
1

Understanding Software Requirements
Stuart R. Faulk

“The hardest single part of building a software system is decid-
ing precisely what to build. No other part of the conceptual
work is as difficult as establishing the detailed technical re-
quirements...No other part of the work so cripples the resulting
system if done wrong. No other part is as difficult to rectify
later.” [Brooks 87]

1. Introduction
Deciding precisely what to build and documenting
the results is the goal of the requirements phase of
software development. For many developers of
large, complex software systems, requirements are
their biggest software engineering problem. While
there is considerable disagreement on how to
solve the problem, few would disagree with
Brooks’ assessment that no other part of a devel-
opment is as difficult to do well or as disastrous in
result when done poorly. The purpose of this tuto-
rial is to help the reader understand why the ap-
parently simple notion of “deciding what to build”
is so difficult in practice, where the state of the art
does and does not address these difficulties, and
what hope we have for doing better in the future.
This paper does not survey the literature but seeks
to provide the reader with an understanding of the
underlying issues. There are currently many more
approaches to requirements than one can cover in
a short paper. This diversity is the product of dif-
ferent views about which of the many problems in
requirements are pivotal and of different assump-
tions about the desirable characteristics of a solu-
tion. This paper attempts to impart a basic under-
standing of the many facets of the requirements
problem and the tradeoffs involved in attempting
a solution. Thus forearmed, the reader may make
his own assessment of the claims of different re-
quirements methods and their likely effectiveness
in addressing his particular needs.
We begin with basic terminology and some histor-
ical data on the requirements problem. We exam-
ine the goals of the requirements phase and the
problems that can arise in attempting to meet
those goals. As in Brooks’ article [Brooks 87],
much of the discussion is motivated by the dis-
tinction between the difficulties inherent in what
one is trying to accomplish (the “essential” diffi-
culties) and those one creates through inadequate
practice (“accidental” difficulties). We discuss
how a disciplined software engineering process

helps address many of the accidental difficulties
and why the focus of such a disciplined process is
on producing a written specification of the de-
tailed technical requirements. We examine current
technical approaches to requirements in terms of
the specific problems each approach seeks to ad-
dress. Finally, we examine technical trends and
discuss where significant advances are likely to
occur in the future.

Figure 1: System vs. software requirements

2. Requirements and the Software Life Cycle
A variety of software life–cycle models have been
proposed with an equal variety of terminology.
While differing in the detailed decomposition of
the steps (e.g., prototyping models) or in the sur-
rounding management and control structure (e.g.,
to manage risk), there is general agreement on the
core elements of the model. Figure 1 is a version
of the model that illustrates the relationship be-
tween the software development stages and the
related testing and acceptance phases
When software is created in the context of a larger
hardware and software system, system require-
ments are defined first followed by system design.
System design includes decisions about which
parts of the system requirements will be allocated
to hardware and which to software. For software–
only systems, the life cycle model begins with
analysis of the software requirements. From this
point on, the role of software requirements in the
development model is the same whether or not the
software is part of a larger system, as shown in

a)

software
requirements

software
design

b)
system

requirements

system design

hardware software
requirements requirements

hardware software
design design

2

Figure 2. For this reason, the remainder of our
discussion does not distinguish whether or not
software is developed as part of a larger system.
For an overview of system versus software issues,
the reader is referred to Dorfman and Thayer’s
survey [Thayer 90].
In a large system development, the software re-
quirements specification may play a variety of
roles:

• For customers, the requirements typically
document what should be delivered and
may provide the contractual basis for the
development.

• For managers it may provide the basis for
scheduling and a yardstick for measuring
progress.

• For the software designers, it may provide
the “design–to” specification.

• For coders it defines the range of accepta-
ble implementations and is the final au-
thority on the outputs that must be pro-
duced.

• For quality assurance personnel, it is the
basis for validation, test planning and veri-
fication.

Such diverse groups as marketing and
governmental regulators may also use
the requirements. These, and any oth-
ers with a interest in the outcome of
system development are collectively
referred to as the system’s stakehold-
ers.
It is common practice (e.g., see
[Thayer 90]) to classify software re-
quirements as “functional” or “non-
functional.” While definitions vary
somewhat in detail, “functional” typi-
cally refers to requirements defining
the acceptable mappings between sys-
tem input values and corresponding
output values. “Non-functional” then
refers to all other constraints including,
but not limited to, performance, de-
pendability, maintainability, reusabil-
ity, and safety.
While widely used, the classification of
requirements as ”functional” and ”non-

functional” is confusing in its terminology and of
little help in understanding common properties of
different kinds of requirements. The word “func-
tion” is one of the most overloaded in computer
science and its only rigorous meaning, that of a
mathematical function, is not what is meant here.
The classification of requirements as functional
and non–functional offers little help in under-
standing common attributes of different types of
requirements since it partitions classes of re-
quirements with markedly similar qualities (e.g.,
output values and output deadlines) while group-
ing others that have common only what they are
not (e.g., output deadlines and maintainability
goals).
A more useful distinction is between what can be
described as “behavioral requirements” and “de-
velopmental quality attributes” with the following
definitions [Bass 03]:

• Behavioral requirements - Behavioral re-
quirements include any and all information
necessary to determine if the run–time be-
havior of a given implementation is ac-
ceptable. The behavioral requirements de-
fine all constraints on the system outputs
(e.g., value, accuracy, timing) and result-
ing system state for all possible inputs and
current system state. By this definition, se-

Figure 2: A conventional life-cycle model

3

curity, safety, performance, timing, and
fault–tolerance are all behavioral require-
ments.

• Developmental quality attributes - Devel-
opmental quality attributes include any
constraints on the attributes of the system’s
static construction. These include proper-
ties like testability, changeability, main-
tainability, and reusability.

Behavioral requirements have in common that
they are properties of the run–time behavior of the
system and can (at least in principle) be validated
objectively by observing the behavior of the run-
ning system, independent of its method of imple-
mentation. In contrast, developmental quality at-
tributes are properties of the system‘s static struc-
tures (e.g., modularization) or representation. De-
velopmental quality attributes have in common
that they are functions of the development process
and methods of construction. Assessment of de-
velopmental quality attributes is necessarily rela-
tivistic - for example, we do not say that a design
is or is not maintainable but that one design is
more maintainable than another.
In addition, there may be constraints on the devel-
opment process itself. For example, that the soft-
ware must reuse certain legacy code, be developed
on a particular platform, or be written in a specific
language. Such requirements may be collectively
referred to as process requirements [SWEBOK
04]. Process requirements are often imposed by
regulatory agencies or internal company stand-
ards.

3. A Big Problem
Requirements problems are persistent, pervasive,
and costly. Evidence is most readily available for
the large software systems developed for the U.S.
Government since the results are a matter of pub-
lic record. As soon as software became a signifi-
cant part of such systems, developers identified
requirements as a major source of problems. For
example, developers of the early Ballistic Missile
Defense System noted that:
In nearly every software project that fails to meet
performance and cost goals, requirements inade-

quacies play a major and expensive role in project
failure [Alford 79].

Nor has the problem been mitigated over the in-
tervening years. A study of problems in mission
critical defense systems identified requirements as
a major problem source in two thirds of the sys-
tems examined [GAO 92]. This is consistent with
results of a survey of large aerospace firms that
identified requirements as the most critical soft-
ware development problem [Faulk 92]. Likewise,
studies by Lutz [Lutz 92] identified functional and
interface requirements as the major source of safe-
ty-related software errors in NASA’s Voyager and
Galileo spacecraft. The GAO again identified re-
quirements as a major issue in defense acquisition
[GAO 04]. Requirements errors have also been
cited as a major cause in the very public losses of
the Mars Climate Orbiter and Mars Polar Lander
spacecraft [Bahill 05].
Results of industry studies described by Boehm
[Boehm 81], and since replicated a number of
times, showed that requirements errors are the
most costly. These studies all produced the same
basic result: the earlier in the development process
an error occurs and the later the error is detected,
the more expensive it is to correct. Moreover, the
relative cost rises quickly. As shown in Figure 3,
an error that costs a dollar to fix in the require-
ments phase may cost 100 to 200 dollars to fix if
it is not corrected until the system is fielded or in
the maintenance phase.
Stage Relative Repair Cost
Requirements 1-2
Design ˜ 5
Coding ˜ 10
Unit test ˜ 20
System test ˜ 50
Maintenance ˜ 200
Figure 3: Relative cost to repair a requirements error

The costs of such failures can be enormous. For
example, a 1992 GAO report noted that one sys-
tem, the Cheyenne Mountain Upgrade, would be
delivered eight years late, exceed budget by $600
million, and had less capability than originally
planned, largely due to requirements-related prob-
lems. Recently, requirements problems have been
cited in cost overruns projected for the 2010 Cen-
sus of up to $2 billion [GAO 08]. Broader GAO
reviews (e.g. of troubled weapons programs
[GAO 10]) suggest that such problems are the
norm rather than the exception. While data from

4

private industry is less readily available, there is
little reason to believe that the situation is signifi-
cantly different.
In spite of advances in software engineering
methodology and tool support, the requirements
problem has not diminished. This does not mean
that the apparent progress in software engineering
is illusory. While the features of the problem have
not changed, the applications have grown signifi-
cantly in capability, scale, and complexity. A rea-
sonable conclusion is that the growing ambitious-
ness of our software systems has outpaced the
gains in requirements technology; at least as such
technology is applied in practice.

4. Why are Requirements Hard?
It is generally agreed that the goal of the require-
ments phase is to establish and specify precisely
what the software must do without describing how
to do it. So simple seems this basic intent that it is
not at all evident why it is so difficult to accom-
plish in practice. If what we want to accomplish is
so clear, why is it so hard? To understand this, we
must examine more closely the goals of the re-
quirements phase, where errors originate, and why
the nature of the task leads to some inherent diffi-
culties.
Most authors agree in principle that requirements
should specify “what” rather than “how.” In other
words, the goal of requirements is to understand
and specify the problem to be solved rather than
the solution. For example, the requirements for an
automated teller system should talk about custom-
er accounts, deposits, and withdrawals rather than
the software algorithms and data structures. The
most basic reason for this is that a specification in
terms of the problem captures the actual require-
ments without over-constraining the subsequent
design or implementation. Further, solutions in
software terms are typically more complex, more
difficult to change, and harder to understand (par-
ticularly for the customer) than a specification of
the problem.
Unfortunately, distinguishing “what” from “how”
itself represents a dilemma. As Davis [Davis 88],
among others, points out, the distinction between
what and how is necessarily a function of perspec-
tive. A specification at any chosen level of system
decomposition can be viewed as describing the
“what” for the next level. Thus customer needs

may define the “what” and the decomposition into
hardware and software the corresponding “how.”
Subsequently, the behavioral requirements allo-
cated to a software components define its “what,”
the software design, the “how, and so on. In other
words, one person’s design becomes the next per-
son’s requirements.
The upshot is that requirements cannot be effec-
tively discussed at all without prior agreement on
which system one is talking about and at what
level of decomposition. One must agree on what
constitutes the problem space and what constitutes
the solution space - the analysis and specification
of requirements then properly belongs in the prob-
lem space.
In discussing requirements problems one must
also distinguish the development of large, com-
plex systems from smaller efforts (e.g., develop-
ments by a single or small team of programmers).
Large system developments are multi–person ef-
forts. They are developed by teams of tens to
thousands of programmers. The programmers
work in the context of an organization typically
including management, systems engineering,
marketing, accounting, and quality assurance. The
organization itself must operate in the context of
outside concerns also interested in the software
product, including the customer, regulatory agen-
cies, and suppliers.
Even where only one system is intended, large
systems are inevitably multi–version as well. As
the software is being developed, tested, and even
fielded, it evolves. Customers understand better
what they want, developers understand better
what they can and cannot do within the constraints
of cost and schedule, and circumstances surround-
ing development change. The results are changes
in the software requirements and, ultimately, the
software itself. In effect, several versions of a giv-
en program are produced, if only incrementally.
Such unplanned changes occur in addition to the
expected variations of planned improvements.
The multi-person, multi-version nature of large
system development introduces problems that are
both quantitatively and qualitatively different
from those found in smaller developments. For
example, scale introduces the need for administra-
tion and control functions with the attendant man-
agement issues that do not exist on small projects.
The quantitative effects of increased complexity
in communication when the number of workers

5

rises are well documented by Brooks [Brooks 95].
The effort required for communication and other
overhead tasks such as documentation or configu-
ration management tend to rise exponentially with
the size and complexity of the system. In the fol-
lowing discussion, it is this large system devel-
opment context we will assume since that is the
one in which the worst problems occur and where
the most help is needed.
Given the context of multi–person, multi–version
development, our basic goal of specifying what
the software must do can be decomposed into the
following subgoals:

 1. Understand precisely what is required of
the software.

 2. Communicate the understanding of what is
required to all of the parties involved in the
development.

 3. Control the software production to ensure
that the final system satisfies the requirements
(including managing the effects of changes).

It follows that the source of most requirements
errors is in the failure to adequately accomplish
one of these goals, i.e.:

 1. The developers failed to understand what
was required of the software by the customer,
end user, or other parties with a stake in the fi-
nal product.

 2. The developers did not adequately capture
the requirements or subsequently communicate
the requirements effectively to other parties
involved in the development.

 3. The developers did not effectively manage
the effects of changing requirements or ensure
the conformance of down–stream development
steps including design, code, integration, test,
or maintenance to the system requirements.

The end result of such failures is a software sys-
tem that does not perform as desired or expected,
a development that exceeds budget and schedule,
or, all too frequently, failure to deliver any work-
ing software at all.

4.1 Essential Difficulties
Even our more detailed goals appear reasonably
straightforward; why then do so many develop-
ment efforts fail to achieve them? The short an-
swer is that the mutual satisfaction of these goals,

in practice, is inherently difficult. To understand
why, it is useful to reflect on some points raised
by Brooks [Brooks 87] on why software engineer-
ing is hard and on the distinction he makes be-
tween essential difficulties - those inherent in the
problem, and the accidental difficulties - those
introduced through imperfect practice. For though
requirements are inherently difficult, there is no
doubt that these difficulties are many times multi-
plied by the inadequacies of current practice.
The following essential difficulties attend each (in
some cases all) of the requirements goals:

• Comprehension. People do not know what
they want. This does not mean that people
do not have a general idea of what the
software is for. Rather, they do not begin
with a precise and detailed understanding
of what functions belong in the software,
what the output must be for every possible
input, how long each operation should
take, how one decision will affect another,
and so on. Indeed, unless the new system
is simply a reconstruction of an old one,
such a detailed understanding at the outset
is unachievable. Many decisions about the
system behavior will depend on other deci-
sions yet unmade, and expectations will
change as the problem (and attendant costs
of alternative solutions) is better under-
stood. Nonetheless, it is a precise and rich-
ly detailed understanding of expected be-
havior that is needed to create effective de-
signs and develop correct code.

• Communication. Software requirements
are difficult to communicate effectively.
As Brooks points out, the conceptual struc-
tures of software systems are complex, ar-
bitrary, and difficult to visualize. The large
software systems we are now building are
among the most complex structures ever
attempted. That complexity is arbitrary in
the sense that it is an artifact of people’s
decisions and prior construction rather
than a reflection of fundamental properties
(as, for example, in the case of physical
laws). To make matters worse, many of the
conceptual structures in software have no
readily comprehensible physical analogue
so they are difficult to visualize.

6

In practice, comprehension suffers under
all of these constraints. We work best with
regular, predictable structures, can com-
prehend only a very limited amount of in-
formation at one time, and understand
large amounts of information best when
we can visualize it. Thus the task of cap-
turing and conveying software require-
ments is inherently difficult.
The inherent difficulty of communication
is compounded by the diversity of purpos-
es and audiences for a requirements speci-
fication. Ideally a technical specification is
written for a particular audience. The brev-
ity and comprehensibility of the document
depend on assumptions about common
technical background and use of language.
Such commonality typically does not hold
for the many diverse groups (e.g., custom-
ers, systems engineers, managers) that
must use a software requirements specifi-
cation.

• Control. Inherent difficulties attend control
of software development as well. The arbi-
trary and invisible nature of software
makes it difficult to anticipate which re-
quirements will be met easily and which
will decimate the project’s budget and
schedule if, indeed, they can be fulfilled at
all. The low fidelity of software planning
has become a cliché yet the requirements
are often the best available basis for plan-
ning or for tracking to a plan.
This situation is made incalculably worse
by software’s inherent malleability. Of all
the problems bedeviling software mangers,
few evoke such passion as the difficulties
of dealing with arbitrary requirements
changes. For most systems, such changes
remain a fact of life even after delivery.
The continuous changes make it difficult
to develop stable specifications, plan effec-
tively, or control cost and schedule. For
many industrial developers, change man-
agement is the most critical problem in re-
quirements.

• Inseparable concerns. In seeking solutions
to the foregoing problems, we are faced
with the additional difficulty that the issues
cannot easily be separated and dealt with

piecemeal. For example, developers have
attempted to address the problem of chang-
ing requirements by baselining and freez-
ing requirements before design begins.
This proves impractical because of the
comprehension problem - the customer
may not fully know what he wants until he
sees it. Similarly, the diversity of purposes
and audiences is often addressed by writ-
ing a different specification for each. Thus
there may be a system specification, a set
of requirements delivered to customer, a
distinct set of technical requirements writ-
ten for the internal consumption of the
software developers, and so on. However,
this solution vastly increases the complexi-
ty, provides an open avenue for inconsist-
encies, and multiplies the difficulties of
managing changes.
These issues represent only a sample of the
inherent dependencies between different
facets of the requirements problem. The
many distinct parties with an interest in a
system’s requirements, the many different
roles the requirements play, and the inter-
locking nature of software’s conceptual
structures, all introduce dependencies be-
tween concerns and impose conflicting
constraints on any potential solution.
The implications are twofold. First we are
constrained in the application of our most
effective strategy for dealing with complex
problems - divide and conquer. If a prob-
lem is considered in isolation, the solution
is likely to aggravate other difficulties. Ef-
fective solutions to most requirements dif-
ficulties must simultaneously address more
than one problem. Second, developing
practical solutions requires making diffi-
cult tradeoffs. Where different problems
have conflicting constraints, compromises
must be made. Because the tradeoffs result
in different gains or losses to the different
parties involved, effective compromise re-
quires negotiation. These issues are con-
sidered in more detail when we discuss the
properties of a good requirements specifi-
cation.

7

4.2 Accidental Difficulties
While there is no doubt that software require-
ments are inherently difficult to do well, there is
equally no doubt that common practice unneces-
sarily exacerbates the difficulty. We use the term
“accidental” in contrast to “essential,” not to im-
ply that the difficulties arise by chance, but that
they are the product of common failings in man-
agement, elicitation, specification, or use of re-
quirements. It is these failings that are most easily
addressed by improved practice.

• Written as an afterthought. It remains
common practice that requirements docu-
mentation is developed only after the soft-
ware has been written. For many projects,
the temptation to rush into implementation
before the requirements are adequately un-
derstood proves irresistible. This is under-
standable. Developers often feel like they
are not really doing anything when they
are not writing code; managers are con-
cerned about schedule when there is no
visible progress on the implementation.
Then too, the intangible nature of the
product mitigates toward early implemen-
tation. Developing the system is an obvi-
ous way to understand better what is need-
ed and make visible the actual behavior of
the product. The result is that requirements
specifications are written as an after-
thought (if at all). They are not created to
guide the developers and testers but treated
as a necessary evil to satisfy contractual
demands.
Such after–the–fact documentation inevi-
tably violates the principle of defining
what the system must do rather than the
how since it is a specification of the code
as written. It is produced after the fact so it
is not planned or managed as an essential
part of the development but is thrown to-
gether. In fact, it is not even available in
time to guide implementation or manage
production.

• Confused in purpose. Because there are so
many potential audiences for a require-
ments specification, with different points
of view, the exact purpose of the document
becomes confused. An early version is
used to sell the product to the customer so

it includes marketing hype extolling the
product’s virtues. It is the only documenta-
tion of what the system does so it provides
introductory, explanatory, and overview
material. It is a contractual document so it
is intentionally imprecise to allow the de-
veloper latitude in the delivered product or
the customer latitude in making no–cost
changes. It is the vehicle for communi-
cating decisions about software to design-
ers and coders so it incorporates design
and implementation details. The result is a
document in which it is unclear which
statements represent real requirements and
which are more properly allocated to mar-
keting, design, or other documentation. It
is a document that attempts to be every-
thing to everyone and ultimately serves no
one well.

• Not designed to be useful. Often in the
rush to implementation little effort is ex-
pended on requirements. The requirements
specification is not expected to be useful
and, indeed, this turns out to be a self–
fulfilling prophecy. Little effort is expend-
ed on designing it, writing it, checking it,
or managing its creation and evolution.
The most obvious result is poor organiza-
tion. The specification is written in English
prose and follows the author’s stream of
consciousness or the order of execution
[Heninger 80].
The resulting document is ineffective as a
technical reference. It is unclear which
statements represent actual requirements.
It is unclear where to put or find particular
requirements. There is no effective proce-
dure for ensuring that the specification is
consistent or complete. There is no sys-
tematic way to manage requirements
changes. The specification is difficult to
use and difficult to maintain. It quickly be-
comes out of date and loses whatever use-
fulness it might originally have had.

• Lacks essential properties. Lack of fore-
thought, confusion of purpose, or lack of
careful design and execution all lead to re-
quirements that lack properties critical to
good technical specifications. The re-
quirements, if documented at all, are re-

8

dundant, inconsistent, incomplete, impre-
cise, and inaccurate.

Where the essential difficulties are inherent in the
problem, the accidental difficulties result from a
failure to gain or maintain intellectual control over
what is to be built. While the presence of the es-
sential difficulties means that there can be no “sil-
ver bullet” that will suddenly render requirements
easy, we can remove at least the accidental diffi-
culties through a well though out, systematic, and
disciplined development process. Such a disci-
plined process then provides a stable foundation
for attacking the essential difficulties.

5. Role of a Disciplined Approach
The application of discipline in analyzing and
specifying software requirements can address the
accidental difficulties. While there is considera-
ble agreement on the desirable qualities of a soft-
ware development approach, development pro-
cesses have not been standardized. Further, the
context and qualities of developments can differ
such that no single process model will suit all de-
velopments. Nonetheless, it is useful to examine
the characteristics of an idealized process and its
products to understand where current approaches
are weak and which current trends are promising.
In general, a complete requirements approach will
define:

• Process: The (partially ordered) sequence
of activities, entrance and exit criteria for
each activity, which work products are
produced in each activity, and what skill
sets are needed do the work.

• Products: The work products to be pro-
duced and, for each product, the resources
needed to produce it, the information it
contains, the expected audience, and the
acceptance criteria the product must satis-
fy.

Conceptually, the requirements phase consists of
two distinct but overlapping activities correspond-
ing to the first two goals for requirements enu-
merated previously:
1. Problem analysis: The goal of problem analy-

sis is to understand precisely what problem is
to be solved. It includes identifying the sys-
tem’s stakeholders and eliciting their require-
ments. It also includes deciding the exact pur-

pose of the system, who will use it, the con-
straints on acceptable solutions, and the pos-
sible tradeoffs between conflicting con-
straints.

2. Requirements specification: The goal of re-
quirements specification is to capture the re-
sults of problem analysis in a transferable
form. The products of this activity typically
include a written specification of precisely
what is to be built in the form of a Software
Requirements Specification (SRS). The SRS
captures the decisions made during problem
analysis and characterizes the set of accepta-
ble solutions to the problem.

In practice, the distinction between these activities
is conceptual rather than temporal. Where both are
needed, the developer typically switches back and
forth between analysis of the problem and docu-
mentation of the results. When problems are well
understood, the analysis phase may be virtually
non–existent. When the system model and docu-
mentation are standardized or based on existing
specifications, the documentation paradigm may
guide the analysis [Hester 81].

5.1 Problem Analysis
Problem analysis lies at the boundary between
human concerns and the realization of some soft-
ware system that seeks to address those concerns.
It is necessarily informal in the sense that there is
no effective, closed end procedure that will guar-
antee success. It is an information acquiring, col-
lating, and structuring process through which one
attempts to understand all the various parts of a
problem and their relationships.
Problem analysis may be further divided into two
closely related sub-activities: requirements elicita-
tion and requirements modeling and analysis. Re-
quirements elicitation focuses on the human side
of problem analysis. It seeks to answer the ques-
tion “What are the behavioral and developmental
qualities of an acceptable system?” Modeling and
analysis supports elicitation by capturing the an-
swers to this question in a form that allows the
stakeholders to understand, communicate, and
reason about the results.
Requirements Elicitation
As our discussion of the essential difficulties sug-
gests, understanding what constitutes an “accepta-
ble system” to its stakeholders can be a daunting

9

task. People do not really know what they want in
sufficient detail. Moreover, different people or
types of stakeholders often have different and in-
compatible views of the problem, the purposes for
developing the system, and what it should accom-
plish. In fact, since the scope of the system may
be undetermined, it may not even be clear who the
stakeholders are.
The purpose of a disciplined elicitation process is
to systematically remove the uncertainty from
problem understanding, resolve conflicting views,
and arrive at a set of behavioral and developmen-
tal requirements that the stakeholders will agree
to. To do so, the process must answer the follow-
ing questions:

• What are the system boundaries?
• What is the rationale for creating the sys-

tem? What are the current problems and
what are the goals for the proposed sys-
tem?

• What are the constraints on acceptable so-
lutions?

• Who are the stakeholders?
• What are the different stakeholders’ views

of the problem and the system require-
ments?

• Where does the understanding differ or
requirements conflict and how can those
conflicts be resolved?

Developments differ in the extent to which the
process must address such questions. For exam-
ple, where there is a single customer, it may be
unnecessary to expend any effort establishing who
the stakeholders are or managing stakeholder con-
flicts. Thus, the activities necessary to answering
these questions are incorporated into the elicita-
tion process as needed.
Establish system boundaries: The purpose of this
activity is to establish where system concerns
properly begin and end. In practice, this means
characterizing the system’s external interfaces. It
delimits and defines how the software interacts
with users or with other systems (software or
hardware).
In addition, establishing the system boundaries
sets boundaries on the elicitation process itself. By
defining what is inside the system and what is
outside, it bounds the scope of inquiry about the

problem and the system requirements. By identi-
fying which concerns properly belong to the soft-
ware it helps establish who the stakeholders are
and which views or concerns are relevant. By es-
tablishing bounds on which persons and issues are
relevant, it helps determine when elicitation is
done.
Rationale and goal understanding: Fully under-
standing the problem requires understanding the
rationale - why the system is being built in the
first place. Understanding the rationale can be
necessary for establishing system requirements
and for maintaining consistency as real-world ob-
jectives or constraints change over time.
The rationale encompasses both the problems with
any current system (automated or manual) and the
objectives for the new system. System objectives
may be codified in the form of goals where a goal
characterizes “an objective the system under con-
sideration should achieve” [Lamsweerde 01].
Goals provide a link between broader concerns
like business objectives and the requirements that
instantiate those concerns in the software context.
Defining goals and providing traceability to the
software requirements supports managing re-
quirements changes as business objectives mature.
Likewise, understanding the overall system goals
and their relative priorities provides a basis for
choosing among likely alternatives and resolving
conflicting requirements. Specific approaches to
goal-based requirements are discussed in the sub-
sequent section on the state of practice.
Stakeholder identification: fully understanding the
problem necessitates identifying all of the sys-
tem’s stakeholders, then understanding their inter-
est in the system. In stakeholder identification, it
is important to include both the individuals (or
organizations) who stand to lose, as well as those
who stand to gain, from development success or
failure [Gause 89].
For many large developments it is not immediate-
ly obvious who all the stakeholders are, even to
the stakeholders themselves. Further, the set of
stakeholders may change as requirements evolve,
system boundaries change, or the individual fill-
ing those organizational roles are replaced.
Since different stakeholders will have different
attributes, concerns, and views of the system,
identifying them is a necessary step toward select-
ing appropriate elicitation methods, gathering a

10

complete set of requirements, establishing priori-
ties, and negotiating conflicts.
Elicitation: The core of requirements elicitation is
the process of working with the stakeholders to
obtain their understanding of the problem, goals,
and system requirements. Since different classes
of stakeholders typically have different perspec-
tives on the problem, have different cultures, and
communicate in different languages, a number of
different elicitation methods may have to be used
as part of an effective elicitation process. Deter-
mining which methods to use, incorporating them
in the requirements process, and synthesizing the
results are the concerns of effective practice (e.g,
[Lauesen 02]).
Requirements Negotiation: Different stakeholders
necessarily have different perspectives on the sys-
tem requirements. For most real developments,
there is no single set of requirements waiting to be
discovered. Rather, there are many potential mani-
festations of stakeholder desires that lead to dif-
ferent, and often conflicting, sets of requirements.
Before development can proceed to implementa-
tion, there must be agreement on a single, con-
sistent set of requirements. Modeling and analyz-
ing the requirements can help identify where con-
flicts occur but does not resolve them. This almost
always requires tradeoffs and compromises be-
tween conflicting goals. It follows that arriving at
agreement requires an effective process for nego-
tiating requirements tradeoffs among stakeholders
(e.g., [Boehm 94]).
Requirements Modeling and Analysis
The inherent difficulties of software complexity
and invisibility are typically addressed by devel-
oping one or more abstract models. “Model,” in
this sense, means a representation of some aspect
of the software system, the system’s context, or
both. It is abstract in that it represents certain in-
formation (entities and relationships) about the
system while omitting others.
The use of models can help make the intangible
objects and relationships in a software system vis-
ible. For example, a behavioral model might show
the required system transitions and the observable
behavior in response to user inputs. Such models
aid elicitation and understanding by providing a
transferable representation of the problem or sys-
tem requirements. The use of models also reduces
complexity by allowing the user to focus on and

reason about a limited, related set of information
at one time.
That said, not all models or modeling languages
are equal. In some cases, “abstract” is interpreted
to mean vague, not well defined, or inaccurate. To
support reasoning about a system, any model
should have the property that anything that is true
of the model is also true of the system it repre-
sents. One can then manipulate the model to
achieve particular developmental goals with the
understanding that corresponding transformations
to the system will yield corresponding real-world
properties. In many cases, modeling languages
(e.g., UML) lack sufficiently well defined seman-
tics to achieve this property. The result is a model
that is open to conflicting interpretations.
In addition to supporting problem understanding,
the creation of models can support various kinds
of analysis. Where models provide a formal syn-
tax and semantics, they may support analysis for
properties like consistency and completeness, as
well as reasoning about requirements like safety
properties. Such analyses can help identify miss-
ing requirements, inconsistencies, and require-
ments conflicts during elicitation. While informal
models may not support formal reasoning, they
can be useful aids for visualizing and reasoning
about system requirements, as long as their limita-
tions are understood.

5.2 Requirements Specification
For substantial developments, the effectiveness of
the requirements effort depends on how well the
SRS captures the results of analysis and how use-
able the specification is. There is little benefit to
developing a thorough understanding of the prob-
lem if that understanding is not effectively com-
municated to customers, designers, implementers,
testers, and other stakeholders. The larger and
more complex the system, the more important a
good specification becomes. This is a direct result
of the many roles the SRS plays in a multi–
person, multi–version development [Parnas 86]:

 1. The SRS is the primary vehicle for
agreement between the developer and custom-
er on exactly what is to be built. It is the doc-
ument reviewed by the customer or his repre-
sentative and often is the basis for judging ful-
fillment of contractual obligations.

11

 2. The SRS records the results of problem
analysis. It is the basis for determining where
the requirements are complete and where addi-
tional analysis is necessary. Documenting the
results of analysis allows questions about the
problem to be answered only once during de-
velopment.

 3. The SRS defines what properties the
system must have and the constraints on its de-
sign and implementation. It defines where
there is, and is not, design freedom. It helps
ensure that requirements decisions are made
explicitly during the requirements phase, not
implicitly during design or programming.

 4. The SRS is the basis for estimating cost
and schedule. It is management’s primary tool
for tracking development progress and ascer-
taining what remains to be done.

 5. The SRS is the basis for test plan
development. It is the tester’s chief tool for de-
termining the acceptable behavior of the soft-
ware.

 6. The SRS provides the standard definition
of expected behavior for the system’s main-
tainers and is used to record engineering
changes.

For a disciplined software development, the SRS
is the primary technical specification of the soft-
ware and the primary control document. This is an
inevitable result of the complexity of large sys-
tems and the need to coordinate multi–person de-
velopment teams. To ensure that the right system
is built, one must first understand the problem. To
ensure agreement on what is to be built and the
criteria for success, the results of that understand-
ing must be recorded. The goal of a systematic
requirements process is thus the development of a
set of specifications that effectively communicate
the results of analysis. The SRS is the primary
vehicle for communicating requirements between
the developers, managers, and customers so the
document is designed to be useful to that purpose.
A useful document is maintained.

5.3 Requirements Process and Plan
Requirements’ accidental difficulties are ad-
dressed through the careful analysis and specifica-
tion of a disciplined process. Rather than develop-
ing the specification as an afterthought, require-
ments are understood and specified before devel-

opment begins. One knows what one is building
before attempting to build it. Where requirements
cannot be completely known in advance the pro-
cess systematically revisits the requirements pro-
cess and downstream activities (e.g., iterative de-
velopment).
The facts that requirements cannot be fully known
in advance, and often change, are sometimes used
as justification for expending little effort on re-
quirements planning. The thought is that the pro-
ject will deal with requirements when and if they
become manifest. Such an approach surrenders
the notion of a controlled engineering process to
chance.
As a system goes to code, every decision about
the requirements necessarily gets made (by defini-
tion). The question is not whether any particular
requirements decision will be made but when it
will be made and by whom. By default, any deci-
sion that is not made earlier in the process will be
made by the programmers. In many cases, the
programmers have little visibility into the business
implications of such decisions or their effects on
stakeholder goals. This is seldom a desirable out-
come.
Being in control of the process means that re-
quirements decisions, including postponing or not
making decisions, are conscious choices. Each
decision is made at the appropriate time by those
with the knowledge and skills necessary to choose
the best available alternative. This kind of control
requires that the complex activities around re-
quirements be planned in advance.
While organizations that develop complex soft-
ware systems should employ a disciplined re-
quirements process, no one process will meet the
needs of every organization. A company that is
developing an application where development
cost and time to market are primary business driv-
ers should not use the same process as an organi-
zation developing safety critical aerospace soft-
ware with a long life expectancy.
It follows that the requirements process is some-
thing that should be chosen or designed to fit the
organizational and even developmental contexts.
While every development will typically go
through some form of elicitation, modeling, anal-
ysis, and specification, the emphasis on the differ-
ent phases and products will differ from one situa-
tion to the next. Likewise, the choices among

12

methods, technologies, notations, and tools will
vary.
For deploying processes that are a good fit for a
particular organization or situation, it is useful to
think of processes as products. That is, we want a
process that meets particular organizational and
developmental goals (e.g., short time-to-market).
To meet those goals, the process will need to sat-
isfy certain requirements (e.g., contain certain
milestones or satisfy particular standards). We
then must create (build) or choose (buy) a process
that satisfies the requirements. We must com-
municate that process to those who will enact it,
manage it, or monitor it. We must validate the
process against the goals, verify its enactment,
and so on.
In a disciplined organization, this means that there
must be a written specification that records deci-
sions about the process and provides a baseline for
enactment, tailoring, or process improvement.
While treating a process as a product in this man-
ner may seem alien, in fact many organizations
that have embarked on systematic process im-
provement (e.g., [SEI 06]) have done all of this
and more. Thinking about the process as a product
helps ensure that adequate consideration is given
to planning, budgeting for, and managing process
development or improvement.
At the project level, the requirements process
should be instantiated in the form of a require-
ments plan [Young 04]. The requirements plan
makes the abstract requirements processes con-
crete by mapping activities to tasks, people to
roles, and artifacts to deliverables. It describes
who will do what using which specific methods
and tools. For example, it should describe which
elicitation methods will be used to obtain which
kinds of requirements information and which
modeling methods will be used to capture that
information.
 The plan serves as the basis for team consensus
on exactly what will be done, provides a yardstick
for tracking progress, and serves as a guide to new
personnel and other stakeholders. The exact plan
contents should vary depending on the organiza-
tion’s process and the specific characteristics of
the project. In general, however, it should answer
the following kinds of questions for the reader:

• Roles and Responsibilities – Who is re-
sponsible for what?

• Project Background – What background
information will help understand this pro-
ject?

• Requirements Process – What idealized
requirements process will we follow?

• Mechanisms, methods, techniques – How
will we elicit, identify, analyze, define,
specify, prioritize, track, etc.?

• Quality assessment – What methods will
be used to assess requirements qualities
and what are the acceptance criteria for
the products produced?

• Detailed schedule, milestones – How are
the activities and artifacts mapped to the
project schedule and milestones?

• Resources and References – Who or what
resources can answer questions about the
product or process?

The instantiation of a well-defined process in the
project plan helps ensure that the process actually
enacted by project personnel will be consistent
with the organization’s overall process goals. Ob-
serving and measuring the results then provides
metrics for systematic process improvement.
The final key to implementing the plan is provid-

ing adequate resources. Historical data from a
large set NASA projects (Figure 4) shows that, in
general, the projects that spent the least on devel-
oping requirements tended to have the highest
cost overruns. Projects that spend 8% to 14% of

Figure 4: Requirements spending vs. cost overruns

13

the total project budget on acquiring and manag-
ing requirements reduced cost overruns by 50%
([NASA 05], [Young 06]).

6. Requirements for the Software Require-
ments Specification

The goals of the requirements process, the at-
tendant difficulties, and the role of the require-
ments specification in a disciplined process de-
termine the properties of a “good” requirements
specification. These properties do not mandate
any particular specification method but do de-
scribe characteristics an effective method should
possess.
SRS Semantic Properties SRS Packaging Properties
Complete Modifiable
Implementation independent Readable
Unambiguous and consistent
Precise
Verifiable

Organized for reference and
review

Table 1: Semantic properties vs. packaging properties

In discussing the properties of a good SRS, it use-
ful to distinguish semantic properties from pack-
aging properties [Faulk 92]. Semantic properties
are a consequence of what the specification says
(i.e., its meaning or semantics). Packaging proper-
ties are a consequence of how the requirements
are written down - the format, organization, and
presentation of the information. The semantic
properties determine how effectively an SRS cap-
tures the software requirements. The packaging
properties determine how useable the resulting
specification is. Table 1 illustrates the classifica-
tion of properties of a good SRS. An SRS that
satisfies the semantic properties of a good specifi-
cation is:

• Complete. The SRS defines the set of ac-
ceptable implementations. It should con-
tain all the information needed to write
software that is acceptable to the customer
and no more. Any implementation that sat-
isfies every statement in the requirements
is an acceptable product. Where infor-
mation is not available before development
begins, areas of incompleteness must be
explicitly indicated [Parnas 86].

• Implementation independent. The SRS
should be free of design and implementa-
tion decisions unless those decisions re-
flect actual requirements.

• Unambiguous and Consistent. If the SRS
is subject to conflicting interpretation, the
different parties will not agree on what is
to be built or whether the right software
has been built. Every requirement should
have only one possible interpretation. Sim-
ilarly, no two statements of required be-
havior should conflict.

• Precise. The SRS should define exactly
the required behavior. For each output, it
should define the range of acceptable val-
ues for every input. The SRS should define
any applicable timing constraints such as
minimum and maximum acceptable delay.

• Verifiable. A requirement is verifiable if it
is possible to determine unambiguously
whether a given implementation satisfies
the requirement or not. For example, a be-
havioral requirement is verifiable if it is
possible to determine, for any given test
case (i.e., an input and an output), whether
the output represents an acceptable behav-
ior of the software given the input and the
system state.

An SRS that satisfies the packaging properties of
a good specification1 is:

• Modifiable. The SRS must be organized
for ease of change. Since no organization
can be equally easy to change for all pos-
sible changes, the requirements analysis
process must identify expected changes
and the relative likelihood of their occur-
rence. The specification is then organized
to limit the effect of likely changes.

• Readable. The SRS must be understanda-
ble by the parties that use it. It should

1Reusability is also a packaging property and be-
comes an attribute of a good specification where
reusability of requirements specifications is a
goal.

14

clearly relate the elements of the problem
space as understood by the customer to the
observable behavior of the software.

• Organized for reference and review. The
SRS is the primary technical specification
of the software requirements. It is the re-
pository for all the decisions made during
analysis about what should be built. It is
the document reviewed by the customer or
his representatives. It is the primary arbi-
trator of disputes. As such the document
must be organized for quick and easy ref-
erence. It must be clear where each deci-
sion about the requirements belongs. It
must be possible to answer specific ques-
tions about the requirements quickly and
easily.

To address the difficulties associated with writing
and using an SRS, a requirements approach must
provide techniques addressing both semantic and
packaging properties. It is also desirable that the
conceptual structures of the approach treat the
semantic and packaging properties as distinct con-
cerns (i.e., as independently as possible). This al-
lows one to change the presentation of the SRS
without changing its meaning.
In aggregate, these properties of a good SRS rep-
resent an ideal. Some of the properties may be
unachievable, particularly over the short term. For
example, a common complaint is that one cannot
develop complete requirements before design be-
gins because the customer does not yet fully un-
derstand what he wants or is still making changes.
Further, different SRS “requirements” mitigate
toward conflicting solutions. A commonly cited
example is the use of English prose to express
requirements. English is readily understood but
notoriously ambiguous and imprecise. Converse-
ly, formal languages are precise and unambigu-
ous, but can be difficult to read.
Although the ideal SRS may be unachievable,
possessing a common understanding of what con-
stitutes an ideal SRS is important [Parnas 86] be-
cause it:

• Provides a basis for standardizing an or-
ganization’s processes and products,

• Provides a standard against which progress
can be measured, and,

• Provides guidance - it helps developers
understand what needs to be done next and
when they are finished.

Because it is so often true that (1) requirements
cannot be fully understood before at least starting
to build the system and (2) a perfect SRS cannot
be produced even when the requirements are un-
derstood, some approaches advocated in the litera-
ture do not even attempt to produce a definitive
SRS. For example, some authors advocate going
directly from a problem model to design or from a
prototype implementation to the code. While such
approaches may be effective on some develop-
ments, they are inconsistent with the notion of
software development as an engineering disci-
pline. The development of technical specifications
is an essential part of a controlled engineering
process. This does not mean that the SRS must be
entire or perfect before anything else is done but
that its development is a fundamental goal of the
process as a whole. That we may currently lack
the ability to write good specifications in some
cases does not change the fact that it is useful and
necessary to try.

7. State of the Practice
The past decade has brought a significant shift in
requirements practice and the perception of the
role of requirements in the development process.
At the time the first version of this article was
published, requirements analysis was generally
treated as a distinct concern (e.g., [Davis 93]).
There was the conceptual distinction that require-
ments should express an implementation inde-
pendent specification of what the software should
do. However, it was also treated as a development
phase that divided the software process into dis-
tinct and relatively independent parts. It is this
sequencing relationship that is represented in the
waterfall model and its variations [e.g., Figure 1].
In this view, the requirements phase begins with
requirements gathering, and ends with the deliv-
ery of some form of requirements specification to
the software designers. While it is understood that
the requirements activities and its products may
be revisited in subsequent phases, it is assumed
that the requirements specification can capture
and communicate everything the developers need
to know to design, implement, and maintain the
software. In practice, this separation of concerns

15

was embodied in the notion of the “requirements
handoff” – a process milestone in which the re-
quirements specification is baselined and control
passed to the software designers and coders.
The unstated assumption behind this model is that
the dependencies between non-contiguous parts of
the process do not require explicit understanding
or management; that everything the stakeholders
needed to know could be captured through work
products like the SRS and supporting traceability
matrices. Thus, for example, the designers do not
need to understand the source of particular re-
quirements or the underlying business rationale to
design a good software architecture.
Over the past decade, a more holistic view of the
software process has emerged. It has become clear
that, for most complex software development, the
decisions in each phase of development may have
significant implications across the life cycle and,
indeed, across more than one life cycle. Thus,
controlling the downstream effects of develop-
ment decisions requires explicit understanding
and management of these dependencies. This re-
quires a model of development that spans the
software life cycle and, for some concerns, multi-
ple life cycles.
In the remainder of this section we discuss the
current state of practice, particularly as it embod-
ies this broader, more interdisciplinary view of
requirements.

7.1 Software Methodologies
Over the years, a number of analysis and specifi-
cation methods have been developed as part of
more comprehensive software engineering meth-
ods. The general trend has been for software engi-
neering techniques to be applied first to coding
problems (e.g., complexity, ease of change), then
to similar problems occurring earlier and earlier in
the life cycle. Thus the concepts of structured
programming led eventually to structured design
and analysis. Similarly, the concepts of object-
oriented programming led to object oriented de-
sign and analysis.
The benefits of this approach are that a common
set of conceptual structures and notations can be
used across the software life cycle. It is unneces-
sary to translate from one set of abstractions to
another (until code is produced), avoiding transla-
tion errors and inconsistencies between models.

The drawback is that the same notations and struc-
tures must be used to represent concepts that we
are trying to keep distinct. For example, the con-
cept of objects is used to represent both entities in
the problem domain (requirements) and entities in
the implementation domain (code). This can make
it difficult to distinguish requirements decisions
from downstream concerns.
Since a number of the concepts used in current
object-oriented approaches were introduced in
Structured Analysis, and Structured Analysis is
still in use in use in some application domains, our
discussion will treat both.

Structured Analysis (SA)
Following the introduction of structured pro-
gramming as a means to gain intellectual control
over increasingly complex programs, structured
analysis evolved from functional decomposition
as a means to gain intellectual control over system
problems.
The basic assumption behind SA is that the acci-
dental difficulties can be addressed by a systemat-
ic approach to problem analysis using [Svoboda
90]:

• A common conceptual model for describ-
ing all problems,

• A set of procedures suggesting the general
direction of analysis and an ordering on
the steps,

• A set of guidelines or heuristics support-
ing decisions about the problem and its
specification, and

• A set of criteria for evaluating the quality
of the product.

What functional decomposition is still a part of
SA, the focus of the analysis shifts from the pro-
cessing steps to the data being processed. The
analyst views the problem as constructing a sys-
tem to transform data. He analyzes the sources
and destinations of the data, determines what data
must be held in storage, what transformations are
done on the data, and the form of the output.
Common to the SA approaches is the use of data
flow diagrams and data dictionaries. Data flow
diagrams provide a graphic representation of the
movement of data through the system (typically
represented as arcs) and the transformations on

16

the data (typically represented as nodes). The data
dictionary supports the data flow diagram by
providing a repository for the definitions and de-
scriptions of each data item on the diagrams. Re-
quired processing is captured in the definitions of
the transformations. Associated with each trans-
formation node is a specification of the processing
the node does to transform the incoming data
items to the outgoing data items. At the most de-
tailed level, a transformation is defined using a
textual specification called a “MiniSpec”. A Min-
iSpec may be expressed in a number of different
ways including English prose, decision tables, or a
procedure definition language (PDL).
SA approaches originally evolved for manage-
ment information systems (MIS). Examples of
widely used strategies include those described by
DeMarco [DeMarco 78] and Gane and Sarson
[Gane 79]. “Modern” structured analysis was in-
troduced to provide more guidance in modeling
systems as data flows as exemplified by Yourdon
[Yourdon 89].
Structured analysis is based on the notion that
there should be a systematic (and hopefully pre-
dictable) approach to analyzing a problem, de-
composing it into parts, and describing the rela-
tionships between the parts. By providing a well
defined process, structured analysis seeks to ad-
dress, at least in part, the accidental difficulties
that result from ad hoc approaches and the defini-
tion of requirements as an afterthought. It seeks to
address problems in comprehension and commu-
nication by using a common set of conceptual
structures a graphic representation of the specifi-
cation in terms of those structures, based on the
assumption that a decomposition in terms of the
data the system handles will be clearer and less
inclined to change than one based on the functions
performed.
While structured analysis techniques have contin-
ued to evolve and have been widely used, there
remain a number of common criticisms. When
used in problem analysis, a common complaint is
that structured analysis provides insufficient guid-
ance. Analysts have difficulty deciding which
parts of the problem to model as data, which parts
to model as transformations, and which parts
should be aggregated. While the gross steps of the
process are reasonably well defined, there is only
very general guidance (in the form of heuristics)
on what specific questions the analyst needs to

answer next. Similarly, practitioners find it diffi-
cult to know when to stop decomposition and ad-
dition of detail. In fact, the basic structured analy-
sis paradigm of modeling requirements as data
flows and data transformations requires the ana-
lyst to make decisions about intermediate values
(e.g., form and content of stored data and the de-
tails of internal transformations) that are not re-
quirements. Particularly in the hands of less expe-
rienced practitioners, data flow models tend to
incorporate a variety of detail that properly be-
longs to design or implementation.
Many of these difficulties result from the weak
constraints imposed by the conceptual model. A
goal of the developers of structured analysis was
to create a very general approach to modeling sys-
tems; in fact, one that could be applied equally to
model human enterprises, hardware applications,
software applications of different kinds, and so
on. Unfortunately, such generality can be
achieved only by abstracting away any semantics
that are not common to all of the types of systems
potentially being modeled. The conceptual model
itself can provide little guidance relevant to a par-
ticular system. Since the conceptual model applies
equally to requirements analysis and design analy-
sis, its semantics provide no basis for distinguish-
ing the two. Similarly, such models can support
only very weak syntactic criteria for assessing the
quality of structured analysis specifications. For
example, the test for completeness and consisten-
cy in data flow diagrams is limited to determining
that the transformations at each level are con-
sistent in name and number with the data flows of
the level above.
This does not mean one cannot develop data flow
specifications that are easy to understand, com-
municate effectively with the user, or capture re-
quired behavior correctly. The large number of
systems developed using structured analysis show
that it is possible to do so. However, the weakness
of the conceptual model means that a specifica-
tion’s quality depends largely on the experience,
insight, and expertise of the analyst. The develop-
er must provide the necessary discipline because
the model itself is relatively unconstrained.
Finally, structured analysis provides little support
for producing an SRS meeting our quality criteria.
Data flow diagrams are unsuitable for capturing
mathematical relations or detailed specifications
of value, timing, or accuracy so the detailed be-

17

havioral specifications are typically given in Eng-
lish or as pseudo–code segments in the Mini-
specs. These constructs provide little or no sup-
port for writing an SRS that is complete, imple-
mentation independent, unambiguous, consistent,
precise, and verifiable. Further, the data flow dia-
grams and attendant dictionaries do not, them-
selves, provide support for organizing an SRS to
satisfy the packaging goals of readability, ease of
reference and review, or reusability. In fact, for
many of the published methods, there is no explic-
it process step, structure, or guidance for produc-
ing an SRS, as a distinct development product, at
all.

Object Oriented Analysis (OOA)
OOA has evolved from at least two significant
sources, information modeling and object oriented
design. Each has contributed to current views of
OOA, and the proponents of each emphasize
somewhat different sets of concepts. OOA tech-
niques differ from structured analysis in their ap-
proach to decomposing a problem into parts and
in the methods for describing the relationships
between the parts. In OOA, the analyst decom-
poses the problem into a set of interacting objects
based on the entities and relationships extant in
the problem domain. An object encapsulates a
related set of data, processing, and state (thus, a
significant distinction between object oriented
analysis and structured analysis is that OOA en-
capsulates both data and related processing to-
gether).
The structural components of OOA (e.g., objects,
classes, services, aggregation) support a set of
analytic principles. Of these, two directly address
requirements problems:

 1. From information modeling comes the
assumption that a problem is easiest to under-
stand and communicate if the conceptual struc-
tures created during analysis map directly to
entities and relationships in the problem do-
main. This principle is realized in OOA
through the heuristic of representing problem
domain objects and relationships of interest as
OOA objects and relationships. Thus an OOA
specification of a vehicle registration system
might model vehicles, vehicle owners, vehicle
title, and so on as objects. The object paradigm
is used to model both the problem and the rel-
evant problem context.

 2. From early work on modularization by
Parnas [Parnas 72] and abstract data types, by
way of object oriented programming and de-
sign, come the principles of information hiding
and abstraction. The principle of information
hiding guides one to limit access to infor-
mation on which other parts of the system
should not depend. In an OO specification of
requirements, this principle is applied to hide
details of design and implementation. In OOA,
behavior requirements are specified in terms of
the data and services provided on the object in-
terfaces; the object encapsulates how those
services are implemented. The principle of ab-
straction says that only the relevant or essential
information should be presented. Abstraction
is implemented in OOA by defining object in-
terfaces that provide access only to essential
data or state information encapsulated by an
object (conversely hiding the accidentals).

The principles and mechanisms of OOA provide a
basis for attacking the essential difficulties of
comprehension, communication, and control. The
principle of problem domain modeling helps
guide the analyst in distinguishing requirements
(what) from design (how). Where the objects and
their relationships faithfully model entities and
relationships in the problem, they are understand-
able by the customer and other domain experts;
this supports early comprehension of the require-
ments.
The principles of information hiding and abstrac-
tion, with the attendant object structures, provide
mechanisms useful for addressing the essential
problems of control and communication. Objects
provide the means to divide the requirements into
distinct parts, abstract from details, and limit un-
necessary dependencies between the parts. Object
interfaces can be used to hide irrelevant detail and
define abstractions providing only the essential
information. This provides a basis for managing
complexity and improving readability. Likewise
objects provide a basis for constructing reusable
requirements units of related functions and data.
The potential benefits of OOA are often diluted by
the way the key principles are manifested in par-
ticular methods. While the objects and relations of
OOA are intended to model essential aspects of
the application domain, this goal is typically not
supported by a corresponding conceptual model of
the domain behavior. Object modeling mecha-

18

nisms and techniques are intentionally generic
rather than application specific. One result is in-
sufficient guidance in developing appropriate ob-
ject decompositions. OOA practitioners often
have difficulty choosing appropriate objects and
relationships.
In practice, the notion that one can develop the
structure of a system, or a requirements specifica-
tion, based on physical structure is often oversold.
It is true that the elements of the physical world
are usually stable (especially relative to software
details) and that real–world based models have
intuitive appeal. It is not true, however, that eve-
rything that must be captured in requirements has
a physical analog. An obvious example is shared
state information. Further, many real world struc-
tures are themselves arbitrary and likely to change
(e.g., where two hardware functions are put on
one physical platform to reduce cost). While the
notion of basing requirements structure on physi-
cal structure is a useful heuristic, more is needed
to develop a complete and consistent requirements
specification.
A further difficulty is that the notations and se-
mantics of OOA methods are typically based on
the conceptual structures of software rather than
those of the problem domain the analyst seeks to
model. Symptomatic of this problem is that ana-
lysts find themselves debating about object lan-
guage features and their properties rather than
about the properties of the problem. An example
is the use of message passing, complete with mes-
sage passing protocols, where one object uses in-
formation defined in another. In the problem do-
main it is often irrelevant whether information is
actively solicited or passively received. In fact
there may be no notion of messages or transmis-
sion at all. Nonetheless one finds analysts debat-
ing about which object should initiate a request
and the resulting anomaly of passive entities mod-
eled as active. For example, to get information
from a book one might request that the book “read
itself” and “send” the requested information in a
message. To control an aircraft the pilot might
“use his hands and feet to ‘send messages’ to the
aircraft controls which in turn send messages to
the aircraft control surfaces to modify themselves”
[Davis 93]. Such decisions are about OOA mech-
anisms or design, not about the problem domain
or requirements.

As mentioned in the previous section, where the
decomposition into objects is driven only by use
cases, the result is effectively a functional specifi-
cation in object guise. The problems with such
specifications are well understood [Parnas 72], in
particular, being difficult to understand, change,
or maintain.
A more serious complaint is that most OOA
methods inadequately address our goal of devel-
oping a good SRS. Most OOA approaches in the
literature provide only informal specification
mechanisms, relying on refinement of the OO
model in design and implementation to add detail
and precision. There is no formal basis for deter-
mining if a specification is complete, consistent,
or verifiable. Further, the approach does not di-
rectly address the issues of developing the SRS as
a reference document. The focus is on problem
analysis rather than specification. If the SRS is
addressed at all, the assumption is that the princi-
ples applied to problem understanding and model-
ing are sufficient, when results are written down,
to produce a good specification. Experience sug-
gests otherwise. As we have discussed, there are
inherently tradeoffs that must be made to develop
a specification that meets the need of any particu-
lar project. Making effective tradeoffs requires a
disciplined and thoughtful approach to the SRS
itself, not just the problem. Thus, while OOA pro-
vide the means to address packaging issues, there
is typically little methodological emphasis on is-
sues like modifiability or organization of a speci-
fication for reference and review.

7.2 Use cases
Usage scenarios or use cases have been widely
adopted as a method for specifying required sys-
tem behavior from the user’s point of view. Use
cases are sometimes deployed as the primary fo-
cus of elicitation and problem modeling [Schnei-
der 98]. Use cases are also frequently employed as
a first step in many object-oriented approaches
(e.g., [Jacobsen 92], [Kruchten 99]). Despite their
prevalence in object oriented development, there
is nothing intrinsically object-oriented about use
cases and they are applied in other contexts. For
these reasons, we will treat them separately.
Briefly, a use case describes a set of possible se-
quences of interactions between the system and a
user seeking to accomplish a particular goal. Uses
cases are intended capture a user-centric view of

19

the required system behavior – i.e., how the sys-
tem should respond to different user inputs to ac-
complish specific tasks like checking the balance
on an account or adding an item to an on-line
shopping cart.
While many approaches attempt to structure use
cases by providing standard formats or templates
(e.g., [Cockburn 00]), use cases are ultimately an
informal, natural-language specification. A use-
case template captures the user’s (or actor’s) in-
teraction with the system as a sequence of natural-
language statements that alternate between de-
scribing user inputs (“the customer clicks the
checkout button”) and system responses (“the
page displays the contents of the customer’s
shopping cart”).
Because use cases directly capture interaction
with the system in terms of the user’s problem
domain (e.g., work tasks), they are usually easy
for non-technical stakeholders to read, understand,
review, and even assist in creating. While writing
good use cases requires expertise, there is a rela-
tively natural transition from a description of what
a user wants the system to do, to a specification of
how the system might support that task in a use
case. Similarly, marketing or business goals for a
system (e.g., what new things the system will al-
low users to do) are often straightforwardly repre-
sented as use cases [Lee 99].
While there is evidence that use cases can be an
effective informal modeling technique, they lack
many of the properties necessary to a technical
requirements specification:

• Unambiguous and consistent: Use cases
necessarily have all the limitations of any
natural language specification. They are
inherently ambiguous and open to incon-
sistent interpretation by stakeholders or
developers.

• Modifiable: Individually, use cases are
relatively easy to modify, particularly
where standard templates are used. Col-
lectively, where there are a large number
of use cases, it can become very difficult
to find or identify all of the use cases re-
lating to a particular change.

• Organized for reference and review:
Where the number of use cases becomes
large, it also becomes difficult to find
specific use cases or specific information.

There is generally no organizing principle
that accurately characterizes exactly
where to put or find a given piece of in-
formation among the set of use cases.
Similarly, it can be difficult for reviewers
to find key information or assess basic
properties like consistency.

• Complete: Since use cases represent spe-
cific paths through the system behavior, it
is usually impossible or impractical to
write a complete set of use cases. The
problem is analogous to trying to write a
complete set of test cases. While the level
of abstraction is higher, in general, the
number of possible scenarios is very large
and there is no way to check if the set of
use cases is complete, nor to identify
which ones might be missing.

There are also more important senses in which use
cases are typically incomplete. Traditionally, use
cases represent only users’ interactions with the
system. It follows that a specification written only
in terms of use cases is an entirely functional
specification. Other viewpoints as well as critical
quality requirements are not addressed. Such an
approach recapitulates the deficiencies of func-
tional decomposition and discards decades of pro-
gress in software engineering. While there have
been some efforts to modify use cases to represent
quality requirements, (e.g., [Bass 03]) such ap-
proaches remain a work in progress.
These limitations suggest that use cases are more
appropriate for informal business- or mission-
oriented requirements capture. In many organiza-
tions there are two distinct audiences for the re-
quirements: one audience that is versed in the or-
ganizational goals and problem domain and a se-
cond audience that is versed in technical goals and
the solution domain. For businesses, the first au-
dience typically includes customers, marketing,
product management, and others on the business
side of the organization. The second audience in-
cludes architects, coders, and others on the devel-
opment side of the organization.
Because these two audiences tend to speak differ-
ent languages and have different interests in the
product, it is difficult to write any single specifi-
cation that is suitable to both. In such cases, it of-
ten makes sense to create two distinct documents,
one owned by the business side and a second
owned by the technical side. The goal in dividing

20

the specification is to create a clear allocation of
purpose, responsibility, and ownership.
The purpose of the business-oriented document is
to capture the rationale for building the system. It
includes the business case, solution approach, and
the mapping between them. This document may
be described as the, Market Requirements Docu-
ment (MRD), Business Requirements Document
(BRD) or, Concept of Operation Document (Co-
nOps). It should communicate the results of prob-
lem analysis and characterize the set of acceptable
solutions to customers, managers, and others re-
sponsible for why the system is being developed.
Because its purpose is to capture rationale, it is
organized to “tell a story” [Fairley 97] rather than
as a reference document.
The technical specifications are then captured in
an SRS. By tracing requirements in the SRS to the
BRD or similar document, one captures the origin
and rationale for the technical requirements while
maintaining the desirable properties of an SRS.
Use cases are a natural fit for the audience and
purpose of a document like the ConOps or BRD.
Use cases are written in terms of the problem do-
main and in a language that is accessible to those
familiar with the problem domain. The format and
organization is consistent with the objective that
the document should “tell a story” and provides a
vehicle for linking the system behavior to user
tasks. While this comes at the expense of some
redundancy in that the same requirements must be
expressed in more than place, the benefits typical-
ly outweigh any issues in maintaining consisten-
cy.

7.2 Linking requirements to architecture
While a detailed discussion of software architec-
ture is beyond the scope of this paper, one must
have a clear understanding of the effect of archi-
tecture on important system qualities to under-
stand the relationships between architectural de-
sign decisions and the requirements process.
We use the term software architecture to denote
the structures of the system comprising a set of
components, relations, and interfaces. For exam-
ple, the class structure could refer to the set of
classes in the system, the class interfaces, and the
inheritance or instance relation. The process
structure could refer to the organization of the
system into processes or threads; interfaces are the

inter-process operations (synchronization, com-
munication), and the relations include exclusion
and concurrency. By this definition, any software
system comprises more than one architecture
[Bass 03].
Architecture manifests the earliest set of design
decisions. It is these decisions that enable or in-
hibit the system’s quality attributes. These include
essentially all of the system’s developmental qual-
ities (e.g., maintainability, reusability, etc.) and all
of the system’s behavioral qualities (e.g., perfor-
mance, reliability, etc.) except functionality2.
Inevitably, architectural design requires making
tradeoffs among the system’s quality attributes.
For example, significantly increasing system secu-
rity will tend to decrease performance and im-
proving reliability will typically require longer
development time.
Since different stakeholders have different inter-
ests in system properties, the process of choosing
among architectural design alternatives directly
affects the extent to which the design will, or will
not, satisfy their desires and goals. Since making
good architectural design decisions requires mak-
ing tradeoffs among the concerns of different
stakeholders, the architect must understand the
rationale for different quality requirements, as
well as the relative priorities among stakeholder
goals, and, ultimately, negotiate compromises.
The architect must understand both the source and
nature of the system’s quality requirements.
The implication is that it is not sufficient to com-
municate black-box requirements; an effective
process must also capture and communicate con-
textual information. This includes the purpose of
different requirements, their relationships to or-
ganizational goals, and their importance to the
system’s diverse stakeholders.
Where an organization goes on to develop subse-
quent versions of the software or similar systems,
the dependencies also extend downstream. The
architectural design decisions embodied in the
current system tend to influence subsequent busi-
ness goals, requirements, and architectural struc-
tures. For example, how easy a system is to ex-
tend or modify the software in particular ways can

2 Without going into detail, precisely the same func-
tionality can be realized by any number of different
architectural decompositions.

21

significantly affect the ability to add specific fea-
tures, address new customer needs, or target dif-
ferent markets.
These overlapping dependencies between devel-
opmental goals, requirements, and architectural
design are captured in what Bass, et al [Bass 03]
call the architectural business cycle. While our
focus is on the role of requirements in that cycle,
it expresses the key idea that there are important
dependencies between the conceptually distinct
activities of software development. Managing the
implications of these dependencies requires ex-
plicit two-way communication between the busi-
ness and technical parts of an organization. The
activities and artifacts supporting this communica-
tion must be part of a disciplined process.

7.3 Elicitation Methods and Goal Modeling
Failing to understand what the stakeholders want
leads to substantial rework [Boehm 88] or even
rejection of a system. Because elicitation occurs at
the beginning of development, errors in this step
are the most expensive and difficult to correct lat-
er in the process. The importance of getting these
early steps right has led to a wide range of efforts
focused on understanding elicitation issues and
supporting improved elicitation processes.
One significant result of these efforts has been a
shift in the way researchers and practitioners view
elicitation. While there were exceptions (e.g.
[Gause 89]), the prevailing view in the past was
that there existed some set of requirements char-
acterizing the behavior of an ideal system. One
could effectively elicit those requirements by ask-
ing a few key people, notably customers, and us-
ers, what the system should do.
For many of the reasons that we have discussed,
this approach often proved ineffective. This re-
flects the fact that “what is wanted” is typically
not well defined, fully understood, or even a sin-
gle thing. Rather, the perception of the problem,
developmental goals, and requirements will vary
from one stakeholder to the next, and even for a
single stakeholder, over time. Any individual
stakeholder’s answers will yield a view that is
neither complete nor precise. Views from multiple
stakeholders tend to be inconsistent or conflicting.
The upshot is that the notion of an ideal system or
set of requirements that can be “discovered” is a
poor approximation of reality. Rather, there are

many different perspectives on the problem, par-
tial views of solutions, and possible systems. The
central challenge of elicitation is to obtain and
reconcile these different perspectives to a single
system definition that the stakeholders can live
with.
Where, historically, this aspect of the require-
ments process received little attention, it has re-
cently emerged as a distinct discipline in both
practice and the literature. The understanding that
elicitation must reconcile many different views
from different kinds of stakeholders, and in differ-
ent contexts, has stimulated research into the vari-
ous facets of elicitation. This has, in turn, stimu-
lated development of a number of elicitation
methods targeted to different needs. An overview
of the approaches is given in [Nuseibeh 00]; a
more complete survey of different elicitation
methods is given in [Lauesen 02].
Goal Modeling
An elicitation approach that integrates systematic
modeling of objectives (e.g., business goals) with
downstream requirements activities is that of goal
modeling or goal-oriented requirements. A goal
specifies some objective that the system should
achieve [Lamsweerde 01]. The essential foci of
goal-oriented requirements are:
1. To capture the stakeholder’s objectives for

the system in the problem context.
2. To systematically map those objectives to a

detailed specification of the system require-
ments.

By beginning with goals, the approach seeks to
capture each stakeholder’s rationale for the system
in the stakeholder’s language and context. Thus,
for example, business goals might be captured in
terms of market opportunities and user needs in
terms of ease of performing a work task. Express-
ing the system objectives using the stakeholder’s
perspective and language supports ease of under-
standing and elicitation. Integrating the different
views of system goals provides an early oppor-
tunity for identifying and resolving conflicts
[Robinson 89]. Subsequent refinement links ra-
tionale to specific system requirements. This sup-
ports two-way traceability and communication as
goals or requirements evolve.
A relatively complete approach to requirements
based on goals is the KAOS method by

22

Lamsweerde et al [Lamsweerde 09]. This work
integrates goal-based elicitation with formal mod-
eling and analysis. A formal language and tool
support reasoning and the automated analysis of
some completeness and consistency properties.
Related publications include case studies of indus-
trial experience (e.g., [Winter 01]). A good over-
view of goal-oriented requirements and set of ref-
erences is given in [Lamsweerde 01].

7.4 “Agile” methods
Much recent attention has been given to a set of
development approaches that their authors charac-
terize as “agile,” for example, extreme program-
ming [Beck 04], scrum [Rising 02], or the Agile
Unified Process [Ambler 02]. While there are dif-
ferences among agile methods, they share a code-
centered view of development – the view that the
development effort should focus on the implemen-
tation rather than documentation (see the “agile
manifesto3“).
The emphasis on code at the expense of documen-
tation particularly pertains to the software re-
quirements. Requirements documentation ranges
from small amounts of informal documentation to
using the code as the primary repository for all
requirements and design decisions. This more ex-
treme view is reflected in statements like: “The
urge to write requirements documentation should
be transformed into an urge to instead collaborate
closely with your stakeholders and then create
working software based on what they tell you4.”
It should be clear that the software engineering
philosophy behind these methods is at odds with
what we have characterized as a “disciplined ap-
proach.” To understand why this difference arises,
it is necessary to examine the differences in meth-
odological goals and the underlying assumptions
the different approaches make about software de-
velopment. By understanding the extent to which
each approach’s assumptions do or do not hold,
the reader has a basis for choosing the approach
best fitting a particular development situation.
Agile approaches seek address the essential diffi-
culties of comprehension, communication, and
control by shortening the development cycle and

3 http://agilemanifesto.org/
4http://www.agilemodeling.com/essays/agileRequireme
ntsBestPractices.htm

bringing key stakeholders into the development
loop. Many of the difficulties of traditional devel-
opment processes (i.e., “waterfall” and its varia-
tions) arise from the temporal distance between
project conceptualization and the delivery of any
working software. In big projects, it may be
months, or even years, between the time stake-
holders begin describing their requirements and
the time the developers can show them software
that presumes to meet those requirements.
Because stakeholders typically do not know exact-
ly what they want until they see it, this is often the
point at which developers find out that what they
have built is, in part or whole, not acceptable to
the stakeholders. Because all of the work of de-
sign and implementation has been founded on in-
correct requirements, fixing these errors is diffi-
cult and expensive. The result is a system that
costs more than it should and delivers less than
the stakeholders want.
Many of these problems can be avoided if it is
possible to drastically shorten the development
cycle. For agile methods, this cycle time is on the
order of two to four weeks rather than months.
Instead of eliciting all of the customer’s require-
ments, the goal is to capture a small number of the
most important ones (typically two or three). This
small subset of requirements is then taken to code
and validated with the customer. This cycle re-
peats until the customer is satisfied with the prod-
uct. Little, if any, documentation is created or
maintained. Rather, the code is the primary re-
pository of the evolving set of requirements and
design decisions.
With a short cycle time, the customer very quickly
sees the expression of his requirements in the
(partial) software. Errors and misunderstandings
can be detected and corrected each cycle. Where
errors occur, relatively little effort has been ex-
pended and the amount of rework may be limited
to the length of the increment. Continuous com-
munication between developers and the customer
reduces the opportunity for misunderstanding.
Because the developers are constantly integrating
new requirements, requirements changes are ad-
dressed in the normal course of iterative develop-
ment.
However, these benefits come at a substantial
cost. Since only a small number of requirements
can be considered at any time, there is no oppor-
tunity to understand the relationship of require-

23

ments to long-term goals, relationships between
requirements, or the relationship between re-
quirements and system structure:

• Because requirements are not gathered or
considered in advance, it is not possible
for the designer to anticipate likely
changes. There is constant rework as new
requirements are added.

• Since only a very small subset of the re-
quirements is examined at any one time,
there is no mechanism to balance goals
and make tradeoffs. Nor is there an oppor-
tunity to detect conflicting requirements
before coding begins.

• Since the wide range of possible quality
requirements that are whole-system prop-
erties (e.g., performance, safety, reliabil-
ity, etc.) are not considered together, there
is no opportunity to develop an architec-
ture that balances such concerns. Similar-
ly, constant restructuring (refactoring)
makes it difficult to establish or maintain
architectural properties.

• Constant interaction with the stakeholders
is not just desirable, but essential. Without
constant feedback validating the devel-
opment, errors will accumulate over time,
obviating the benefits of rapid increments.

• Because nothing is written down, progress
depends on personnel who are intimately
familiarity with the code. There is no
mechanism to control the downstream ef-
fects of decisions on properties like main-
tainability or reusability.

Thus, realizing the benefits of agile methods de-
pends on certain assumptions being true of the
product, process, and people involved. It is a pro-
cess that acts as if the development has neither a
past nor a future, reacting only to immediate
needs. Clearly there are many kinds of systems
and development situations that are inconsistent
with these assumptions, to name a few:

• Where there is limited availability or
communication with stakeholders.

• Where stakeholders have conflicting
views and requirements.

• Where there are critical behavioral and
developmental properties that must be ad-

dressed by the architecture such as safety,
reliability, or performance.

• Where requirements are relatively stable
or predictable.

• Where there is a history of developing
similar systems or the current system is a
new version of a previous one.

• Where the development team is not co-
located and frequent, high-bandwidth
communication is not possible.

• Where the system is long lived and
maintenance is a key concern - and so on.

In essence, agile approaches make an implicit as-
sumption that the software requirements are rela-
tively independent. It cannot be otherwise. If there
are strong dependencies between requirements
then the order in which requirements are ad-
dressed and design decisions are made significant-
ly affects overall system properties including how
easily the software can be changed to address sub-
sequent requirements. These effects have been
well understood for decades (e.g., [Parnas 76]).
One obvious example is where requirements from
different users conflict. Taking such requirements
in arbitrary order (as opposed to considering them
together) will result in an implementation that first
meets one stakeholder’s needs, then the other’s,
but never both.
It follows that there can be only limited circum-
stances in which the benefits of agile methods
outweigh the costs and risks. The notion that most
development efforts can abandon a disciplined
approach to requirements in favor of coding is not
supportable. Unfortunately, many proponents of
these methods do not make the underlying as-
sumptions clear nor provide a balanced discussion
of the limitations. Leaving this as an exercise for
the reader may be good salesmanship but is poor
software engineering. A somewhat more even-
handed view can be found in [Boehm 02]. A more
critical view that encompasses some of the issues
of agile methods and XP is given in [Stephens
01].

7.5 Software product-lines
A view of development that spans multiple prod-
uct cycles is that of software product-lines. Brief-
ly, a software product line is a family of systems
that share a significant number of common re-

24

quirements, and are produced from a common set
of reusable software assets. The reusable assets
typically include a common software architecture,
reusable, adaptable code modules, test cases, doc-
umentation, and so on.
Conventional software processes follow a
“craftsman” production model – i.e., skilled indi-
viduals build each system by hand. Product-line
development is more analogous to a manufactur-
ing model where one builds a factory, then uses
the factory to produce products. Software product
lines are constructed by first creating a set of re-
usable assets, tools for deploying the assets (e.g.,
code generators), and a process for using the as-
sets to produce members of the product line.
Software systems are then created from the com-
mon assets.
Where applicable, software product-line ap-
proaches have been shown to significantly in-
crease productivity (by as much as an order of
magnitude), while decreasing cycle time and im-
proving quality. Since code can be quickly created
from reusable assets and validated with the cus-
tomer, it provides the benefits of a rapid cycle
time.
The approach, however, is applicable only where
an organization is developing a number of reason-
ably similar systems. Refreshingly, the proponents
of product-line approaches are careful not only to
state the underlying assumptions (e.g., [Weiss
99]), but also to provide specific methods for as-
sessing the costs and risks of applying a product-
line approach to any particular application (also
[Clements 01], [Pohl 05]).
The relevance of software product-lines to this
discussion is that product line processes exemplify
a disciplined approach to requirements that spans
multiple software life cycles. Software product-
lines work by amortizing the larger up-front de-
velopment costs of the common asset base over
the delivery of a number of similar software prod-
ucts. To create a reusable architecture and set of
assets, the developers must understand not only
the requirements for the next software system, but
how those requirements are likely to vary over
future instances of the product-line. In particular,
which requirements should be the same across all
members of the product-line (called commonali-
ties) and which requirements are allowed to differ
(called variabilities).

This entails understanding both the current busi-
ness objectives and how those objectives are like-
ly to change over time. It also requires an under-
standing of the relationship of the requirements to
the architecture, and how architectural design de-
cisions will affect the future ability to build differ-
ent versions of the product-line.
A variety of approaches to product-line require-
ments have been proposed and used. A significant
difference from other requirements approaches
has been a substantial body of work focusing on
identifying and managing variabilities and the
relationships between them (e.g., [Svahnber 05],
[Pohl 05]). These works provide useful insight
into disciplined approaches to managing require-
ments across multiple products and development
cycles.

7.5 Practical Formal Methods
Like so many of the promising technologies in
requirements, the application of formal methods is
characterized by an essential dilemma. On one
hand, formal specification techniques hold out the
only real hope for producing specifications that
are precise, unambiguous, and demonstrably
complete or consistent. On the other, industrial
practitioners widely view formal methods as im-
practical. Difficulty of use, inability to scale,
readability, and cost are among the reasons cited.
Thus, in spite of significant technical progress and
a growing body of literature, the pace of adoption
by industry has been extremely slow.
In spite of the technical and technology-transfer
difficulties, increased formality is necessary. Only
by placing behavioral specification on a mathe-
matical basis will we be able to acquire sufficient
intellectual control to develop complex systems
with any assurance that they satisfy their intended
purpose and provide necessary properties like
safety. While it is not necessary to apply formal
methods to al systems, or even all parts of critical
systems, they are needed where it is necessary to
establish correctness of the essential parts of criti-
cal systems (e.g., safety critical aspects). The so-
lution is better formal methods - methods that are
practical given the time, cost, and personnel con-
straints of industrial development.
Engineering models and the training to use them
are de rigueur in every other discipline that builds
large, complex, or safety–critical systems. Build-

25

ers of a bridge or skyscraper who did not employ
proven methods or mathematical models to pre-
dict reliability and safety would be held criminally
negligent in the event of failure. It is only the rela-
tive youth of the software discipline that permits
us to get away with less. But, we cannot expect
great progress overnight. As Jackson [Jackson 94]
notes, the field is sufficiently immature that “the
prerequisites for a more mathematical approach
are not in place.” Further, many of those practic-
ing our craft lack the background required of li-
censed engineers in other disciplines [Parnas 89].
Nonetheless, sufficient work has been done to
show that more formal approaches are practical
and effective in industry. The Naval Research La-
boratory’s (NRL) Software Cost Reduction (SCR)
method and tools exemplify such an approach.
The Software Cost Reduction (SCR) Method:
Where most of the techniques thus far discussed
focus on problem analysis, the requirements work
at the United States Naval Research Laboratory
focused equally on issues of developing a good
SRS [Heninger 80]. As part of an overall effort in
validating software engineering methodologies the
SCR project has developed rigorous approaches to
requirements specification and documentation
based on an underlying formal model.
The SCR approach uses formal, mathematically
based specifications of acceptable system outputs
to support development of a specification that is
unambiguous, precise, and verifiable. It also pro-
vides techniques for checking a specification for a
variety of completeness and consistency proper-
ties. The SCR approach introduced principles and
techniques to support our SRS packaging goals
including the principle of separation of concerns
to aid readability and support ease of change. It
includes the use of a standard structure for an SRS
specification and the use of tabular specifications
that improve readability, modifiability, and facili-
tate use of the specification for reference and re-
view.
While other requirements approaches have stated
similar objectives, the SCR project is unique in
having applied software engineering principles to
develop a standard SRS organization, a specifica-
tion method, review method [Parnas 85a], and
notations consistent with those principles. The
SCR project is also unique in making publicly
available a complete, model SRS of a significant
system [Alspaugh 92].

More recently, NRL has extended the SCR work
to provide a suite of supporting tools. Since the
approach is based on a formal model, the tools not
only assist the developer in creating well-formed
specification, the tools provide automated check-
ing for the specification’s completeness and con-
sistency ([Heitmeyer 95a], [Heitmeyer 95b]).
Likewise, the model can be used to support auto-
mated proofs of semantic properties like system
safety properties [Heitmeyer 98] or fault tolerance
[Jeffords 09]. The work has also shown some of
the promise of formal methods in supported au-
tomated test case generation [Gargantini 99] and
even code generation [Rothamel 06].
While the SCR requirements approach is reasona-
bly general, many of the specification techniques
and models are targeted to real–time, embedded
applications. More work needs to be done toward
providing the benefits of practical formal methods
to other types of systems.

8. Trends and Emerging Technology
There has been increasing agreement on the un-
derlying problems in requirements as well as on
the general characteristics of an effective require-
ments process. However, the overall trend has not
been toward a common methodology, but toward
a broadening of the concerns addressed and a pro-
liferation of approaches.
These trends in requirements reflect more general
trends in software engineering and software tech-
nology. As discussed in the section on processes,
early life cycle models tended to treat the concep-
tually distinct activities of software development
like requirements, design, and coding, as relative-
ly independent phases. This reflected a desire to
divide the development process into activities that
addressed distinct concerns, with well-defined
inputs and outputs.
With increasing application complexity and diver-
sity of users, this paradigm has changed. More
recent process models tend to reflect the view that
the activities of the software life cycle are heavily
interdependent and necessarily interleaved in
time. Thus, for example, requirements activities
may persist, if with diminishing effort, until the
customer accepts the product. Where the software
is developed in several versions, or part of a soft-
ware product line, some requirements activities

26

may continue across multiple delivery cycles
([Clements 01], [Faulk 01]).
At the same time, software has become increas-
ingly ubiquitous. The types of applications along
with the number and kinds of stakeholders have
grown almost as fast as the size and complexity of
the systems we build. One result has been an in-
creasing diversity of development contexts and
kinds of stakeholders.
Requirements research and practice have followed
suit in broadening the scope of requirements ac-
tivities and the diversity of methods. Thus, for
example, we have seen new elicitation methods
emerge to address different contexts and stake-
holders. Likewise, requirements activities have
been extended to encompass an organization’s
long-term goals and, in the case of software prod-
uct lines, multiple developments or development
cycles. We see these trends continuing in several
areas of research and development:
Domain specificity: Requirements methods will
provide improved support for understanding,
specification, analysis, and usefulness by being
tailored or created to address particular classes of
problems.
Historically requirements approaches have been
advanced as being equally useful to a wide variety
of types of applications. For example, structured
analysis methods based on conceptual models that
were intended to be “universally applicable” (e.g.,
[Ross 77]); similar claims have been made for
object-oriented approaches and notations like
UML (e.g., [OMG 05]).
Such generality comes at the expense of ease of
use and amount of work the analyst must do for
any particular application. Where the underlying
models have been tailored to a particular class of
applications, the properties common to the class
can be embedded in the model. The amount of
work necessary to adapt the model to a specific
instance of the class is relatively small. The more
general the model, the more decisions that must
be made, the more information that must be pro-
vided, and the more tailoring that must be done.
This provides increased room for error and, since
each analyst will approach the problem different-
ly, makes solutions difficult to standardize. In par-
ticular, such generality precludes standardization
of sufficiently rigorous models to support algo-

rithmic analysis of properties like completeness
and consistency.
Jackson [94] has expressed similar points. He
points out that some of the characteristics separat-
ing real engineering disciplines from what is eu-
phemistically described as “software engineering”
are well understood procedures, mathematical
models, and standard designs specific to narrow
classes of applications. Jackson points out the
need for software methods based on the conceptu-
al structures and mathematical models of behavior
inherent in a given problem domain (e.g., publica-
tion, command and control, accounting, and so
on). Such common underlying constructs can pro-
vide the engineer guidance in developing the
specification for a particular system.
This trend is currently reflected in the prolifera-
tion of elicitation methods and models targeted to
different development contexts. It is also evi-
denced in the trend toward tailoring the overall
requirements processes [Young 06] to address the
specific concerns of a project or organization. The
trend toward better integration of requirements
processes with business processes (e.g., [Middle-
ton 05]) will also further the trend toward domain
specificity to meet the needs of specific business
areas.
 Currently lacking are domain specific approaches
that encompass the artifacts, activities and roles
comprising the entire requirements process. Some
earlier work (e.g., [Prieto-Diaz 94], [Lam 97])
explored the potential of requirements reuse using
domain specific methods. Likewise, both product-
line approaches and methods based on domain
specific modeling necessarily incorporate aspects
of domain-specific requirements. For example, the
use of the Embedded System Modeling Language
(ESML) [Balasubramanian 07] on a family of
embedded avionics applications [Karsai 02].
However, developing new requirements languages
and semantics for specific domains remains a la-
bor-intensive task. Progress in this area should see
improved tool support (see the subsequent section
on meta-engineering), new methods for modeling
requirements in specific domains, and better guid-
ance in adapting components to provide integrated
processes.
Distributed Development: Another way in which
the requirements problem has broadened (in a lit-
eral as well as figurative sense) is in the trend to-

27

ward distributed development. We use the term
“distributed development” to denote software pro-
jects where development teams and activities are
located in multiple geographic sites around the
globe, particularly where sites are separated by
time zones, cultures, and languages. While the
early focus of globalization was on reduced cost,
factors like increased access to talent and proximi-
ty to markets have continued to push the trend
forward.
Distributed development has proven to have its
own set of costs and risks, often requiring more
effort and taking much longer than similar co-
located projects [Mockus 01]. A key reason is the
difficulty in achieving a common understanding
of the requirements. In a cross-domain survey of
industrial distributed developments, issues with
misinterpreted, changing, and missing require-
ments ranked as the top three sources of error
above all other development issues [Komi 05].
Experience suggests that distributed development
is different from co-located projects (e.g., [Battin
01], Bradner 02]). These differences are manifes-
tations of what Herbsleb characterizes as the key
problem of distributed development, coordination
at a distance [Herbsleb 07]. “Coordination,” here,
denotes the need to manage dependencies between
people, tasks, and artifacts in a complex software
development. In turn, difficulties in coordination
are largely the result of difficulties in communi-
cating effectively at a distance [Olson 2000], par-
ticularly where there are cultural, language, and
organizational differences.
These differences suggest that new methods,
models, and processes will be needed to manage
requirements in distributed developments [Dami-
an 07]. These will include new work in areas like
cross-cultural requirements elicitation and com-
munication. Likewise, new process models are
needed for managing requirements elicitation,
allocation, verification, and validation in a distrib-
uted project.
Personalization, Monitoring, and Adaptation: The
trend toward broadening the scope of require-
ments engineering is evidenced in the areas of
requirements personalization [Sutcliffe 06], re-
quirements monitoring (e.g., [Fickas 95]), and
real-time adaptation (e.g., [Robinson 05]). While
these are three distinct areas of requirements re-
search, they share a common concern for software

contextualization: adapting software to a particu-
lar context such as user characteristics, the real-
time environment, or the specific task.
Contextualization extends the issues around
changing requirements to a personal and real-time
level. Personalized software is software that is
produced to meet the requirements of small
groups or even individuals. This can include soft-
ware that is individually customized, software that
the user can customize, or software that config-
ures itself based on user preferences. Real-time
adaptation is customization in response to changes
over time. For example, software that changes
behavior as the system moves through space (e.g.,
on a cell phone) or software that changes behavior
depending on the time of day. Where the software
itself does the adaptation, it must monitor parame-
ters relating to the requirements (e.g., time of day
or location) and change behavior accordingly.
While, historically, there have been many ap-
proaches to software customization and even per-
sonalization5, these have not been systematically
addressed as a type of requirements variation. On-
ly recently have researchers begun to look at sys-
tematic approaches to understanding and manag-
ing contextual requirements.
Basically, contextualization embraces cases where
requirements remain fluid even at run time. While
we may continue to make tradeoffs between dif-
ferent stakeholder’s requirements, we may also
view the system as implementing more than one
set of requirements at a time, switching between
them depending on the context of use.
As more and more personal devices include in-
creasingly powerful computing systems (or access
to networks), the trend toward personalization and
other forms of contextualization will grow. There
is likewise a trend toward integrating the results of
several requirements areas to address various di-
mension of the contextualization problem.
Personal Contextual - Requirements Engineering
(PC-RE) [Sutcliff 06] addresses the issue that user
goals tend to change with context. As the user
moves through time and space, objectives and,
hence, requirements change. PC-RE proposes a
framework for relating changing goals, require-
ments, and modes of implementation.

5 The infamous Microsoft® “Clippy” being one.

28

Meta-Engineering: “Meta-engineering” refers to
the engineering of engineering practices. All en-
gineering disciplines include meta-engineering
practices. An obvious example is that manufactur-
ing necessarily includes processes for creating
processes that will be used in a factory design to
produce specific kinds of products.
Meta-engineering is an area in which software
engineering excels [Faulk 10]. While creating
“abstractions of abstractions” or designing “pro-
cesses to design process” may sound convoluted,
it is precisely these kinds of capabilities that allow
new methods, processes, and even tools to be cre-
ated and introduced into practice at a pace com-
mensurate with changing technology.
While not discussed in these terms, meta-
engineering capabilities underlie some of the ad-
vances we have discussed in this paper. In particu-
lar, the ability to systematically create or adapt
requirements processes to satisfy specific project
constraints (i.e., the process requirements) is a
meta-engineering activity. Likewise is the devel-
opment of new methodologies like agile or prod-
uct-line engineering.
Product-line engineering is a particularly instruc-
tive case since the product-line engineering pro-
cess, itself, embeds a meta-engineering process.
Whenever the domain engineers develop a set of
product-line assets, it is also necessary to create a
process for using those assets (common architec-
ture, libraries of adaptable modules, etc.) to create
any software product that is a member of the
product line. Thus, any complete product-line
process model includes a process for creating the
application engineering process. Of course, the
product-line process is itself a product of meta-
engineering.
Improved meta-engineering capabilities will be
necessary to much of the evolution of require-
ments practice. Facilitating the practice of defin-
ing new requirements processes for specific appli-
cation domains requires providing systematic pro-
cesses for producing new processes to satisfy spe-
cific developmental goals or constraints. Similar
capabilities will be needed for fitting elicitation
methods, modeling methods, and artifacts to spe-
cific needs.
The same argument can be made for tools. While
we have not seen meta-engineering tools targeted
specifically to requirements, meta-engineering

tools exist in other disciplines. For example, there
are already methods and “tool-building-tools”
supporting product-line engineering [Kelly 08].
Such tools aim to create tools supporting applica-
tion engineering based on a domain model. Output
of the tool is a code generator that takes a specifi-
cation of the requirements for member of the
product line and generates the application code.
The potential for creating meta-engineering tools
to support requirements modeling and analysis
provides substantial opportunity for fruitful re-
search.

9. Conclusions
Requirements are intrinsically hard to do well.
Beyond the need for discipline, there are a host of
essential difficulties that attend both the under-
standing of requirements and their specification.
Further, many of the difficulties in requirements
will not yield to technical solution alone. Address-
ing all of the essential difficulties requires the ap-
plication of technical solutions in the context of
human factors such as the ability to manage com-
plexity or communicate to diverse audiences. A
requirements approach that does not account for
both technical and human concerns can have only
limited success. For developers seeking new
methods, the lesson is caveat emptor. If someone
tells you his method makes requirements easy,
keep a hand on your wallet.
Nevertheless, difficulty is not impossibility and
the inability to achieve perfection is not an excuse
for surrender. While all of the approaches dis-
cussed have significant weaknesses, they all con-
tribute to the attempt to make requirements analy-
sis and specification a controlled, systematic, and
effective process. Though there is no easy path,
experience confirms that the use of any careful
and systematic approach is preferable to an ad hoc
and chaotic one. Further good news is that, if the
requirements are done well, chances are much
improved that the rest of the development will
also go well. Unfortunately, ad hoc approaches
remain the norm in much of the software industry.
A final observation is that the benefits of good
requirements come at a cost. Such a difficult and
exacting task cannot be done properly by person-
nel with inadequate experience, training, or re-
sources. Providing the time and the means to do
the job right is the task of responsible manage-

29

ment. The time to commit the best and brightest is
before, not after, disaster occurs. The monumental
failures of a host of ambitious developments bear
witness to the folly of doing otherwise.

10. Further Reading
Those seeking more depth on requirements meth-
odologies than this tutorial can provide have ac-
cess to a number of good texts on software re-
quirements. Berenbach, et al [Berenbach 09] fo-
cuses on practical approaches with depth in elici-
tation and quality attribute requirements. Weigers
[Weigers 03] provides broad coverage with em-
phasis on the voice of the customer and require-
ments management. Young [Young 06] addresses
effective practices and the role of a requirements
plan. Middleton and Sutton [Middleton 05] pro-
vide a business-oriented approach driven by cus-
tomer value.
Acknowledgements
The quality of this paper has been much improved
thanks to thoughtful reviews by Merlin Dorfman
and Richard Thayer. Paul Clements, Connie
Heitmeyer, Jim Kirby, Bruce Labaw, Richard
Morrison, and David Weiss provided helpful re-
views of the first version.
	

REFERENCES	

[Alford	 79]	 M.	 Alford	 and	 J.	 Lawson,	 Software	
Requirements	 Engineering	 Methodology	 (De-‐
velopment),	 RADC–TR–79–168,	 U.S.	 Air	 Force	
Rome	 Air	 Development	 Center,	 Jun.	 1979.	

[Alspaugh	 92]	 T.	 Alspaugh,	 S.	 Faulk,	 K.	 Britton,	
R.	 Parker,	 D.	 Parnas,	 and	 J.	 Shore,	 Software	 Re-‐
quirements	 for	 the	 A–7E	 Aircraft,	
NRL/FR/5530–92–9194.	 Washington,	 D.C.:	
Naval	 Research	 Laboratory,	 1992.	

[Ambler	 02]	 S.	 Ambler	 and	 R.	 Jeffries,	 Agile	
Modeling:	 Effective	 Practices	 for	 Extreme	 Pro-‐
gramming	 and	 the	 Unified	 Process,	 Wiley,	 Bos-‐
ton,	 Mar.	 2002.	

[Balasubramanian	 07]	 K.	 Balasubramanian,	 J.	
Balasubramanian,	 J.	 Parsons,	 A.	 Gokhale,	 D..	
Schmidt,	 A	 Platform-‐Independent	 Component	
Modeling	 Language	 for	 Distributed	 Real-‐time	

and	 Embedded	 Systems,	 Journal	 of	 Computer	
and	 System	 Sciences,	 73	 (2),	 Mar.	 2007,	 171-‐
185	

[Bahill	 05]	 A.	 Bahill	 and	 S.	 Henderson,	 Re-‐
quirements	 development,	 verification,	 and	 val-‐
idation	 exhibited	 in	 famous	 failures,	 Systems	
Engineering,	 8	 	 (2),	 2005,	 1–14.	

[Bass	 03]	 L.	 Bass,	 P.	 Clements,	 and	 R.	 Kazman,	
Software	 Architecture	 in	 Practice	 (Second	 Edi-‐
tion),	 Addison-‐Wesley,	 New	 York,	 2003.	

[Battin	 01]	 R.	 Battin,	 Crocker,	 R.,	 and	 Kreidler,	 J.	
Leveraging	 resources	 in	 global	 software	 devel-‐
opment,	 IEEE	 Software,	 18	 (2),	 2001,	 70-‐77.	

[Beck	 04]	 K.	 Beck	 and	 Andres,	 C.,	 Extreme	 Pro-‐
gramming	 Explained:	 Embrace	 Change	 (2nd	
Edition).	 Addison-‐Wesley	 Professional,	 Nov.	
2004.	

[Berenbach	 09]	 B.	 Berenbach,	 D.	 Paulish,	 J.	
Kazmeier	 and	 A.	 Rudorfer,	 Software	 &	 Systems	
Requirements	 Engineering	 in	 Practice,	 McGraw-‐
Hill,	 2009.	

[Boehm	 81]	 B.	 Boehm,	 Software	 Engineering	
Economics,	 Prentice	 Hall,	 New	 Jersey,	 1981.	

[Boehm	 88]	 B.	 Boehm	 and	 C.	 Papaccio,	 Under-‐
standing	 and	 Controlling	 Software	 Costs,	 IEEE	
Transactions	 of	 Software	 Engineering,	 Oct.	
1988.	

[Boehm	 94]	 B.	 Boehm,	 P.	 Bose,	 E.	 Horowitz,	
and	 M.	 Lee,	 Software	 Requirements	 as	 Negoti-‐
ated	 Win	 Conditions,	 in	 Proceedings	 of	 the	 First	
International	 Conference	 on	 Requirements	 En-‐
gineering,	 Colorado	 Springs,	 Colorado,	 Apr.	 18-‐
22,	 1994,	 74-‐83.	

[Boehm	 02]	 B.	 Boehm,	 and	 T.	 DeMarco,	 The	
Agile	 Methods	 Fray,	 IEEE	 Computer,	 Jun.	 2002,	
90-‐92.	

[Bradner	 02]	 E.	 Bradner,	 and	 Mark,	 G.,	 Why	
distance	 matters:	 effects	 on	 cooperation,	 per-‐
suasion	 and	 deception.	 Proceedings	 of	 the	 2002	
ACM	 conference	 on	 Computer	 Supported	 Coop-‐
erative	 Work.	 New	 Orleans,	 2002,	 226	 -‐	 235.	

30

[Brooks	 95]	 F.	 Brooks,	 The	 Mythical	 Man–
Month:	 Essays	 on	 Software	 Engineering,	 2nd	 Edi-‐
tion,	 Addison–Wesley,	 1995.	 	

[Brooks	 87]	 F.	 Brooks,	 No	 Silver	 Bullet:	 Essence	
and	 Accidents	 of	 Software	 Engineering,	 IEEE	
Computer,	 Apr.	 1987,	 	 10-‐19.	

[Clements	 01]	 P.	 Clements	 and	 Northrop,	 L.,	
Software	 Product	 Lines:	 Practices	 and	 Patterns,	
3rd	 ed.	 	 	 	 Addison-‐Wesley	 Professional,	 Aug.	
2001.	

[Cockburn	 00]	 A.	 Cockburn,	 Writing	 Effective	
Use	 Cases,	 Reading,	 MA:	 Addison-‐Wesley,	 2000.	

[Damian	 07]	 D.	 	 Damian,	 Stakeholders	 in	 global	
requirements	 engineering:	 Lessons	 learned	
from	 practice,	 IEEE	 Software,	 2007,	 21-‐27.	

[Davis	 88]	 A.	 Davis,	 A	 Taxonomy	 for	 the	 Early	
Stages	 of	 the	 Software	 Development	 Life	 Cycle,	
Journal	 of	 Systems	 and	 Software,	 Sep.	 1988,	 	
297-‐311.	

[Davis	 93]	 A.	 Davis,	 Software	 Requirements	 (Re-‐
vised):	 Objects,	 Functions,	 and	 States,	 Prentice	
Hall,	 New	 Jersey,	 1993.	

[DeMarco	 78]	 T.	 DeMarco,	 Structured	 Analysis	
and	 System	 Specification,	 Prentice	 Hall,	 New	
Jersey,	 1978.	

[Dorfman	 90]	 M.	 Dorfman	 and	 R.	 Thayer,	 eds,	
Standards,	 Guidelines,	 and	 Examples	 on	 System	
and	 Software	 Requirements	 Engineering,	 IEEE	
Computer	 Society	 Press,	 Los	 Alamitos,	 Califor-‐
nia,	 1990.	

[Fairley	 97]	 R.	 Fairley	 and	 R.	 Thayer,	 The	 Con-‐
cept	 of	 Operations	 Document:	 The	 Bridge	 from	
Operational	 Requirements	 to	 Technical	 Specifi-‐
cations,	 in	 Software	 Engineering,	 R.H.	 Thayer	
and	 M.	 Dorfman	 (eds.),	 IEEE	 Computer	 Society	
Press,	 1997.	

[Faulk	 92]	 S.	 Faulk,	 J.	 Brackett,	 P.	 Ward,	 and	 J.	
Kirby,	 Jr.,	 The	 Core	 Method	 for	 Real–Time	 Re-‐
quirements,	 IEEE	 Software,	 Vol.	 9,	 No.	 5,	 Sep.	
1992.	

[Faulk	 93]	 S.	 Faulk,	 L.	 Finneran,	 J.	 Kirby	 Jr.,	 and	
A.	 Moini,	 Consortium	 Requirements	 Engineering	
Guidebook,	 Version	 1.0,	 SPC–92060–CMC,	
Software	 Productivity	 Consortium,	 Herndon,	
Virginia,	 1993.	

[Faulk	 01]	 S.	 Faulk,	 Product-‐Line	 Requirements	
Specification	 (PRS):	 an	 Approach	 and	 Case	
Study,	 Proceedings,	 Fifth	 IEEE	 International	
Symposium	 on	 Requirements	 Engineering,	 To-‐
ronto,	 Canada,	 Aug.	 27-‐31,	 2001,	 48-‐55.	

[Faulk	 10]	 S.	 Faulk	 and	 M.	 Young,	 Sharing	 What	
We	 Know	 About	 Software	 Engineering,	 Pro-‐
ceedings:	 Foundations	 of	 Software	 Engineering,	
FOSER	 10,	 Santa	 Fe,	 NM,	 Nov.	 2010.	

[Fickas	 95]	 S.	 Fickas	 and	 M.	 Feather,	 Require-‐
ments	 Monitoring	 in	 Dynamic	 Environments,	
Proceedings,	 Second	 IEEE	 International	 Sympo-‐
sium	 on	 Requirements	 Engineering,	 York,	 Eng-‐
land,	 Mar.	 1995,	 140-‐150.	

	 [GAO	 79]	 U.S.	 General	 Accounting	 Office,	 Con-‐
tracting	 for	 Computer	 Software	 Development-‐
Serious	 Problems	 Require	 Management	 Atten-‐
tion	 to	 Avoid	 Wasting	 Additional	 Millions,	 Re-‐
port	 FGMSD–80–4,	 Nov.	 1979.	

[GAO	 92]	 U.S.	 General	 Accounting	 Office,	 Mis-‐
sion	 Critical	 Systems:	 Defense	 Attempting	 to	 Ad-‐
dress	 Major	 Software	 Challenges,	 GAO/IMTEC–
93–13,	 Dec.	 1992.	

[GAO	 08]	 U.S.	 General	 Accounting	 Office,	 Signif-‐
icant	 Problems	 of	 Critical	 Automation	 Program	
Contribute	 to	 Risks	 Facing	 2010	 Census,	 GAO-‐
08-‐550T,	 Mar.,	 2008.	

[GAO	 10]	 U.S.	 General	 Accounting	 Office,	 De-‐
fense	 Acquisitions:	 Assessments	 of	 Selected	
Weapon	 Programs,	 GAO-‐10-‐388SP,	 Mar.	 2010.	

[Gargantini	 99]	 A.	 Gargantini	 and	 C.	 Heitmeyer,	
Using	 Model	 Checking	 to	 Generate	 Tests	 from	
Requirements	 Specifications,	 Proc.,	 Joint	 7th	
European	 Software	 Engineering	 Conf.	 and	 7th	
ACM	 SIGSOFT	 Intern.	 Symp.	 on	 Foundations	 of	
Software	 Eng.	 (ESEC/FSE99),	 Toulouse,	 FR,	
Sept.	 6-‐10,	 1999.	

31

[Gause	 89]	 D.	 Gause	 and	 G.	 Weinberg,	 Exploring	
Requirements:	 Quality	 before	 Design,	 Dorset	
House,	 1989.	

[Gane	 79]	 C.	 Gane	 and	 T.	 Sarson,	 Structured	 Sys-‐
tems	 Analysis,	 Prentice	 Hall,	 New	 Jersey,	 1979.	

[Heitmeyer	 95a]	 C.	 Heitmeyer,	 B.	 Labaw,	 and	 D.	
Kiskis,	 Consistency	 Checking	 of	 SCR–Style	 Re-‐
quirements	 Specifications,	 in	 Proceedings,	 IEEE	
International	 Symposium	 on	 Requirements	 En-‐
gineering,	 Mar.	 1995.	

[Heitmeyer	 95b]	 C.	 Heitmeyer,	 R.	 Jeffords,	 and	
B.	 Labaw.	 Tools	 for	 Analyzing	 SCR–Style	 Re-‐
quirements	 Specifications:	 A	 Formal	 Founda-‐
tion,	 NRL	 Technical	 Report	 NRL-‐7499,	 U.S.	 Na-‐
val	 Research	 Laboratory,	 Washington,	 DC,	
1995.	

[Heitmeyer	 98]	 C.	 Heitmeyer,	 J.	 Kirby,	 B.	
Labaw,	 M.	 Archer,	 and	 R.	 Bharadwaj,	 Using	 Ab-‐
straction	 and	 Model	 Checking	 to	 Detect	 Safety	
Violations	 in	 Requirements	 Specifications,	 IEEE	
Transactions	 on	 Software	 Engineering,	 24,	 (11),	
November	 1998.	

[Heninger	 80]	 K.	 Heninger,	 Specifying	 Software	
Requirements	 for	 Complex	 Systems:	 New	
Techniques	 and	 Their	 Application,	 IEEE	 Trans-‐
actions	 on	 Software	 Engineering,	 6	 (1),	 Jan.	
1980.	

[Herbsleb	 07]	 J.	 	 Herbsleb,	 Global	 software	
engineering:	 The	 future	 of	 socio-‐technical	
coordination,	 International	 Conference	 on	
Software	 Engineering	 2007	 Future	 of	 Software	
Engineering,	 IEEE	 Computer	 Society,	 2007,	
188-‐198.	

[Hester	 81]	 S.	 Hester,	 D.	 Parnas,	 and	 D.	 Utter,	
Using	 Documentation	 as	 a	 Software	 Design	
Medium,	 Bell	 System	 Technical	 Journal,	 60	 (8),	
Oct.	 1981,	 1941-‐1977.	

[Jackson	 94]	 M.	 Jackson,	 Problems,	 Methods,	
and	 Specialization,	 IEEE	 Software,	 Nov.	 1994,	 	
57-‐62.	

[Jacobsen	 92]	 I.	 Jacobson,	 Christerson,	 M.,	 Jons-‐
son,	 P.,	 and	 Övergaard,	 G.,	 Object-‐Oriented	 Soft-‐

ware	 Engineering:	 A	 Use	 Case	 Driven	 Approach,	
Reading,	 MA:	 Addison-‐Wesley,	 1992.	

[Jeffords	 09]	 R.	 Jeffords,	 C.	 Heitmeyer,	 M.	 Arch-‐
er,	 and	 E.	 Leonard,	 A	 Formal	 Method	 for	 Devel-‐
oping	 Provably	 Correct	 Fault-‐Tolerant	 Systems	
Using	 Partial	 Refinement	 and	 Composition,	
Proceedings,	 Formal	 Methods,	 Second	 World	
Congress	 (FM	 2009),	 Eindhoven,	 The	 Nether-‐
lands,	 November	 2-‐6,	 2009.	 173-‐189.	

[Karsai	 02]	 G.	 Karsai,	 	 S.	 	 Neema,	 B.	 	 	 Abbott,	
and	 D.	 Sharp,	 A	 modeling	 language	 and	 its	 sup-‐
porting	 tools	 for	 avionics	 systems,	 Proceedings	
of	 the	 21st	 Digital	 Avionics	 Systems	 Conference,	
Oct.	 2002,	 6A3	 1-‐13.	

[Kelly	 08]	 S.	 Kelly	 and	 Juha-‐Pekka	 Tolvanen,	
Domain-‐Specific	 Modeling:	 Enabling	 Full	 Code	
Generation,	 Wiley-‐IEEE	 Computer	 Society	
Press,	 Mar.	 2008.	

[Komi	 05]	 S.	 Komi-‐Sirvio	 and	 M.	 Tihinen,	 Les-‐
sons	 learned	 by	 participants	 of	 distributed	
software	 development.	 Knowledge	 and	 Process	
Management,	 2005,	 108-‐122.	

[Kruchten	 99]	 P.	 Kruchten,	 The	 Rational	 Unified	
Process:	 An	 Introduction,	 Reading,	 MA:	 Addi-‐
son-‐Wesley,	 1999.	

[Lam	 97]	 W.	 Lam,	 Achieving	 Requirements	 Re-‐
use:	 A	 Domain	 Specific	 Approach	 from	 Avion-‐
ics,	 Journal	 of	 Systems	 and	 Software,	 38	 (3],	
Sept.	 1997,	 197-‐209.	

[Lamsweerde	 98]	 A.	 van	 Lamsweerde,	 R.	 Dari-‐
mont	 and	 E.	 Letier,	 Managing	 Conflicts	 in	 Goal-‐
Driven	 Requirements	 Engineering,	 IEEE	 Trans.	
on	 Software.	 Engineering,	 Nov.	 1998.	

[Lamsweerde	 09	 A.	 	 van	 Lamsweerde,	 Re-‐
quirements	 Engineering:	 From	 System	 Goals	 to	
UML	 Models	 to	 Software	 Specifications,	 	 Wiley,	
Mar.	 2009.	

[Lauesen	 02]	 S.	 Lauesen,	 Software	 Require-‐
ments:	 Styles	 and	 Techniques,	 Addison-‐Wesley	
Professional,	 London,	 2002.	

[Lee	 99]	 J.	 Leand	 and	 N.	 Xue,	 Analyzing	 User	
Requirements	 by	 Use	 Cases:	 A	 Goal-‐Driven	 Ap-‐

32

proach,	 IEEE	 Software,	 16	 (4):	 Jul/Aug.,	 1999,	
92-‐101.	

[Lutz	 93]	 R. Lutz, Analyzing Software Require-
ments Errors in Safety–Critical Embedded Sys-
tems, Proceedings, IEEE International Symposi-
um on Requirements Engineering, Jan. 4-6, 1993,
126-133.

[Middleton 05] P. Middleton and J. Sutton, Lean
Software Strategies: Proven Techniques for Man-
agers and Developers, Productivity Press, NY,
2005.

[Mockus	 01]	 A.	 Mockus	 and	 J.	 Herbsleb,	 Chal-‐
lenges	 of	 global	 software	 development,	 Pro-‐
ceedings	 of	 the	 Seventh	 International	 Software	
Metrics	 Symposium,	 2001.	

[Nuseibeh	 00]	 B.	 Nuseibeh	 and	 S.	 Easterbrook.	
Requirements	 engineering:	 a	 roadmap.	 In	 ICSE	
’00:	 Proceedings	 of	 the	 Conference	 on	 The	 Future	
of	 Software	 Engineering,	 New	 York,	 NY,	 2000.	
ACM,	 35–46.	

[NASA	 05]	 S.	 Cavanaugh,	 A.	 Wilhite,	 Systems	
Engineering	 Cost/Risk	 Analysis	 Capability	
Roadmap	 Progress	 Review,	 Apr.	 6,	 2005.	

[Olson	 2000]	 G.	 Olson,	 and	 Olson,	 J..	 Distance	
matters,	 Human-‐Computer	 iIteraction,	 15	 (2),	
2000,	 139-‐178.	

[OMG	 05]	 Object	 Management	 Group,	
Introduction	 to	 OMG’s	 Unified	 Modeling	
Language	 (UML),	
http://www.omg.org/gettingstarted/what_is_u
ml.htm,	 2005	

	 [Parnas	 72]	 D.	 Parnas,	 On	 the	 Criteria	 to	 be	
Used	 in	 Decomposing	 Systems	 into	 Modules,	
Communications	 of	 the	 ACM,	 15	 (12),	 December	
1972,	 	 1053-‐1058.	

[Parnas	 76]	 D.Parnas,	 On	 the	 design	 and	 devel-‐
opment	 of	 program	 families.	 IEEE	 Transactions	
on	 Software	 Engineering,	 2	 (l,)	 Mar.	 1976,	 l-‐9.	

[Parnas	 85a]	 D.	 Parnas,	 and	 D.	 Weiss,	 Active	
Design	 Reviews:	 Principles	 and	 Practices,	 in	
Proceedings	 of	 the	 Eighth	 International	 Confer-‐

ence	 on	 software	 Engineering,	 London,	 England,	
Aug.	 1985.	

[Parnas	 86]	 D.	 Parnas,	 and	 P.	 Clements,	 A	 Ra-‐
tional	 Design	 Process:	 How	 and	 Why	 to	 Fake	 It,	
IEEE	 Transactions	 on	 Software	 Engineering,	 12	
(2),	 Feb.	 1986,	 	 251-‐257.	

[Parnas	 89]	 D.	 Parnas,	 Education	 for	 Computing	
Professionals,	 Technical	 Report	 89-‐247,	 De-‐
partment	 of	 Computing	 and	 Information	 Sci-‐
ence,	 Queens	 University,	 Kingston,	 Ontario,	
1989.	

[Parnas	 91]	 D.,	 Parnas	 and	 J.	 Madey,	 Functional	
Documentation	 for	 Computer	 Systems	 Engineer-‐
ing	 (Version	 2),	 CRL	 Report	 No.	 237,	 McMaster	
University,	 Hamilton,	 Ontario,	 Canada,	 Sept.	
1991.	

[Pohl	 05]	 K.	 Pohl,	 G.	 Böckle,	 and	 F.	 J.	 van	 der	
Linden,	 Software	 Product	 Line	 Engineering:	
Foundations,	 Principles	 and	 Techniques,	
1st	 ed.	 	 	 	 Springer,	 Sept.	 2005.	

[Prieto-‐Diaz	 97]	 R.	 Prieto-‐Diaz,	 M.	 Lubars,	 M.	
Carrio,	 DSSR:	 Support	 for	 Domain	 Specific	
Software	 Requirements,	 U.S.	 Army	 Communi-‐
cations-‐Electronics	 Command,	 Apr.	 1994.	

[Rising	 02]	 L.	 Rising	 and	 Janoff,	 N.	 S.,	 The	
Scrum	 software	 development	 process	 for	 small	
teams,	 Software,	 IEEE,	 17	 (4),	 pp.	 26-‐32,	 Aug.	
2002..	

[Robinson	 89]	 W.	 Robinson,	 Integrating	 Multi-‐
ple	 Specifications	 Using	 Domain	 Goals,	 Proceed-‐
ings,	 5th	 International	 Workshop	 on	 Software	
Specification	 and	 Design,	 IEEE,	 1989,	 219-‐225.	

[Robinson	 05]	 W.	 Robinson,	 Implementing	
Rule-‐based	 Monitors	 within	 a	 Framework	 for	
Continuous	 Requirements	 Monitoring,	 in	 Ha-‐
waii	 International	 Conference	 On	 System	 Scienc-‐
es	 (HICSS'05),	 Big	 Island,	 Hawaii,	 USA,	 2005.	

[Ross	 77]	 D.	 Ross	 and	 K.	 Schoman	 Jr.,	 Struc-‐
tured	 Analysis	 for	 Requirements	 Definitions,	
IEEE	 Transactions	 on	 Software	 Engineering,	 3	
(1),	 Jan.	 1977,	 6-‐15.	

33

[Rothamel	 06]	 T.	 Rothamel,	 C.	 Heitmeyer,	 Y.	
Liu,	 and	 E.	 Leonard,	 Generating	 Optimized	
Code	 from	 SCR	 Specifications,	 in	 Proceedings,	
ACM	 SIGPLAN/SIGBED	 Conference	 on	 Lan-‐
guages,	 Compilers,	 and	 Tools	 for	 Embedded	 Sys-‐
tems	 (LCTES	 2006),	 Ottawa,	 Canada,	 June	 14-‐
16,	 2006.	 	

[Schneider	 98]	 G.	 Schneider,	 and	 J.	 P.	 Winters,	
Applying	 Use	 Cases:	 A	 Practical	 Guide.	 Reading,	
MA:	 Addison-‐Wesley,	 1998.	

[SEI	 06]	 CMMI	 for	 Development,	 Version	 1.2,	
CMMI-‐DEV,	 Carnegie	 Mellon	 University	 Soft-‐
ware	 Engineering	 Institute,	 Aug.,	 2006.	 	

[Stephens	 01]	 M.	 Stephens	 and	 D.	 Rosenberg,	
Extreme	 Programming	 Refactored:	 The	 Case	
Against	 XP.	 	 	 	 APRESS,	 Sep.	 2003.	

[Sutcliffe	 06]	 A.	 Sutcliffe,	 S.	 Fickas,	 M.	 Sohlberg,	
Journal	 of	 Requirements	 Engineering,	 11	 (3),	
Jun.	 2006.	

[Svahnberg	 	 05]	 M.	 Svahnberg,	 J.	 van	 Gurp,	 and	
J.	 Bosch,	 A	 taxonomy	 of	 variability	 realization	
techniques,	 Software:	 Practice	 and	 Experience,	
35	 (8),	 pp.	 705-‐754,	 2005.	

[Svoboda	 90]	 C.	 Svoboda,	 Structured	 Analysis,	
in	 Tutorial:	 System	 and	 Software	 Requirements	
Engineering,	 R.	 Thayer	 and	 M.	 Dorfman,	 eds.,	 	
IEEE	 Computer	 Society	 Press,	 Los	 Alamitos,	
California,	 1990,	 218-‐237.	

[Thayer	 90]	 R.	 Thayer	 and	 M.	 Dorfman,	 eds,	
Tutorial:	 System	 and	 Software	 Requirements	
Engineering,	 IEEE	 Computer	 Society	 Press,	 Los	
Alamitos,	 California,	 1990.	

[Weigers	 03]	 K.	 Weigers,	 Software	 Require-‐
ments,	 Microsoft	 Press,	 2003.	

[Weiss	 99]	 D.	 Weiss	 and	 C.	 T.	 R.	 Lai,	 Software	
Product-‐Line	 Engineering:	 a	 Family-‐Based	 Soft-‐
ware	 Development	 Process,	 Addison	 Wesley,	
1999.	

[Winter	 01]	 V.	 Winter,	 R.	 Berg,	 and	 J.	 Ringland,	
Bay	 area	 rapid	 transit	 district	 advance	 auto-‐
mated	 train	 control	 system	 case	 study	 descrip-‐

tion,	 in	 High	 Integrity	 Software,	 Kluwer	 Aca-‐
demic	 Publishers,	 Norwell,	 MA,	 2001.	

[Young	 06]	 R.	 Young,	 Project	 Requirements:	 a	
Guide	 to	 Best	 Practices,	 Management	 Concepts,	
2006.	

[Yourdon	 89]	 E.	 Yourdon,	 Modern	 Structured	
Analysis,	 Yourdon	 Press/Prentice	 Hall,	 1989.	

Stuart
Typewritten Text
In publication, do not distribute

