any given test 
case (i.e., an input and an output), whether 
the output represents an acceptable behav-
ior of the software given the input and the 
system state. 

An SRS that satisfies the packaging properties of 
a good specification1 is: 

• Modifiable. The SRS must be organized 
for ease of change. Since no organization 
can be equally easy to change for all pos-
sible changes, the requirements analysis 
process must identify expected changes 
and the relative likelihood of their occur-
rence. The specification is then organized 
to limit the effect of likely changes. 

• Readable. The SRS must be understanda-
ble by the parties that use it. It should 

                                                
1Reusability is also a packaging property and be-
comes an attribute of a good specification where 
reusability of requirements specifications is a 
goal. 
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clearly relate the elements of the problem 
space as understood by the customer to the 
observable behavior of the software. 

• Organized for reference and review.  The 
SRS is the primary technical specification 
of the software requirements. It is the re-
pository for all the decisions made during 
analysis about what should be built. It is 
the document reviewed by the customer or 
his representatives. It is the primary arbi-
trator of disputes. As such the document 
must be organized for quick and easy ref-
erence. It must be clear where each deci-
sion about the requirements belongs. It 
must be possible to answer specific ques-
tions about the requirements quickly and 
easily. 

To address the difficulties associated with writing 
and using an SRS, a requirements approach must 
provide techniques addressing both semantic and 
packaging properties. It is also desirable that the 
conceptual structures of the approach treat the 
semantic and packaging properties as distinct con-
cerns (i.e., as independently as possible). This al-
lows one to change the presentation of the SRS 
without changing its meaning. 
In aggregate, these properties of a good SRS rep-
resent an ideal. Some of the properties may be 
unachievable, particularly over the short term. For 
example, a common complaint is that one cannot 
develop complete requirements before design be-
gins because the customer does not yet fully un-
derstand what he wants or is still making changes. 
Further, different SRS “requirements” mitigate 
toward conflicting solutions. A commonly cited 
example is the use of English prose to express 
requirements. English is readily understood but 
notoriously ambiguous and imprecise. Converse-
ly, formal languages are precise and unambigu-
ous, but can be difficult to read. 
Although the ideal SRS may be unachievable, 
possessing a common understanding of what con-
stitutes an ideal SRS is important [Parnas 86] be-
cause it: 

• Provides a basis for standardizing an or-
ganization’s processes and products, 

• Provides a standard against which progress 
can be measured, and, 

• Provides guidance - it helps developers 
understand what needs to be done next and 
when they are finished. 

Because it is so often true that (1) requirements 
cannot be fully understood before at least starting 
to build the system and (2) a perfect SRS cannot 
be produced even when the requirements are un-
derstood, some approaches advocated in the litera-
ture do not even attempt to produce a definitive 
SRS. For example, some authors advocate going 
directly from a problem model to design or from a 
prototype implementation to the code. While such 
approaches may be effective on some develop-
ments, they are inconsistent with the notion of 
software development as an engineering disci-
pline. The development of technical specifications 
is an essential part of a controlled engineering 
process. This does not mean that the SRS must be 
entire or perfect before anything else is done but 
that its development is a fundamental goal of the 
process as a whole. That we may currently lack 
the ability to write good specifications in some 
cases does not change the fact that it is useful and 
necessary to try. 

7. State of the Practice 
The past decade has brought a significant shift in 
requirements practice and the perception of the 
role of requirements in the development process. 
At the time the first version of this article was 
published, requirements analysis was generally 
treated as a distinct concern (e.g., [Davis 93]). 
There was the conceptual distinction that require-
ments should express an implementation inde-
pendent specification of what the software should 
do. However, it was also treated as a development 
phase that divided the software process into dis-
tinct and relatively independent parts. It is this 
sequencing relationship that is represented in the 
waterfall model and its variations [e.g., Figure 1]. 
In this view, the requirements phase begins with 
requirements gathering, and ends with the deliv-
ery of some form of requirements specification to 
the software designers. While it is understood that 
the requirements activities and its products may 
be revisited in subsequent phases, it is assumed 
that the requirements specification can capture 
and communicate everything the developers need 
to know to design, implement, and maintain the 
software. In practice, this separation of concerns 
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was embodied in the notion of the “requirements 
handoff” – a process milestone in which the re-
quirements specification is baselined and control 
passed to the software designers and coders. 
The unstated assumption behind this model is that 
the dependencies between non-contiguous parts of 
the process do not require explicit understanding 
or management; that everything the stakeholders 
needed to know could be captured through work 
products like the SRS and supporting traceability 
matrices. Thus, for example, the designers do not 
need to understand the source of particular re-
quirements or the underlying business rationale to 
design a good software architecture. 
Over the past decade, a more holistic view of the 
software process has emerged. It has become clear 
that, for most complex software development, the 
decisions in each phase of development may have 
significant implications across the life cycle and, 
indeed, across more than one life cycle. Thus, 
controlling the downstream effects of develop-
ment decisions requires explicit understanding 
and management of these dependencies. This re-
quires a model of development that spans the 
software life cycle and, for some concerns, multi-
ple life cycles. 
In the remainder of this section we discuss the 
current state of practice, particularly as it embod-
ies this broader, more interdisciplinary view of 
requirements. 

7.1 Software Methodologies 
Over the years, a number of analysis and specifi-
cation methods have been developed as part of 
more comprehensive software engineering meth-
ods. The general trend has been for software engi-
neering techniques to be applied first to coding 
problems (e.g., complexity, ease of change), then 
to similar problems occurring earlier and earlier in 
the life cycle. Thus the concepts of structured 
programming led eventually to structured design 
and analysis. Similarly, the concepts of object-
oriented programming led to object oriented de-
sign and analysis.  
The benefits of this approach are that a common 
set of conceptual structures and notations can be 
used across the software life cycle. It is unneces-
sary to translate from one set of abstractions to 
another (until code is produced), avoiding transla-
tion errors and inconsistencies between models. 

The drawback is that the same notations and struc-
tures must be used to represent concepts that we 
are trying to keep distinct. For example, the con-
cept of objects is used to represent both entities in 
the problem domain (requirements) and entities in 
the implementation domain (code). This can make 
it difficult to distinguish requirements decisions 
from downstream concerns. 
Since a number of the concepts used in current 
object-oriented approaches were introduced in 
Structured Analysis, and Structured Analysis is 
still in use in use in some application domains, our 
discussion will treat both. 

Structured Analysis (SA) 
Following the introduction of structured pro-
gramming as a means to gain intellectual control 
over increasingly complex programs, structured 
analysis evolved from functional decomposition 
as a means to gain intellectual control over system 
problems.  
The basic assumption behind SA is that the acci-
dental difficulties can be addressed by a systemat-
ic approach to problem analysis using [Svoboda 
90]: 

• A common conceptual model for describ-
ing all problems, 

• A set of procedures suggesting the general 
direction of analysis and an ordering on 
the steps, 

• A set of guidelines or heuristics support-
ing decisions about the problem and its 
specification, and 

• A set of criteria for evaluating the quality 
of the product. 

What functional decomposition is still a part of 
SA, the focus of the analysis shifts from the pro-
cessing steps to the data being processed. The 
analyst views the problem as constructing a sys-
tem to transform data. He analyzes the sources 
and destinations of the data, determines what data 
must be held in storage, what transformations are 
done on the data, and the form of the output.   
Common to the SA approaches is the use of data 
flow diagrams and data dictionaries. Data flow 
diagrams provide a graphic representation of the 
movement of data through the system (typically 
represented as arcs) and the transformations on 
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the data (typically represented as nodes). The data 
dictionary supports the data flow diagram by 
providing a repository for the definitions and de-
scriptions of each data item on the diagrams. Re-
quired processing is captured in the definitions of 
the transformations. Associated with each trans-
formation node is a specification of the processing 
the node does to transform the incoming data 
items to the outgoing data items. At the most de-
tailed level, a transformation is defined using a 
textual specification called a “MiniSpec”. A Min-
iSpec may be expressed in a number of different 
ways including English prose, decision tables, or a 
procedure definition language (PDL). 
SA approaches originally evolved for manage-
ment information systems (MIS). Examples of 
widely used strategies include those described by 
DeMarco [DeMarco 78] and Gane and Sarson 
[Gane 79]. “Modern” structured analysis was in-
troduced to provide more guidance in modeling 
systems as data flows as exemplified by Yourdon 
[Yourdon 89].  
Structured analysis is based on the notion that 
there should be a systematic (and hopefully pre-
dictable) approach to analyzing a problem, de-
composing it into parts, and describing the rela-
tionships between the parts. By providing a well 
defined process, structured analysis seeks to ad-
dress, at least in part, the accidental difficulties 
that result from ad hoc approaches and the defini-
tion of requirements as an afterthought. It seeks to 
address problems in comprehension and commu-
nication by using a common set of conceptual 
structures a graphic representation of the specifi-
cation in terms of those structures, based on the 
assumption that a decomposition in terms of the 
data the system handles will be clearer and less 
inclined to change than one based on the functions 
performed. 
While structured analysis techniques have contin-
ued to evolve and have been widely used, there 
remain a number of common criticisms. When 
used in problem analysis, a common complaint is 
that structured analysis provides insufficient guid-
ance. Analysts have difficulty deciding which 
parts of the problem to model as data, which parts 
to model as transformations, and which parts 
should be aggregated. While the gross steps of the 
process are reasonably well defined, there is only 
very general guidance (in the form of heuristics) 
on what specific questions the analyst needs to 

answer next. Similarly, practitioners find it diffi-
cult to know when to stop decomposition and ad-
dition of detail. In fact, the basic structured analy-
sis paradigm of modeling requirements as data 
flows and data transformations requires the ana-
lyst to make decisions about intermediate values 
(e.g., form and content of stored data and the de-
tails of internal transformations) that are not re-
quirements. Particularly in the hands of less expe-
rienced practitioners, data flow models tend to 
incorporate a variety of detail that properly be-
longs to design or implementation. 
Many of these difficulties result from the weak 
constraints imposed by the conceptual model. A 
goal of the developers of structured analysis was 
to create a very general approach to modeling sys-
tems; in fact, one that could be applied equally to 
model human enterprises, hardware applications, 
software applications of different kinds, and so 
on. Unfortunately, such generality can be 
achieved only by abstracting away any semantics 
that are not common to all of the types of systems 
potentially being modeled. The conceptual model 
itself can provide little guidance relevant to a par-
ticular system. Since the conceptual model applies 
equally to requirements analysis and design analy-
sis, its semantics provide no basis for distinguish-
ing the two. Similarly, such models can support 
only very weak syntactic criteria for assessing the 
quality of structured analysis specifications. For 
example, the test for completeness and consisten-
cy in data flow diagrams is limited to determining 
that the transformations at each level are con-
sistent in name and number with the data flows of 
the level above. 
This does not mean one cannot develop data flow 
specifications that are easy to understand, com-
municate effectively with the user, or capture re-
quired behavior correctly. The large number of 
systems developed using structured analysis show 
that it is possible to do so. However, the weakness 
of the conceptual model means that a specifica-
tion’s quality depends largely on the experience, 
insight, and expertise of the analyst. The develop-
er must provide the necessary discipline because 
the model itself is relatively unconstrained. 
Finally, structured analysis provides little support 
for producing an SRS meeting our quality criteria. 
Data flow diagrams are unsuitable for capturing 
mathematical relations or detailed specifications 
of value, timing, or accuracy so the detailed be-
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havioral specifications are typically given in Eng-
lish or as pseudo–code segments in the Mini-
specs. These constructs provide little or no sup-
port for writing an SRS that is complete, imple-
mentation independent, unambiguous, consistent, 
precise, and verifiable. Further, the data flow dia-
grams and attendant dictionaries do not, them-
selves, provide support for organizing an SRS to 
satisfy the packaging goals of readability, ease of 
reference and review, or reusability. In fact, for 
many of the published methods, there is no explic-
it process step, structure, or guidance for produc-
ing an SRS, as a distinct development product, at 
all. 

Object Oriented Analysis (OOA) 
OOA has evolved from at least two significant 
sources, information modeling and object oriented 
design. Each has contributed to current views of 
OOA, and the proponents of each emphasize 
somewhat different sets of concepts. OOA tech-
niques differ from structured analysis in their ap-
proach to decomposing a problem into parts and 
in the methods for describing the relationships 
between the parts. In OOA, the analyst decom-
poses the problem into a set of interacting objects 
based on the entities and relationships extant in 
the problem domain. An object encapsulates a 
related set of data, processing, and state (thus, a 
significant distinction between object oriented 
analysis and structured analysis is that OOA en-
capsulates both data and related processing to-
gether). 
The structural components of OOA (e.g., objects, 
classes, services, aggregation) support a set of 
analytic principles. Of these, two directly address 
requirements problems: 

 1. From information modeling comes the 
assumption that a problem is easiest to under-
stand and communicate if the conceptual struc-
tures created during analysis map directly to 
entities and relationships in the problem do-
main. This principle is realized in OOA 
through the heuristic of representing problem 
domain objects and relationships of interest as 
OOA objects and relationships. Thus an OOA 
specification of a vehicle registration system 
might model vehicles, vehicle owners, vehicle 
title, and so on as objects. The object paradigm 
is used to model both the problem and the rel-
evant problem context. 

 2. From early work on modularization by 
Parnas [Parnas 72] and abstract data types, by 
way of object oriented programming and de-
sign, come the principles of information hiding 
and abstraction. The principle of information 
hiding guides one to limit access to infor-
mation on which other parts of the system 
should not depend. In an OO specification of 
requirements, this principle is applied to hide 
details of design and implementation. In OOA, 
behavior requirements are specified in terms of 
the data and services provided on the object in-
terfaces; the object encapsulates how those 
services are implemented.  The principle of ab-
straction says that only the relevant or essential 
information should be presented. Abstraction 
is implemented in OOA by defining object in-
terfaces that provide access only to essential 
data or state information encapsulated by an 
object (conversely hiding the accidentals).  

The principles and mechanisms of OOA provide a 
basis for attacking the essential difficulties of 
comprehension, communication, and control. The 
principle of problem domain modeling helps 
guide the analyst in distinguishing requirements 
(what) from design (how). Where the objects and 
their relationships faithfully model entities and 
relationships in the problem, they are understand-
able by the customer and other domain experts; 
this supports early comprehension of the require-
ments.  
The principles of information hiding and abstrac-
tion, with the attendant object structures, provide 
mechanisms useful for addressing the essential 
problems of control and communication. Objects 
provide the means to divide the requirements into 
distinct parts, abstract from details, and limit un-
necessary dependencies between the parts. Object 
interfaces can be used to hide irrelevant detail and 
define abstractions providing only the essential 
information. This provides a basis for managing 
complexity and improving readability. Likewise 
objects provide a basis for constructing reusable 
requirements units of related functions and data.  
The potential benefits of OOA are often diluted by 
the way the key principles are manifested in par-
ticular methods. While the objects and relations of 
OOA are intended to model essential aspects of 
the application domain, this goal is typically not 
supported by a corresponding conceptual model of 
the domain behavior. Object modeling mecha-
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nisms and techniques are intentionally generic 
rather than application specific. One result is in-
sufficient guidance in developing appropriate ob-
ject decompositions. OOA practitioners often 
have difficulty choosing appropriate objects and 
relationships.  
In practice, the notion that one can develop the 
structure of a system, or a requirements specifica-
tion, based on physical structure is often oversold. 
It is true that the elements of the physical world 
are usually stable (especially relative to software 
details) and that real–world based models have 
intuitive appeal. It is not true, however, that eve-
rything that must be captured in requirements has 
a physical analog. An obvious example is shared 
state information. Further, many real world struc-
tures are themselves arbitrary and likely to change 
(e.g., where two hardware functions are put on 
one physical platform to reduce cost). While the 
notion of basing requirements structure on physi-
cal structure is a useful heuristic, more is needed 
to develop a complete and consistent requirements 
specification. 
A further difficulty is that the notations and se-
mantics of OOA methods are typically based on 
the conceptual structures of software rather than 
those of the problem domain the analyst seeks to 
model.  Symptomatic of this problem is that ana-
lysts find themselves debating about object lan-
guage features and their properties rather than 
about the properties of the problem. An example 
is the use of message passing, complete with mes-
sage passing protocols, where one object uses in-
formation defined in another. In the problem do-
main it is often irrelevant whether information is 
actively solicited or passively received. In fact 
there may be no notion of messages or transmis-
sion at all. Nonetheless one finds analysts debat-
ing about which object should initiate a request 
and the resulting anomaly of passive entities mod-
eled as active. For example, to get information 
from a book one might request that the book “read 
itself” and “send” the requested information in a 
message. To control an aircraft the pilot might 
“use his hands and feet to ‘send messages’ to the 
aircraft controls which in turn send messages to 
the aircraft control surfaces to modify themselves” 
[Davis 93]. Such decisions are about OOA mech-
anisms or design, not about the problem domain 
or requirements. 

As mentioned in the previous section, where the 
decomposition into objects is driven only by use 
cases, the result is effectively a functional specifi-
cation in object guise. The problems with such 
specifications are well understood [Parnas 72], in 
particular, being difficult to understand, change, 
or maintain. 
A more serious complaint is that most OOA 
methods inadequately address our goal of devel-
oping a good SRS. Most OOA approaches in the 
literature provide only informal specification 
mechanisms, relying on refinement of the OO 
model in design and implementation to add detail 
and precision. There is no formal basis for deter-
mining if a specification is complete, consistent, 
or verifiable.  Further, the approach does not di-
rectly address the issues of developing the SRS as 
a reference document. The focus is on problem 
analysis rather than specification.  If the SRS is 
addressed at all, the assumption is that the princi-
ples applied to problem understanding and model-
ing are sufficient, when results are written down, 
to produce a good specification. Experience sug-
gests otherwise. As we have discussed, there are 
inherently tradeoffs that must be made to develop 
a specification that meets the need of any particu-
lar project. Making effective tradeoffs requires a 
disciplined and thoughtful approach to the SRS 
itself, not just the problem. Thus, while OOA pro-
vide the means to address packaging issues, there 
is typically little methodological emphasis on is-
sues like modifiability or organization of a speci-
fication for reference and review. 

7.2 Use cases  
Usage scenarios or use cases have been widely 
adopted as a method for specifying required sys-
tem behavior from the user’s point of view. Use 
cases are sometimes deployed as the primary fo-
cus of elicitation and problem modeling [Schnei-
der 98]. Use cases are also frequently employed as 
a first step in many object-oriented approaches 
(e.g., [Jacobsen 92], [Kruchten 99]). Despite their 
prevalence in object oriented development, there 
is nothing intrinsically object-oriented about use 
cases and they are applied in other contexts. For 
these reasons, we will treat them separately. 
Briefly, a use case describes a set of possible se-
quences of interactions between the system and a 
user seeking to accomplish a particular goal. Uses 
cases are intended capture a user-centric view of 
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the required system behavior – i.e., how the sys-
tem should respond to different user inputs to ac-
complish specific tasks like checking the balance 
on an account or adding an item to an on-line 
shopping cart.  
While many approaches attempt to structure use 
cases by providing standard formats or templates 
(e.g., [Cockburn 00]), use cases are ultimately an 
informal, natural-language specification. A use-
case template captures the user’s (or actor’s) in-
teraction with the system as a sequence of natural-
language statements that alternate between de-
scribing user inputs (“the customer clicks the 
checkout button”) and system responses (“the 
page displays the contents of the customer’s 
shopping cart”). 
Because use cases directly capture interaction 
with the system in terms of the user’s problem 
domain (e.g., work tasks), they are usually easy 
for non-technical stakeholders to read, understand, 
review, and even assist in creating. While writing 
good use cases requires expertise, there is a rela-
tively natural transition from a description of what 
a user wants the system to do, to a specification of 
how the system might support that task in a use 
case. Similarly, marketing or business goals for a 
system (e.g., what new things the system will al-
low users to do) are often straightforwardly repre-
sented as use cases [Lee 99]. 
While there is evidence that use cases can be an 
effective informal modeling technique, they lack 
many of the properties necessary to a technical 
requirements specification: 

• Unambiguous and consistent: Use cases 
necessarily have all the limitations of any 
natural language specification. They are 
inherently ambiguous and open to incon-
sistent interpretation by stakeholders or 
developers.  

• Modifiable: Individually, use cases are 
relatively easy to modify, particularly 
where standard templates are used. Col-
lectively, where there are a large number 
of use cases, it can become very difficult 
to find or identify all of the use cases re-
lating to a particular change. 

• Organized for reference and review: 
Where the number of use cases becomes 
large, it also becomes difficult to find 
specific use cases or specific information. 

There is generally no organizing principle 
that accurately characterizes exactly 
where to put or find a given piece of in-
formation among the set of use cases. 
Similarly, it can be difficult for reviewers 
to find key information or assess basic 
properties like consistency.  

• Complete: Since use cases represent spe-
cific paths through the system behavior, it 
is usually impossible or impractical to 
write a complete set of use cases. The 
problem is analogous to trying to write a 
complete set of test cases. While the level 
of abstraction is higher, in general, the 
number of possible scenarios is very large 
and there is no way to check if the set of 
use cases is complete, nor to identify 
which ones might be missing. 

There are also more important senses in which use 
cases are typically incomplete.  Traditionally, use 
cases represent only users’ interactions with the 
system. It follows that a specification written only 
in terms of use cases is an entirely functional 
specification. Other viewpoints as well as critical 
quality requirements are not addressed. Such an 
approach recapitulates the deficiencies of func-
tional decomposition and discards decades of pro-
gress in software engineering. While there have 
been some efforts to modify use cases to represent 
quality requirements, (e.g., [Bass 03]) such ap-
proaches remain a work in progress. 
These limitations suggest that use cases are more 
appropriate for informal business- or mission-
oriented requirements capture. In many organiza-
tions there are two distinct audiences for the re-
quirements: one audience that is versed in the or-
ganizational goals and problem domain and a se-
cond audience that is versed in technical goals and 
the solution domain. For businesses, the first au-
dience typically includes customers, marketing, 
product management, and others on the business 
side of the organization. The second audience in-
cludes architects, coders, and others on the devel-
opment side of the organization. 
Because these two audiences tend to speak differ-
ent languages and have different interests in the 
product, it is difficult to write any single specifi-
cation that is suitable to both. In such cases, it of-
ten makes sense to create two distinct documents, 
one owned by the business side and a second 
owned by the technical side. The goal in dividing 
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the specification is to create a clear allocation of 
purpose, responsibility, and ownership. 
The purpose of the business-oriented document is 
to capture the rationale for building the system. It 
includes the business case, solution approach, and 
the mapping between them. This document may 
be described as the, Market Requirements Docu-
ment (MRD), Business Requirements Document 
(BRD) or, Concept of Operation Document (Co-
nOps). It should communicate the results of prob-
lem analysis and characterize the set of acceptable 
solutions to customers, managers, and others re-
sponsible for why the system is being developed. 
Because its purpose is to capture rationale, it is 
organized to “tell a story” [Fairley 97] rather than 
as a reference document.  
The technical specifications are then captured in 
an SRS. By tracing requirements in the SRS to the 
BRD or similar document, one captures the origin 
and rationale for the technical requirements while 
maintaining the desirable properties of an SRS. 
Use cases are a natural fit for the audience and 
purpose of a document like the ConOps or BRD. 
Use cases are written in terms of the problem do-
main and in a language that is accessible to those 
familiar with the problem domain. The format and 
organization is consistent with the objective that 
the document should “tell a story” and provides a 
vehicle for linking the system behavior to user 
tasks. While this comes at the expense of some 
redundancy in that the same requirements must be 
expressed in more than place, the benefits typical-
ly outweigh any issues in maintaining consisten-
cy. 

7.2 Linking requirements to architecture 
While a detailed discussion of software architec-
ture is beyond the scope of this paper, one must 
have a clear understanding of the effect of archi-
tecture on important system qualities to under-
stand the relationships between architectural de-
sign decisions and the requirements process. 
We use the term software architecture to denote 
the structures of the system comprising a set of 
components, relations, and interfaces. For exam-
ple, the class structure could refer to the set of 
classes in the system, the class interfaces, and the 
inheritance or instance relation. The process 
structure could refer to the organization of the 
system into processes or threads; interfaces are the 

inter-process operations (synchronization, com-
munication), and the relations include exclusion 
and concurrency. By this definition, any software 
system comprises more than one architecture 
[Bass 03].  
Architecture manifests the earliest set of design 
decisions. It is these decisions that enable or in-
hibit the system’s quality attributes. These include 
essentially all of the system’s developmental qual-
ities (e.g., maintainability, reusability, etc.) and all 
of the system’s behavioral qualities (e.g., perfor-
mance, reliability, etc.) except functionality2.  
Inevitably, architectural design requires making 
tradeoffs among the system’s quality attributes. 
For example, significantly increasing system secu-
rity will tend to decrease performance and im-
proving reliability will typically require longer 
development time.  
Since different stakeholders have different inter-
ests in system properties, the process of choosing 
among architectural design alternatives directly 
affects the extent to which the design will, or will 
not, satisfy their desires and goals. Since making 
good architectural design decisions requires mak-
ing tradeoffs among the concerns of different 
stakeholders, the architect must understand the 
rationale for different quality requirements, as 
well as the relative priorities among stakeholder 
goals, and, ultimately, negotiate compromises. 
The architect must understand both the source and 
nature of the system’s quality requirements. 
The implication is that it is not sufficient to com-
municate black-box requirements; an effective 
process must also capture and communicate con-
textual information. This includes the purpose of 
different requirements, their relationships to or-
ganizational goals, and their importance to the 
system’s diverse stakeholders.  
Where an organization goes on to develop subse-
quent versions of the software or similar systems, 
the dependencies also extend downstream. The 
architectural design decisions embodied in the 
current system tend to influence subsequent busi-
ness goals, requirements, and architectural struc-
tures. For example, how easy a system is to ex-
tend or modify the software in particular ways can 

                                                
2 Without going into detail, precisely the same func-
tionality can be realized by any number of different 
architectural decompositions. 
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significantly affect the ability to add specific fea-
tures, address new customer needs, or target dif-
ferent markets.  
These overlapping dependencies between devel-
opmental goals, requirements, and architectural 
design are captured in what Bass, et al [Bass 03] 
call the architectural business cycle. While our 
focus is on the role of requirements in that cycle, 
it expresses the key idea that there are important 
dependencies between the conceptually distinct 
activities of software development. Managing the 
implications of these dependencies requires ex-
plicit two-way communication between the busi-
ness and technical parts of an organization. The 
activities and artifacts supporting this communica-
tion must be part of a disciplined process.  

7.3 Elicitation Methods and Goal Modeling 
Failing to understand what the stakeholders want 
leads to substantial rework [Boehm 88] or even 
rejection of a system. Because elicitation occurs at 
the beginning of development, errors in this step 
are the most expensive and difficult to correct lat-
er in the process. The importance of getting these 
early steps right has led to a wide range of efforts 
focused on understanding elicitation issues and 
supporting improved elicitation processes.  
One significant result of these efforts has been a 
shift in the way researchers and practitioners view 
elicitation. While there were exceptions (e.g. 
[Gause 89]), the prevailing view in the past was 
that there existed some set of requirements char-
acterizing the behavior of an ideal system.  One 
could effectively elicit those requirements by ask-
ing a few key people, notably customers, and us-
ers, what the system should do.  
For many of the reasons that we have discussed, 
this approach often proved ineffective. This re-
flects the fact that “what is wanted” is typically 
not well defined, fully understood, or even a sin-
gle thing. Rather, the perception of the problem, 
developmental goals, and requirements will vary 
from one stakeholder to the next, and even for a 
single stakeholder, over time. Any individual 
stakeholder’s answers will yield a view that is 
neither complete nor precise. Views from multiple 
stakeholders tend to be inconsistent or conflicting.  
The upshot is that the notion of an ideal system or 
set of requirements that can be “discovered” is a 
poor approximation of reality. Rather, there are 

many different perspectives on the problem, par-
tial views of solutions, and possible systems. The 
central challenge of elicitation is to obtain and 
reconcile these different perspectives to a single 
system definition that the stakeholders can live 
with. 
Where, historically, this aspect of the require-
ments process received little attention, it has re-
cently emerged as a distinct discipline in both 
practice and the literature. The understanding that 
elicitation must reconcile many different views 
from different kinds of stakeholders, and in differ-
ent contexts, has stimulated research into the vari-
ous facets of elicitation. This has, in turn, stimu-
lated development of a number of elicitation 
methods targeted to different needs. An overview 
of the approaches is given in [Nuseibeh 00]; a 
more complete survey of different elicitation 
methods is given in [Lauesen 02].  
Goal Modeling 
An elicitation approach that integrates systematic 
modeling of objectives (e.g., business goals) with 
downstream requirements activities is that of goal 
modeling or goal-oriented requirements. A goal 
specifies some objective that the system should 
achieve [Lamsweerde 01]. The essential foci of 
goal-oriented requirements are: 
1. To capture the stakeholder’s objectives for 

the system in the problem context. 
2. To systematically map those objectives to a 

detailed specification of the system require-
ments. 

By beginning with goals, the approach seeks to 
capture each stakeholder’s rationale for the system 
in the stakeholder’s language and context. Thus, 
for example, business goals might be captured in 
terms of market opportunities and user needs in 
terms of ease of performing a work task. Express-
ing the system objectives using the stakeholder’s 
perspective and language supports ease of under-
standing and elicitation. Integrating the different 
views of system goals provides an early oppor-
tunity for identifying and resolving conflicts 
[Robinson 89]. Subsequent refinement links ra-
tionale to specific system requirements. This sup-
ports two-way traceability and communication as 
goals or requirements evolve. 
A relatively complete approach to requirements 
based on goals is the KAOS method by 
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Lamsweerde et al [Lamsweerde 09]. This work 
integrates goal-based elicitation with formal mod-
eling and analysis. A formal language and tool 
support reasoning and the automated analysis of 
some completeness and consistency properties. 
Related publications include case studies of indus-
trial experience (e.g., [Winter 01]). A good over-
view of goal-oriented requirements and set of ref-
erences is given in [Lamsweerde 01]. 

7.4 “Agile” methods  
Much recent attention has been given to a set of 
development approaches that their authors charac-
terize as “agile,” for example, extreme program-
ming [Beck 04], scrum [Rising 02], or the Agile 
Unified Process [Ambler 02]. While there are dif-
ferences among agile methods, they share a code-
centered view of development – the view that the 
development effort should focus on the implemen-
tation rather than documentation (see the “agile 
manifesto3“). 
The emphasis on code at the expense of documen-
tation particularly pertains to the software re-
quirements. Requirements documentation ranges 
from small amounts of informal documentation to 
using the code as the primary repository for all 
requirements and design decisions. This more ex-
treme view is reflected in statements like: “The 
urge to write requirements documentation should 
be transformed into an urge to instead collaborate 
closely with your stakeholders and then create 
working software based on what they tell you4.”  
It should be clear that the software engineering 
philosophy behind these methods is at odds with 
what we have characterized as a “disciplined ap-
proach.” To understand why this difference arises, 
it is necessary to examine the differences in meth-
odological goals and the underlying assumptions 
the different approaches make about software de-
velopment. By understanding the extent to which 
each approach’s assumptions do or do not hold, 
the reader has a basis for choosing the approach 
best fitting a particular development situation. 
Agile approaches seek address the essential diffi-
culties of comprehension, communication, and 
control by shortening the development cycle and 

                                                
3 http://agilemanifesto.org/ 
4http://www.agilemodeling.com/essays/agileRequireme
ntsBestPractices.htm 

bringing key stakeholders into the development 
loop. Many of the difficulties of traditional devel-
opment processes (i.e., “waterfall” and its varia-
tions) arise from the temporal distance between 
project conceptualization and the delivery of any 
working software. In big projects, it may be 
months, or even years, between the time stake-
holders begin describing their requirements and 
the time the developers can show them software 
that presumes to meet those requirements. 
Because stakeholders typically do not know exact-
ly what they want until they see it, this is often the 
point at which developers find out that what they 
have built is, in part or whole, not acceptable to 
the stakeholders. Because all of the work of de-
sign and implementation has been founded on in-
correct requirements, fixing these errors is diffi-
cult and expensive. The result is a system that 
costs more than it should and delivers less than 
the stakeholders want. 
Many of these problems can be avoided if it is 
possible to drastically shorten the development 
cycle. For agile methods, this cycle time is on the 
order of two to four weeks rather than months. 
Instead of eliciting all of the customer’s require-
ments, the goal is to capture a small number of the 
most important ones (typically two or three). This 
small subset of requirements is then taken to code 
and validated with the customer. This cycle re-
peats until the customer is satisfied with the prod-
uct. Little, if any, documentation is created or 
maintained. Rather, the code is the primary re-
pository of the evolving set of requirements and 
design decisions. 
With a short cycle time, the customer very quickly 
sees the expression of his requirements in the 
(partial) software. Errors and misunderstandings 
can be detected and corrected each cycle. Where 
errors occur, relatively little effort has been ex-
pended and the amount of rework may be limited 
to the length of the increment. Continuous com-
munication between developers and the customer 
reduces the opportunity for misunderstanding. 
Because the developers are constantly integrating 
new requirements, requirements changes are ad-
dressed in the normal course of iterative develop-
ment. 
However, these benefits come at a substantial 
cost. Since only a small number of requirements 
can be considered at any time, there is no oppor-
tunity to understand the relationship of require-
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ments to long-term goals, relationships between 
requirements, or the relationship between re-
quirements and system structure: 

• Because requirements are not gathered or 
considered in advance, it is not possible 
for the designer to anticipate likely 
changes. There is constant rework as new 
requirements are added. 

• Since only a very small subset of the re-
quirements is examined at any one time, 
there is no mechanism to balance goals 
and make tradeoffs. Nor is there an oppor-
tunity to detect conflicting requirements 
before coding begins. 

• Since the wide range of possible quality 
requirements that are whole-system prop-
erties (e.g., performance, safety, reliabil-
ity, etc.) are not considered together, there 
is no opportunity to develop an architec-
ture that balances such concerns. Similar-
ly, constant restructuring (refactoring) 
makes it difficult to establish or maintain 
architectural properties. 

• Constant interaction with the stakeholders 
is not just desirable, but essential. Without 
constant feedback validating the devel-
opment, errors will accumulate over time, 
obviating the benefits of rapid increments.  

• Because nothing is written down, progress 
depends on personnel who are intimately 
familiarity with the code. There is no 
mechanism to control the downstream ef-
fects of decisions on properties like main-
tainability or reusability. 

Thus, realizing the benefits of agile methods de-
pends on certain assumptions being true of the 
product, process, and people involved. It is a pro-
cess that acts as if the development has neither a 
past nor a future, reacting only to immediate 
needs. Clearly there are many kinds of systems 
and development situations that are inconsistent 
with these assumptions, to name a few: 

• Where there is limited availability or 
communication with stakeholders. 

• Where stakeholders have conflicting 
views and requirements. 

• Where there are critical behavioral and 
developmental properties that must be ad-

dressed by the architecture such as safety, 
reliability, or performance. 

• Where requirements are relatively stable 
or predictable. 

• Where there is a history of developing 
similar systems or the current system is a 
new version of a previous one. 

• Where the development team is not co-
located and frequent, high-bandwidth 
communication is not possible. 

• Where the system is long lived and 
maintenance is a key concern - and so on. 

In essence, agile approaches make an implicit as-
sumption that the software requirements are rela-
tively independent. It cannot be otherwise. If there 
are strong dependencies between requirements 
then the order in which requirements are ad-
dressed and design decisions are made significant-
ly affects overall system properties including how 
easily the software can be changed to address sub-
sequent requirements. These effects have been 
well understood for decades (e.g., [Parnas 76]). 
One obvious example is where requirements from 
different users conflict. Taking such requirements 
in arbitrary order (as opposed to considering them 
together) will result in an implementation that first 
meets one stakeholder’s needs, then the other’s, 
but never both. 
It follows that there can be only limited circum-
stances in which the benefits of agile methods 
outweigh the costs and risks. The notion that most 
development efforts can abandon a disciplined 
approach to requirements in favor of coding is not 
supportable. Unfortunately, many proponents of 
these methods do not make the underlying as-
sumptions clear nor provide a balanced discussion 
of the limitations. Leaving this as an exercise for 
the reader may be good salesmanship but is poor 
software engineering. A somewhat more even-
handed view can be found in [Boehm 02]. A more 
critical view that encompasses some of the issues 
of agile methods and XP is given in [Stephens 
01]. 

7.5 Software product-lines  
A view of development that spans multiple prod-
uct cycles is that of software product-lines. Brief-
ly, a software product line is a family of systems 
that share a significant number of common re-
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quirements, and are produced from a common set 
of reusable software assets. The reusable assets 
typically include a common software architecture, 
reusable, adaptable code modules, test cases, doc-
umentation, and so on. 
Conventional software processes follow a 
“craftsman” production model – i.e., skilled indi-
viduals build each system by hand. Product-line 
development is more analogous to a manufactur-
ing model where one builds a factory, then uses 
the factory to produce products. Software product 
lines are constructed by first creating a set of re-
usable assets, tools for deploying the assets (e.g., 
code generators), and a process for using the as-
sets to produce members of the product line. 
Software systems are then created from the com-
mon assets.  
Where applicable, software product-line ap-
proaches have been shown to significantly in-
crease productivity (by as much as an order of 
magnitude), while decreasing cycle time and im-
proving quality. Since code can be quickly created 
from reusable assets and validated with the cus-
tomer, it provides the benefits of a rapid cycle 
time. 
The approach, however, is applicable only where 
an organization is developing a number of reason-
ably similar systems. Refreshingly, the proponents 
of product-line approaches are careful not only to 
state the underlying assumptions (e.g., [Weiss 
99]), but also to provide specific methods for as-
sessing the costs and risks of applying a product-
line approach to any particular application (also 
[Clements 01], [Pohl 05]). 
The relevance of software product-lines to this 
discussion is that product line processes exemplify 
a disciplined approach to requirements that spans 
multiple software life cycles. Software product-
lines work by amortizing the larger up-front de-
velopment costs of the common asset base over 
the delivery of a number of similar software prod-
ucts. To create a reusable architecture and set of 
assets, the developers must understand not only 
the requirements for the next software system, but 
how those requirements are likely to vary over 
future instances of the product-line. In particular, 
which requirements should be the same across all 
members of the product-line (called commonali-
ties) and which requirements are allowed to differ 
(called variabilities).  

This entails understanding both the current busi-
ness objectives and how those objectives are like-
ly to change over time. It also requires an under-
standing of the relationship of the requirements to 
the architecture, and how architectural design de-
cisions will affect the future ability to build differ-
ent versions of the product-line. 
A variety of approaches to product-line require-
ments have been proposed and used. A significant 
difference from other requirements approaches 
has been a substantial body of work focusing on 
identifying and managing variabilities and the 
relationships between them (e.g., [Svahnber 05], 
[Pohl 05]). These works provide useful insight 
into disciplined approaches to managing require-
ments across multiple products and development 
cycles. 

7.5 Practical Formal Methods  
Like so many of the promising technologies in 
requirements, the application of formal methods is 
characterized by an essential dilemma. On one 
hand, formal specification techniques hold out the 
only real hope for producing specifications that 
are precise, unambiguous, and demonstrably 
complete or consistent. On the other, industrial 
practitioners widely view formal methods as im-
practical. Difficulty of use, inability to scale, 
readability, and cost are among the reasons cited. 
Thus, in spite of significant technical progress and 
a growing body of literature, the pace of adoption 
by industry has been extremely slow. 
In spite of the technical and technology-transfer 
difficulties, increased formality is necessary. Only 
by placing behavioral specification on a mathe-
matical basis will we be able to acquire sufficient 
intellectual control to develop complex systems 
with any assurance that they satisfy their intended 
purpose and provide necessary properties like 
safety. While it is not necessary to apply formal 
methods to al systems, or even all parts of critical 
systems, they are needed where it is necessary to 
establish correctness of the essential parts of criti-
cal systems (e.g., safety critical aspects). The so-
lution is better formal methods - methods that are 
practical given the time, cost, and personnel con-
straints of industrial development. 
Engineering models and the training to use them 
are de rigueur in every other discipline that builds 
large, complex, or safety–critical systems. Build-
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ers of a bridge or skyscraper who did not employ 
proven methods or mathematical models to pre-
dict reliability and safety would be held criminally 
negligent in the event of failure. It is only the rela-
tive youth of the software discipline that permits 
us to get away with less. But, we cannot expect 
great progress overnight. As Jackson [Jackson 94] 
notes, the field is sufficiently immature that “the 
prerequisites for a more mathematical approach 
are not in place.” Further, many of those practic-
ing our craft lack the background required of li-
censed engineers in other disciplines [Parnas 89]. 
Nonetheless, sufficient work has been done to 
show that more formal approaches are practical 
and effective in industry. The Naval Research La-
boratory’s (NRL) Software Cost Reduction (SCR) 
method and tools exemplify such an approach. 
The Software Cost Reduction (SCR) Method: 
Where most of the techniques thus far discussed 
focus on problem analysis, the requirements work 
at the United States Naval Research Laboratory 
focused equally on issues of developing a good 
SRS [Heninger 80]. As part of an overall effort in 
validating software engineering methodologies the 
SCR project has developed rigorous approaches to 
requirements specification and documentation 
based on an underlying formal model. 
The SCR approach uses formal, mathematically 
based specifications of acceptable system outputs 
to support development of a specification that is 
unambiguous, precise, and verifiable. It also pro-
vides techniques for checking a specification for a 
variety of completeness and consistency proper-
ties. The SCR approach introduced principles and 
techniques to support our SRS packaging goals 
including the principle of separation of concerns 
to aid readability and support ease of change. It 
includes the use of a standard structure for an SRS 
specification and the use of tabular specifications 
that improve readability, modifiability, and facili-
tate use of the specification for reference and re-
view. 
While other requirements approaches have stated 
similar objectives, the SCR project is unique in 
having applied software engineering principles to 
develop a standard SRS organization, a specifica-
tion method, review method [Parnas 85a], and 
notations consistent with those principles. The 
SCR project is also unique in making publicly 
available a complete, model SRS of a significant 
system [Alspaugh 92].  

More recently, NRL has extended the SCR work 
to provide a suite of supporting tools. Since the 
approach is based on a formal model, the tools not 
only assist the developer in creating well-formed 
specification, the tools provide automated check-
ing for the specification’s completeness and con-
sistency ([Heitmeyer 95a], [Heitmeyer 95b]). 
Likewise, the model can be used to support auto-
mated proofs of semantic properties like system 
safety properties [Heitmeyer 98] or fault tolerance 
[Jeffords 09]. The work has also shown some of 
the promise of formal methods in supported au-
tomated test case generation [Gargantini 99] and 
even code generation [Rothamel 06].  
While the SCR requirements approach is reasona-
bly general, many of the specification techniques 
and models are targeted to real–time, embedded 
applications. More work needs to be done toward 
providing the benefits of practical formal methods 
to other types of systems. 

8. Trends and Emerging Technology 
There has been increasing agreement on the un-
derlying problems in requirements as well as on 
the general characteristics of an effective require-
ments process. However, the overall trend has not 
been toward a common methodology, but toward 
a broadening of the concerns addressed and a pro-
liferation of approaches. 
These trends in requirements reflect more general 
trends in software engineering and software tech-
nology. As discussed in the section on processes, 
early life cycle models tended to treat the concep-
tually distinct activities of software development 
like requirements, design, and coding, as relative-
ly independent phases. This reflected a desire to 
divide the development process into activities that 
addressed distinct concerns, with well-defined 
inputs and outputs. 
With increasing application complexity and diver-
sity of users, this paradigm has changed. More 
recent process models tend to reflect the view that 
the activities of the software life cycle are heavily 
interdependent and necessarily interleaved in 
time. Thus, for example, requirements activities 
may persist, if with diminishing effort, until the 
customer accepts the product. Where the software 
is developed in several versions, or part of a soft-
ware product line, some requirements activities 
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may continue across multiple delivery cycles 
([Clements 01], [Faulk 01]). 
At the same time, software has become increas-
ingly ubiquitous. The types of applications along 
with the number and kinds of stakeholders have 
grown almost as fast as the size and complexity of 
the systems we build. One result has been an in-
creasing diversity of development contexts and 
kinds of stakeholders. 
Requirements research and practice have followed 
suit in broadening the scope of requirements ac-
tivities and the diversity of methods. Thus, for 
example, we have seen new elicitation methods 
emerge to address different contexts and stake-
holders. Likewise, requirements activities have 
been extended to encompass an organization’s 
long-term goals and, in the case of software prod-
uct lines, multiple developments or development 
cycles. We see these trends continuing in several 
areas of research and development: 
Domain specificity: Requirements methods will 
provide improved support for understanding, 
specification, analysis, and usefulness by being 
tailored or created to address particular classes of 
problems.  
Historically requirements approaches have been 
advanced as being equally useful to a wide variety 
of types of applications. For example, structured 
analysis methods based on conceptual models that 
were intended to be “universally applicable” (e.g., 
[Ross 77]); similar claims have been made for 
object-oriented approaches and notations like 
UML (e.g., [OMG 05]). 
Such generality comes at the expense of ease of 
use and amount of work the analyst must do for 
any particular application. Where the underlying 
models have been tailored to a particular class of 
applications, the properties common to the class 
can be embedded in the model. The amount of 
work necessary to adapt the model to a specific 
instance of the class is relatively small. The more 
general the model, the more decisions that must 
be made, the more information that must be pro-
vided, and the more tailoring that must be done. 
This provides increased room for error and, since 
each analyst will approach the problem different-
ly, makes solutions difficult to standardize. In par-
ticular, such generality precludes standardization 
of sufficiently rigorous models to support algo-

rithmic analysis of properties like completeness 
and consistency. 
Jackson [94] has expressed similar points. He 
points out that some of the characteristics separat-
ing real engineering disciplines from what is eu-
phemistically described as “software engineering” 
are well understood procedures, mathematical 
models, and standard designs specific to narrow 
classes of applications. Jackson points out the 
need for software methods based on the conceptu-
al structures and mathematical models of behavior 
inherent in a given problem domain (e.g., publica-
tion, command and control, accounting, and so 
on). Such common underlying constructs can pro-
vide the engineer guidance in developing the 
specification for a particular system. 
This trend is currently reflected in the prolifera-
tion of elicitation methods and models targeted to 
different development contexts. It is also evi-
denced in the trend toward tailoring the overall 
requirements processes  [Young 06] to address the 
specific concerns of a project or organization. The 
trend toward better integration of requirements 
processes with business processes (e.g., [Middle-
ton 05]) will also further the trend toward domain 
specificity to meet the needs of specific business 
areas. 
 Currently lacking are domain specific approaches 
that encompass the artifacts, activities and roles 
comprising the entire requirements process. Some 
earlier work (e.g., [Prieto-Diaz 94], [Lam 97]) 
explored the potential of requirements reuse using 
domain specific methods. Likewise, both product-
line approaches and methods based on domain 
specific modeling necessarily incorporate aspects 
of domain-specific requirements. For example, the 
use of the Embedded System Modeling Language 
(ESML) [Balasubramanian 07] on a family of 
embedded avionics applications [Karsai 02]. 
However, developing new requirements languages 
and semantics for specific domains remains a la-
bor-intensive task. Progress in this area should see 
improved tool support (see the subsequent section 
on meta-engineering), new methods for modeling 
requirements in specific domains, and better guid-
ance in adapting components to provide integrated 
processes. 
Distributed Development: Another way in which 
the requirements problem has broadened (in a lit-
eral as well as figurative sense) is in the trend to-
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ward distributed development. We use the term 
“distributed development” to denote software pro-
jects where development teams and activities are 
located in multiple geographic sites around the 
globe, particularly where sites are separated by 
time zones, cultures, and languages. While the 
early focus of globalization was on reduced cost, 
factors like increased access to talent and proximi-
ty to markets have continued to push the trend 
forward. 
Distributed development has proven to have its 
own set of costs and risks, often requiring more 
effort and taking much longer than similar co-
located projects [Mockus 01]. A key reason is the 
difficulty in achieving a common understanding 
of the requirements. In a cross-domain survey of 
industrial distributed developments, issues with 
misinterpreted, changing, and missing require-
ments ranked as the top three sources of error 
above all other development issues [Komi 05].  
Experience suggests that distributed development 
is different from co-located projects (e.g., [Battin 
01], Bradner 02]). These differences are manifes-
tations of what Herbsleb characterizes as the key 
problem of distributed development, coordination 
at a distance [Herbsleb 07]. “Coordination,” here, 
denotes the need to manage dependencies between 
people, tasks, and artifacts in a complex software 
development. In turn, difficulties in coordination 
are largely the result of difficulties in communi-
cating effectively at a distance [Olson 2000], par-
ticularly where there are cultural, language, and 
organizational differences. 
These differences suggest that new methods, 
models, and processes will be needed to manage 
requirements in distributed developments [Dami-
an 07]. These will include new work in areas like 
cross-cultural requirements elicitation and com-
munication. Likewise, new process models are 
needed for managing requirements elicitation, 
allocation, verification, and validation in a distrib-
uted project.  
Personalization, Monitoring, and Adaptation: The 
trend toward broadening the scope of require-
ments engineering is evidenced in the areas of 
requirements personalization [Sutcliffe 06], re-
quirements monitoring (e.g.,  [Fickas 95]), and 
real-time adaptation (e.g., [Robinson 05]). While 
these are three distinct areas of requirements re-
search, they share a common concern for software 

contextualization: adapting software to a particu-
lar context such as user characteristics, the real-
time environment, or the specific task.  
Contextualization extends the issues around 
changing requirements to a personal and real-time 
level. Personalized software is software that is 
produced to meet the requirements of small 
groups or even individuals. This can include soft-
ware that is individually customized, software that 
the user can customize, or software that config-
ures itself based on user preferences. Real-time 
adaptation is customization in response to changes 
over time. For example, software that changes 
behavior as the system moves through space (e.g., 
on a cell phone) or software that changes behavior 
depending on the time of day. Where the software 
itself does the adaptation, it must monitor parame-
ters relating to the requirements (e.g., time of day 
or location) and change behavior accordingly. 
While, historically, there have been many ap-
proaches to software customization and even per-
sonalization5, these have not been systematically 
addressed as a type of requirements variation. On-
ly recently have researchers begun to look at sys-
tematic approaches to understanding and manag-
ing contextual requirements.  
Basically, contextualization embraces cases where 
requirements remain fluid even at run time. While 
we may continue to make tradeoffs between dif-
ferent stakeholder’s requirements, we may also 
view the system as implementing more than one 
set of requirements at a time, switching between 
them depending on the context of use. 
As more and more personal devices include in-
creasingly powerful computing systems (or access 
to networks), the trend toward personalization and 
other forms of contextualization will grow.  There 
is likewise a trend toward integrating the results of 
several requirements areas to address various di-
mension of the contextualization problem. 
Personal Contextual - Requirements Engineering 
(PC-RE) [Sutcliff 06] addresses the issue that user 
goals tend to change with context. As the user 
moves through time and space, objectives and, 
hence, requirements change. PC-RE proposes a 
framework for relating changing goals, require-
ments, and modes of implementation.  

                                                
5 The infamous Microsoft® “Clippy” being one. 
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Meta-Engineering: “Meta-engineering” refers to 
the engineering of engineering practices. All en-
gineering disciplines include meta-engineering 
practices. An obvious example is that manufactur-
ing necessarily includes processes for creating 
processes that will be used in a factory design to 
produce specific kinds of products.  
Meta-engineering is an area in which software 
engineering excels [Faulk 10]. While creating 
“abstractions of abstractions” or designing “pro-
cesses to design process” may sound convoluted, 
it is precisely these kinds of capabilities that allow 
new methods, processes, and even tools to be cre-
ated and introduced into practice at a pace com-
mensurate with changing technology. 
While not discussed in these terms, meta-
engineering capabilities underlie some of the ad-
vances we have discussed in this paper. In particu-
lar, the ability to systematically create or adapt 
requirements processes to satisfy specific project 
constraints (i.e., the process requirements) is a 
meta-engineering activity. Likewise is the devel-
opment of new methodologies like agile or prod-
uct-line engineering.  
Product-line engineering is a particularly instruc-
tive case since the product-line engineering pro-
cess, itself, embeds a meta-engineering process. 
Whenever the domain engineers develop a set of 
product-line assets, it is also necessary to create a 
process for using those assets (common architec-
ture, libraries of adaptable modules, etc.) to create 
any software product that is a member of the 
product line. Thus, any complete product-line 
process model includes a process for creating the 
application engineering process. Of course, the 
product-line process is itself a product of meta-
engineering. 
Improved meta-engineering capabilities will be 
necessary to much of the evolution of require-
ments practice. Facilitating the practice of defin-
ing new requirements processes for specific appli-
cation domains requires providing systematic pro-
cesses for producing new processes to satisfy spe-
cific developmental goals or constraints. Similar 
capabilities will be needed for fitting elicitation 
methods, modeling methods, and artifacts to spe-
cific needs.  
The same argument can be made for tools. While 
we have not seen meta-engineering tools targeted 
specifically to requirements, meta-engineering 

tools exist in other disciplines. For example, there 
are already methods and “tool-building-tools” 
supporting product-line engineering [Kelly 08]. 
Such tools aim to create tools supporting applica-
tion engineering based on a domain model. Output 
of the tool is a code generator that takes a specifi-
cation of the requirements for member of the 
product line and generates the application code. 
The potential for creating meta-engineering tools 
to support requirements modeling and analysis 
provides substantial opportunity for fruitful re-
search. 

9. Conclusions 
Requirements are intrinsically hard to do well. 
Beyond the need for discipline, there are a host of 
essential difficulties that attend both the under-
standing of requirements and their specification. 
Further, many of the difficulties in requirements 
will not yield to technical solution alone. Address-
ing all of the essential difficulties requires the ap-
plication of technical solutions in the context of 
human factors such as the ability to manage com-
plexity or communicate to diverse audiences. A 
requirements approach that does not account for 
both technical and human concerns can have only 
limited success. For developers seeking new 
methods, the lesson is caveat emptor. If someone 
tells you his method makes requirements easy, 
keep a hand on your wallet. 
Nevertheless, difficulty is not impossibility and 
the inability to achieve perfection is not an excuse 
for surrender. While all of the approaches dis-
cussed have significant weaknesses, they all con-
tribute to the attempt to make requirements analy-
sis and specification a controlled, systematic, and 
effective process. Though there is no easy path, 
experience confirms that the use of any careful 
and systematic approach is preferable to an ad hoc 
and chaotic one. Further good news is that, if the 
requirements are done well, chances are much 
improved that the rest of the development will 
also go well. Unfortunately, ad hoc approaches 
remain the norm in much of the software industry. 
A final observation is that the benefits of good 
requirements come at a cost. Such a difficult and 
exacting task cannot be done properly by person-
nel with inadequate experience, training, or re-
sources. Providing the time and the means to do 
the job right is the task of responsible manage-
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ment. The time to commit the best and brightest is 
before, not after, disaster occurs. The monumental 
failures of a host of ambitious developments bear 
witness to the folly of doing otherwise. 

10. Further Reading 
Those seeking more depth on requirements meth-
odologies than this tutorial can provide have ac-
cess to a number of good texts on software re-
quirements. Berenbach, et al [Berenbach 09] fo-
cuses on practical approaches with depth in elici-
tation and quality attribute requirements. Weigers 
[Weigers 03] provides broad coverage with em-
phasis on the voice of the customer and require-
ments management. Young [Young 06] addresses 
effective practices and the role of a requirements 
plan. Middleton and Sutton [Middleton 05] pro-
vide a business-oriented approach driven by cus-
tomer value. 
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