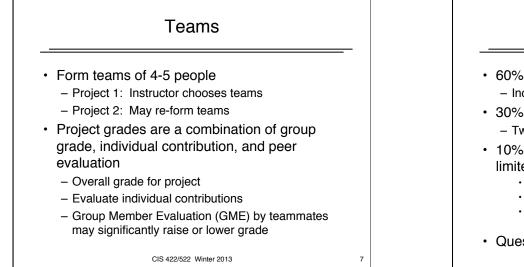


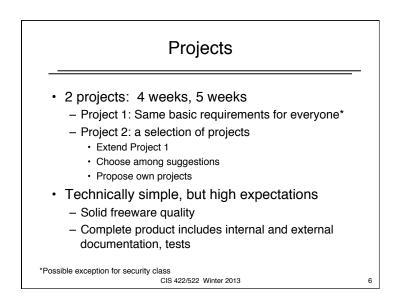
CIS 422 Course Format

- Single Quarter Project Course
 - Lectures, reading: Foundations and background
 - Projects: Learn how to apply SE concepts by doing
 - Project Meetings: Learn teamwork
 - Project Reviews and Presentations: Critique and
- Two project iterations
 - First for perspective on SE issues
 - Second to demonstrate learning and ability
- · Two exams (midterm, final) assess individual

CIS 422/522 Winter 2013


1

CIS 422/522


Emphasis is on Life-Cycle Management and Teamwork

- · Participate in collaborative design
- Work as a member of a project team, assuming various roles
- Create and follow project and test plans
- Create the full range of work products associated with a software product
- Complete project deliverables on time
- Key point: coding is only part of the work

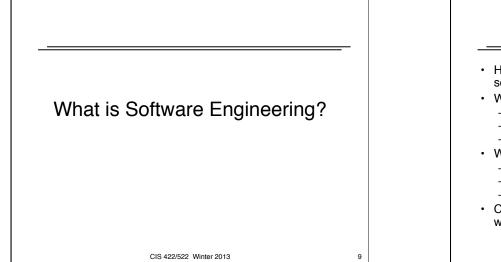
CIS 422/522 Winter 2013

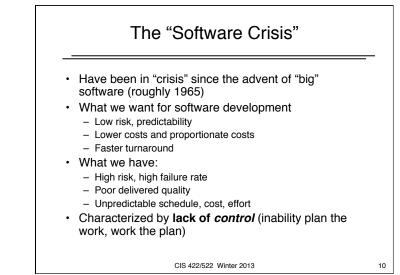
5

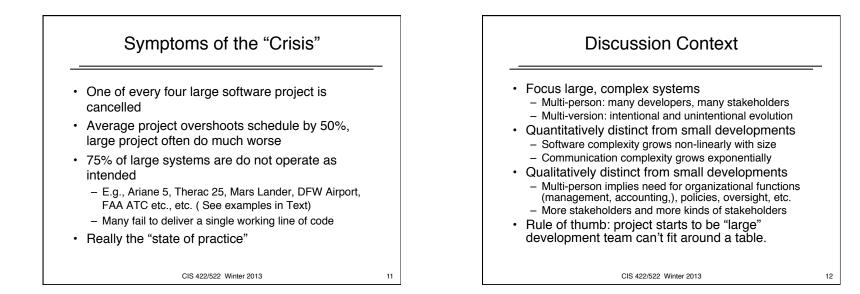
Grading

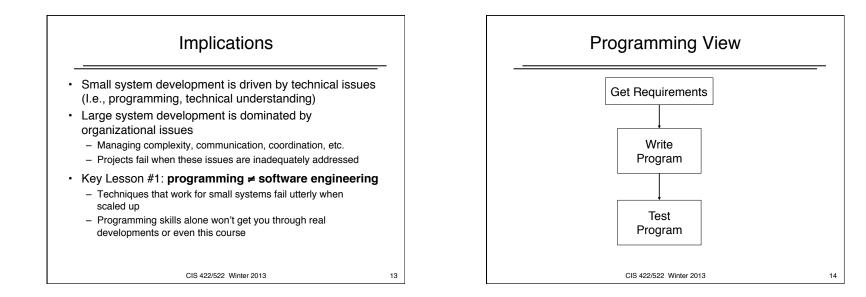
- 60% Projects (20+40)

 Includes presentations, intermediate deliverables

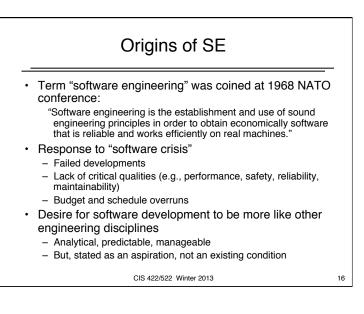

 30% Exams (15+15)


 Two midterms; no final exam


 10% Class Participation: includes but is not
 - limited to...
 - Attendance at class, team meetings
 - · Contributing the discussions, class exercises
 - Appropriate behavior in the classroom (i.e. no cell phones, beepers, trolling web)
- Questions?


CIS 422/522 Winter 2013

2



=	Review	Phase	Document	Review	Phase	Document
Cross-Range Enterprise Planning	Project Requirements Review	Project Requirements Analysis	Project Specification	Ope rational Readiness Revie w (by site)	Full Scale Deployment	Operational Base In
	Project Plan Review	Project Plan	Project Plan	Operational Readiness Review	T Initial Deployment	Initial Deployment Review
	Project IT Support Revie w	Project IT Support Definition	Project IT Support Definition	Acceptance Review	System Acceptance Testing	SAT <u>System Buelt</u> Test Report
Systens Analysis and Design	System Requirements Review Functional Base Inc.	System Requirements Analysis	System Segment Specification	SAT Test Readiness Revie w	T Integration & Testing	SAT Release Basel Test Description
Sys Analysis	System Design Review	System Design	System Design Specification	Integration Test Readiness Review	CI Integration & Testing	Integration Test 5 Description
Software Analysis & Preliminary Design	CI Software Specification Review Allocated Baseline	CI Require ments Analysis	CI Software Requirements Specification	CI Test Readiness Review	T CI Code & Unit Testing	CI & Test g Description O
	CI Preliminary Design Review	CI Preliminary Design	CI Software Design Description	CI Critical Design Review	CI Detailed Design	CI Software Design Description

CIS 422/522

Has anything changed since '68?

- Incorrect to conclude that no progress has been made
 - Better understanding of issues
 - Substantial improvements in programming languages, tool
 - Better understanding and control of processes
- · But the problems have also changed
 - Large developments now are orders of magnitude more code than in 1968
 - Improved capabilities are overcome by larger problems, greater complexity

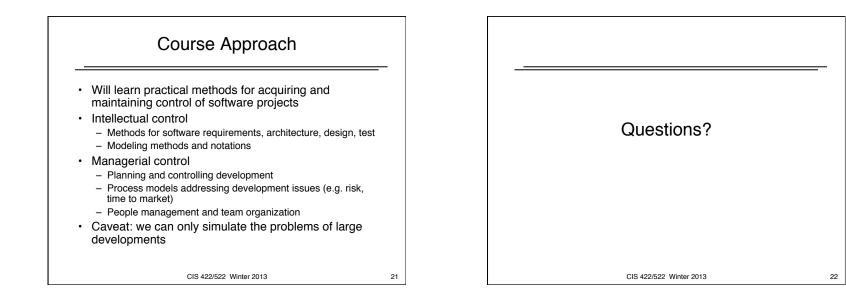
CIS 422/522 Winter 2013

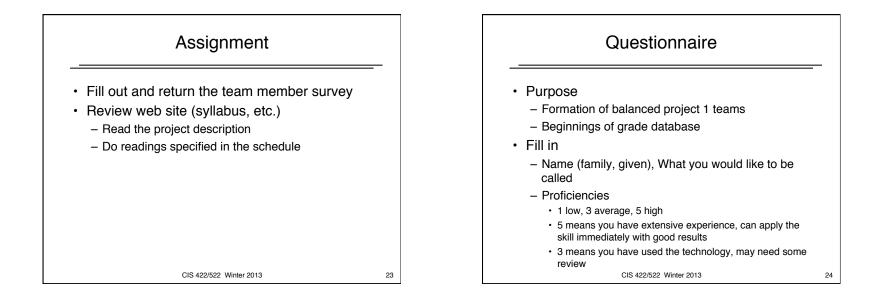
What hasn't changed? Still not an engineering discipline in classic sense Lack of applied mathematics and systematic methods to develop and assess product properties Not taught, licensed, regulated, or recognized as an engineering discipline But we often don't apply what we know Existing methods, models often not understood or used in industry Little attention is given to process or products other than code Quality of products depends on qualities of the individuals rather than qualities of engineering practices Development continues to be characterized by lack of control

CIS 422/522 Winter 2013

View of SE in this Course
The purpose of software engineering is to gain and maintain intellectual and managerial control over the products and processes of software development.
"Intellectual control" means that we are able make rational choices based on an understanding of the downstream effects of those choices (e.g., on system properties).
Managerial control similarly means we are able to make rational choices about development resources (budget, schedule, personnel).
Memorize this!

17


Control is the Goal Both are necessary for success! Intellectual control implies We understand what we are trying to achieve Can distinguish good choices from bad We can reliably and predictably build to our goals Functional behavior Software Qualities (reliability, security, usability, etc.) Managerial control implies We make accurate estimations We deliver on schedule and within budget Assertion: managerial control is not really possible without intellectual control (no matter what the Harvard School of Business says)


CIS 422/522 Winter 2013

20

18

CIS 422/522

