
1!
CIS 422/522

CIS 422/522 Fall 2012! 1!

CIS 422/522  
!

Software Requirements!
& a Little Quality Assurance!

!

CIS 422/522 Fall 2012! 2!

Requirements Phase Goals!

•  What does “getting the requirements right” mean
in the systems development context?!

•  Only three goals!
1.  Understand precisely what is required of the software!
2.  Communicate that understanding to all of the parties

involved in the development (stakeholders)!
3.  Control production to ensure the final system satisfies

the requirements!
•  Sounds easy but hard to do in practice!
•  Understanding what makes these goals difficult

to accomplish helps us understand how to
mitigate the risks!

CIS 422/522 Fall 2012! 3!

A Requirements Process Framework!

•  Requirements Understanding!
–  Requirements Elicitation - establish “what people want”!
–  Requirements Negotiation - resolve stakeholder

conflicts!
•  Requirements Specification!

–  Concept of Operations - communicate with non-
programming audiences!

–  Software Requirements Specification - specify
precisely what the software must do!

•  Requirements Validation and Verification!
–  Establish that we have the right requirements

(feedback)!
–  Ensure our specification is good quality!

CIS 422/522 Fall 2012! 4!

Communicating with Different
Audiences!

•  Customer/User!
–  Focus on problem

understanding!
–  Use language of problem

domain!
–  Technical if problem space

is technical!

Developer

Customer

Requirements
Analyst

Problem Understanding/!
Business Needs!

Detailed technical!
Requirements!

•  Development organization!
–  Focus on system/software

solutions!
–  Use language of solution

space (software)!
–  Precise and detailed enough

to write code, test cases,
etc.!

2!
CIS 422/522

CIS 422/522 Fall 2012! 5!

Documentation Approaches!

•  Informal requirements to describe the system’s
capabilities from the customer/user point of view!
–  Purpose is to answer the questions, “What is the system

for?” and “How will the user use it?”!
–  Tells a story: “What does this system do for me?”!
–  Focus on communication over rigor!

•  More formal, technical requirements for the
development team !
–  Purpose is to answer specific technical questions quickly

and precisely!
•  E.g. “What should the system output for this set of inputs?”!
•  Reference, not a narrative, does not “tell a story”!

–  Focus on precision and rigor!
•  Goal is requirements that are precise, unambiguous, complete, and

consistent!

ConOps

SRS

CIS 422/522 Fall 2012! 6!

SRS Template!

Informal, user
centric

Formal, technical

CIS 422/522 Fall 2012! 7!

ConOps: 
Informal Specification Techniques!

•  Use natural language and other informal methods!
–  Use cases!
–  Mock-ups (pictures)!
–  Story boards!

•  Benefits!
–  Requires little technical expertise to read/write!
–  Useful for communicating with a broad audience!
–  Useful for capturing intent (e.g., how does the planned

system address customer needs, business goals?)!
•  Drawbacks!

–  Inherently ambiguous, imprecise!
–  Cannot effectively establish completeness, consistency!

•  However, can add rigor with standards, templates,
etc.!

CIS 422/522 Fall 2012! 8!

Scenario Analysis Process!

Applying scenario analysis in the requirements process!
•  Requirements Elicitation!

–  Identify stakeholders who interact with the system!
–  Collect “user stories” - how people would interact with the

system to perform specific tasks!
•  Requirements Specification!

–  Record as use-cases with standard format!
–  Use templates to standardize, drive elicitation!

•  Requirements verification and validation!
–  Review use-cases for consistency, completeness, user

acceptance!
–  Apply to support prototyping!
–  Verify against code (e.g., use-case based testing)!

3!
CIS 422/522

CIS 422/522 Fall 2012! 9!

Creating Use Cases!

•  Identify a key actor and purpose!
–  The purpose informs the use case title and description!

•  Identify the main flow (ideal path) from the
starting point to the result!
–  Preconditions: anything that must be true to initiate the

Use Case!
–  Trigger: event, if any, initiating the Use Case!
–  Basic Flow: sequence of interactions from the trigger

event to the result!
–  Alternative Flows: identify sequences branching off the

Basic Flow!

CIS 422/522 Fall 2012! 10!

Guidelines for Good Use Cases!

•  Use Cases should express requirements, not
design!
–  Focus on import results that provide value to specific

actors!
•  I.e., if nobody really cares about the outcome, it is not a

good use case!
–  Focus on what the actor is doing, not the details of how!

•  Not: “The user left-clicks on the radio button labeled
Balance and presses the Enter button”!

•  “The user elects the option to view the balance.”!
•  Looking for a small number of use cases that

capture the most important interactions!

CIS 422/522 Fall 2012! 11! CIS 422/522 Fall 2012! 12!

Voting System Example!

•  Who are the actors!
•  What are the major tasks?!
•  What are the outcomes?!
•  What would be an alternative flow?!

4!
CIS 422/522

CIS 422/522 Fall 2012! 13!

Technical Specification!

The SRS!
The role of rigorous specification!

CIS 422/522 Fall 2012! 14!

Requirements Documentation!

•  Is a detailed requirements specification necessary?!
•  How do we know what “correct” means?!

–  How do we decide exactly what capabilities the modules
should provide?!

–  How do we know which test cases to write and how to
interpret the results?!

–  How do we know when we are done implementing?!
–  How do we know if we’ve built what the customer asked for

(may be distinct from “want” or “need”)?!
–  Etc…!

•  Correctness is a relation between a spec and an
implementation (M. Young)!

•  Implication: until you have a spec, you have no
standard for “correctness”!

CIS 422/522 Fall 2012! 15!

Technical Requirements!

•  Focus on developing a technical specification!
–  Should be straight-forward to determine acceptable inputs and

outputs!
–  Preferably, can systematically check completeness consistency!

•  A little rigor in the right places can help a lot!
–  Adding formality is not an all-or-none decision!
–  Use it where it matters most to start (critical parts, potentially

ambiguous parts)!
–  Often easier, less time consuming than trying to say the same

thing in prose!
•  E.g. in describing conditions or cases!

–  Use predicates (i.e., basic Boolean expressions)!
–  Use mathematical expressions !
–  Use tables where possible!

CIS 422/522 Fall 2012! 16!

SE, Modeling, Hans van Vliet, ©2008

16

Example state transition diagram!

5!
CIS 422/522

CIS 422/522 Fall 2012! 17!

Formal Specification Example!

•  SCR formal model!
–  Define explicit types!
–  Variables monitored or controlled!

CIS 422/522 Fall 2012! 18!

Quality Requirements!

CIS 422/522 Fall 2012! 19!

Terminology!

•  Avoid “functional” and non-functional" classification!
•  Behavioral Requirements – any information

necessary to determine if the run-time behavior of a
given implementation constitutes an acceptable
system!
–  All quantitative constraints on the system's run-time behavior!
–  Other objective measures (safety, performance, fault-

tolerance)!
–  In theory all can be validated by observing the running

system and measuring the results!
•  Developmental Quality Attributes - any constraints on

the system's static construction!
–  Maintainability, reusability, ease of change (mutability)!
–  Measures of these qualities are necessarily relativistic (I.e.,

in comparison to something else!

CIS 422/522 Fall 2012! 20!

Behavioral vs. Developmental !
Behavioral (observable)!

•  Performance!
•  Security !
•  Availability !
•  Reliability!
•  Usability 

!
!

! 
Properties resulting from the
properties of components,
connectors and interfaces
that exist at run time.!

Developmental Qualities!
•  Modifiability(ease of change)!
•  Portability!
•  Reusability!
•  Ease of integration !
•  Understandability!
•  Support concurrent

development 
!
!Properties resulting from the
properties components,
connectors and interfaces
that exist at design time
whether or not they have any
distinct run-time
manifestation.!

6!
CIS 422/522

CIS 422/522 Fall 2012! 21!

Specifying Quality Requirements!

•  Is it important to specify the quality
requirements explicitly? Unambiguously?!
–  Hint: what role would quality requirements play in

customer acceptance?!
•  Are these kinds of specifications adequate?!

–  “The system interface shall be easy to use.”!
–  “The system shall maximize the number of user

transactions”!

CIS 422/522 Fall 2012! 22!

Specifying Quality Requirements!

•  When using natural language, write
objectively verifiable requirements when
possible!
–  Maintainability: “The following kinds of requirement

changes will require changes in no more than one
module of the system…”!

–  Performance: !
•  “System output X has a deadline of 5 ms from the input

event.”!
•  “System output Y must be updated at a frequency of no

less than 20 ms.”!
!

CIS 422/522 Fall 2012! 23!

Example Timing Requirements

CIS 422/522 Fall 2012! 24!

Requirements Validation and Verification!
•  Feedback-control for requirements!
•  Should answer two distinct questions: !

–  Validation: “Are we building to the right requirements?”!
–  Verification: “Are we building what we specified?”!
–  The book is confused on the distinction!

•  Checking internal consistency (agreement with itself) is verification!
•  Checking external consistency (agreement with the world) is validation!

•  Validation requires going back to the stakeholders: can use
many techniques!
–  Review of specifications!
–  Prototyping!
–  Story-boarding!
–  Use case walkthroughs!
–  Review software iterations!

•  Verification requires checking work products against
specifications!
–  Review!
–  Testing!
–  Formal modeling and analysis!

7!
CIS 422/522

CIS 422/522 Fall 2012! 25!

Questions?!

CIS 422/522 Fall 2012! 26!

Assignments!

•  Set up instructor meetings this week!
•  Finish incomplete drafts of deliverables!

