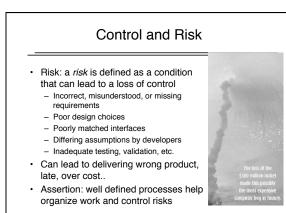
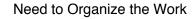

View of SE in this Course

- The purpose of software engineering is to gain and maintain intellectual and managerial control over the products and processes of software development.
- · Intellectual control implies
 - We understand the developmental goals
 - Can distinguish good choices from bad
 - We can effectively build to meet our goals
- Behavioral requirements (functionality)
 Software Qualities (reliability, security, maintainability, etc.) · Managerial control implies
- - We make accurate recourse estimates
 We deliver on schedule and within budget


CIS 422/522 Fall 2013

2



CIS 422/522 Fall 2013

5

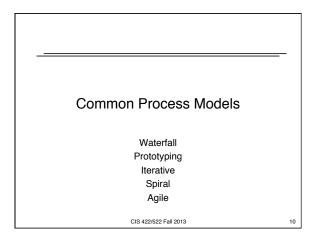
· Nature of a software project

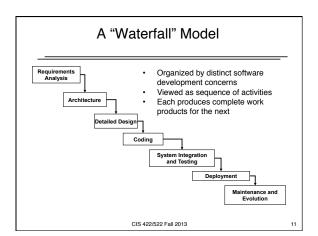
- Software development produces a set of interlocking, interdependent work products
- E.g. Requirements -> Design -> Code -> Test
- Implies dependencies between tasks
- Implies dependencies between people
- Must organize the work such that:
- Every task gets done
- Tasks get done in the right order
- Tasks are done by the right people
- The product has the desired qualities
- The product is delivered on time

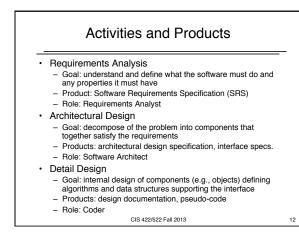
Addressed by Software Processes

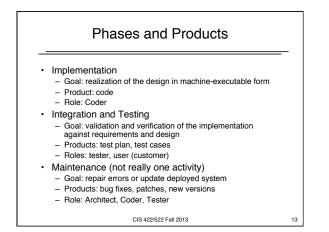
- Developed as a conceptual tool for organizing complex software developments
- Answers the "who", "what", "when", etc. questions
 What product should we work on next?
 - What kind of person should do the work?
 - What information is needed to do the work?
 - When is the work finished?
- Intended use (idealized)
 - Model of development (what does or should occur)
 Guide to developers in what to produce and when to produce it

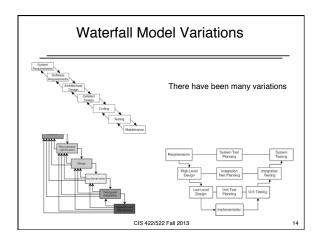
CIS 422/522 Fall 2013

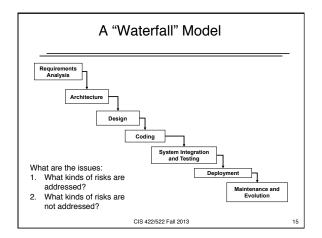

Definitions

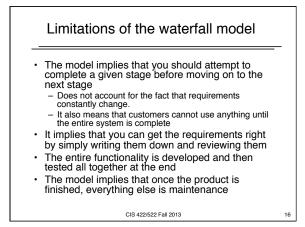

- Software Life Cycle: evolution of a software development effort from concept to retirement
- Software Process Model: Abstract representation of a software life cycle as a set of
 - 1. Activities: tasks to be performed (how)
 - 2. Artifacts: work products produced (what)
 - 3. Roles: skills needed (who)
- Software Process: institutionalized version of a life software model defining specific roles, activities, and artifacts

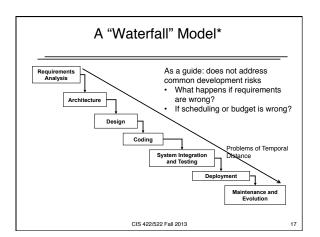

CIS 422/522 Fall 2013

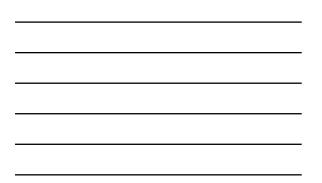

Examples of Use

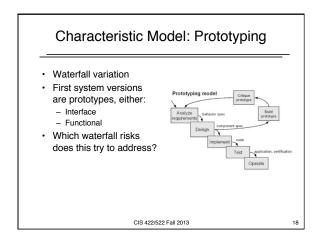

- Software life-cycle: in choosing whether to build or buy, companies should consider the entire life-cycle cost of software.
- Software process model: many companies are currently adapting the agile model to fit their organizational constraints.
- Software process: many organizations standardize their software process across developments.

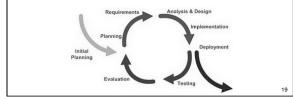












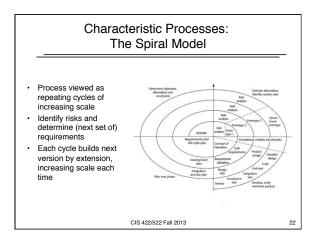
Characteristic Processes: The Iterative Model

- · Process is viewed as a sequence of iterations
 - Essentially, a series of waterfalls
 - Each iteration builds on the previous one (e.g., adds requirements, design components, code features, tests)
 - Each iteration produces complete set of work products deliverable software
 Customers provide feedback on each release
 - There is no "maintenance" phase each version includes problem fixes as well as new features

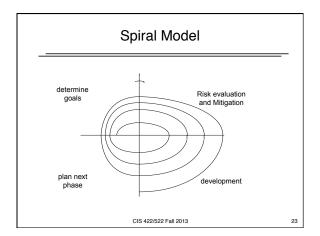
Iterative Model

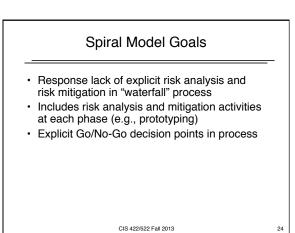
- · Also called "incremental development"
- Addresses some common waterfall risks
 Risk that software cannot be completed build
- Hisk that software cannot be completed build incremental subsets
 Pick of building the wrong system – stakebolder
- Risk of building the wrong system stakeholder have opportunities to see the software each increment
- Also, can double check feasibility, schedule, budget and others issues

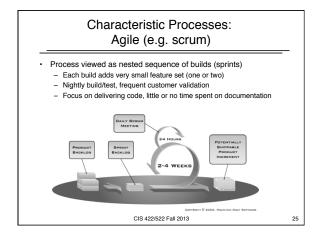
CIS 422/522 Fall 2013

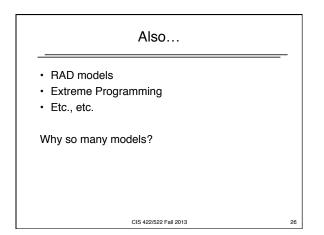

20

21


Advantages of Incremental Development


- Customers get usable functionality earlier than with waterfall
- Getting early feedback improves likelihood of producing a product that satisfies customers


 Reduces market risk: if customers hate the product, find out
- early before investing too much effort and money The quality of the final product is better
- The core functionality is developed early and tested multiple times
- Only a relatively small subset of functionality added in each release: easier to get it right and test it thoroughly
- Detect design problems early and get a chance to redesign



How do we Choose a Development Process?

E.g., for your projects

CIS 422/522 Fall 2013

27

Objectives

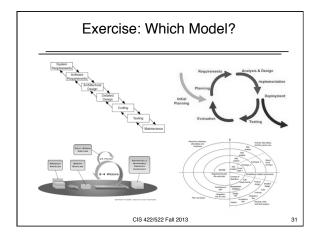
- Goal: proceed as rationally and systematically as possible (I.e., in a controlled manner) from a statement of goals to a design that demonstrably meets those goals within design and management constraints
 - Understand that any process description is an abstraction
 Always must compensate for deviation from the ideal (e.g.,
 - by iteration)
 - Still important to have a well-defined process to follow and measure against

CIS 422/522 Fall 2013

28

29

30


A Software Engineering Perspective

- Question of control vs. cost
- Choose processes, methods, notations, etc. to provide an appropriate level of control for the given product and context
 - Sufficient control to achieve results
 - No more than necessary to contain cost and effort
- Provides a basis for choosing or evaluating processes, methods, etc.
 - Does it achieve our objectives at reasonable cost?
 Does it address the most important developmental risks?

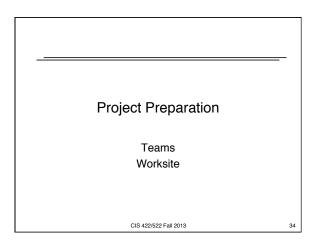
CIS 422/522 Fall 2013

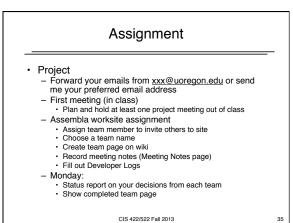
Project Relevance

- Need to agree on kind of control you need and how you will accomplish it
- Process model will then help keep everyone on track – Basis for planning and scheduling
 - Each person knows what to do next
 - Basis for tracking progress against schedule
- Should be one of the first products you produce but expect it to evolve

Exercise: Project Processes

- Discuss: which process is the best fit for your projects and why?
- For each process you do not select, what characteristics do not fit well with the project
- For the process selected
 - How does it fit with project characteristics?
 - How does it help address project risks?


CIS 422/522 Fall 2013


32

33

Take-away

- Expected to know standard processes and their rationale
- Understand how and why people use different development models
- Understand how to choose an appropriate model for a given developments

	Team Assig	nments	
Team 1	Team 2	Team 3	
Alghamdi, Areej	Harmon, Chris	Brady, Jason	
Cleary, Will	Heuer, Sean	Cagle, Sam	
Ho, Calvin	Knowles, Mike	Nguyen, Thuc	
Lemkuil, Amanda	Martin, Will	Sorenson, Walter	
Slack, Alex	O'Connor, Dennis	Xu, Kevin	
Team 4	Team 5	Team 6	
Dixon, Andrew	Aron, Gabe	Abbasi, Azad	
He, Jin	Hagen, Mack	Li, Andy	
Sweeney, Colin	Olivieri, Cory	Riazi, Sara	
Wang, Han	Yamada, Zach	Sood, Kanika	
Wulf, John	Zucker, Adam	Stevens, David	

Questions?	
CIS 422/522 Fall 2013	37