
CIS 415 - Operating Systems
Project #3 - Application Space Device Driver

Spring 2014 - Prof. Butler1

Due date: June 10, 2014

In this project, you will develop an implementation of a device driver for a virtual device, a large-scale storage
array. All of this work will be in user space, so no kernel recompilation will be necessary. Please read the
following instructions carefully and perform the requested steps as directed.

1 SMSA - Serially Massive Storage Array

You are to write an application-space device driver (operating system interface) code for a new storage device
called a Serially Massive Storage Array (SMSA). The device consists of a 4 by 4 grid of storage drums with
216 bytes of storage each, as seen here:

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

The SMSA has a single read instrument (head) that physically moves from drum to drum to write and read data
from the individual drives.2 The drum contains a fixed number of blocks of equal size (SMSA BLOCK SIZE).
All reads and writes are done in single blocks, i.e., every read or right is for the same size.

The implementation of the device driver will receive a series of commands form the layer above it. These
commands will require you to receive and interpret the commands and call the physical layer interfaces based
on the required operation. It is entirely up to you to determine how best to implement these functions within
the constraints laid out below.

Your device driver will provide a virtual address space spanning the entire drum array. There are 16 drums,
each with SMSA DISK SIZE bytes. So your driver should support reading and writing to addresses 0
to (16 ∗ SMSA DISK SIZE) − 1. Thus, your driver should translate the SMSA virtual addresses (sup-
ported by your code) to the physical addresses of the drums. Each drum is evenly partitioned into blocks of
SMSA BLOCK SIZE bytes. You are to implement the address space in the order of drums, one after the other
as follows: if each drum has n bytes, the first drum should map the blocks into addresses (0 : n−1), the second
(n : 2n−1), the third (2n : 3n−1), . . ., and the 16th drum (15n : 16n−1). In essence, you will be translating
the virtual address reads and writes into reads and writes in the drum array.

To talk to the drum array, commands are sent through a single SMSA operation interface. This interface
is defined through a single function call: int smsa operation(uint32 t op, unsigned char *block);

This function accepts an SMSA instruction op and a pointer to SMSA BLOCK SIZE byte buffer (NULL if not
used). The structure of the op parameter is given in Table 1. The commands it accepts are detailed in Table 2.

1Special thanks to Patrick McDaniel and Eric Kilmer for help with this project.
2Although not relevant to the current assignment, drum/block seeks slow down the read time proportional to the distance the head

has to move, e.g., a read head moving from drum 0 will take twice as long to move to drum 8 as it does to drum 4. Also, the head can
only move sideways or up and down at any given time (no diagonal).

1

Bits Width Field Description
0-5 6 Opcode This is the command to be implemented by the drum array. (see below)
6-9 4 Drum ID This is the ID of the drum to perform operation on

10-23 14 Reserved Unused bits (for now)
24-31 8 Block ID Block address within the drum

Table 1: SMSA Instruction Layout

Instruction Description
0
SMSA UNMOUNT Unmount the drum array. This should be the last thing you do.
SMSA SEEK DRUM Seek to a new drum at drum id. Note that the drum read head will be reset to the

first block (block 0).
SMSA SEEK BLOCK Seek to a block at block id.
SMSA DISK READ Read the block at current drum and block head position. The block head will be at

the next block after the read.
SMSA DISK WRITE Write to the block at current drum and block head position. The block head will be

at the next block after the read.

Table 2: SMSA Instruction Details

The simulator program code provided to you will read a workload file of drum commands and call your
implementation to serve then. The program is called as follows:

USAGE: smsa [-h] [-u] [-v] [-l <logfile>] <workload-file>

where:
-h - help mode (display this message)
-u - run the SMSA unit test
-v - verbose output
-l - write log messages to the filename <logfile>

<workload-file> - file contain the workload to simulate

There are three workload files (in increasing workload complexity) included with the assignment, simple.dat,
linear.dat, and random.dat. Your program will be run against these workloads and validated for cor-
rectness when being graded.

The program will print out a good deal of output if you use the -v verbose flag. Use this to debug your
program. It is also encouraged to use the logging facility provided by the logMessage function listed in the
cmpsc311 log.h file. See its use in the simulator code for examples. To redirect the output into a utility you
can use to walk through the data, redirect the output to less:

./smsasim -v simple.dat 2>&1 | less

For more information on using less, see the manpage.

2 SMSA Specification

1. From your virtual machine, download the starter source code provided for this assignment.

2. Install the gcrypt library using the package interface:
% sudo apt-get install libgcrypt-dev

2

3. You are to implement 4 functions defined in the interface header file smsa driver.h whose imple-
mentation is in smsa driver.c:

• smsa vmount() - this will open the drum array for reading on the virtual address space. This
should initialize the drum array by either retreiving the previously stored contents or formatting the
drums using the SMSA interface functions (see below).

• smsa unmount() - this will close the interface to the storage array virtual address space. It
should store all of the values to an external file for reloading later.

• smsa vread(addr, len, buf) - this will read a set of len bytes into the buffer buf from a
specific address addr within the drum array. Note that the read may span multiple drum blocks
and possibly drums. If any part of the read is out of range (beyond the end of the last drum), then
nothing should be read and an error be returned.

• smsa vwrite(addr, len, buf) - this will write this a set of len bytes from the buffer buf
to a specific address addr within the drum array. Note that the write may span multiple drum blocks
and possibly drums. If any part of the write is out of range (beyond the end of the last drum), then
nothing should be written and an error be returned.

Note that you may need to define a number of other support functions to make clean code here. All of
these functions should check the correctness of every parameter and log an error and return -1 if any
value is illegal.

4. Edit the Makefile by adding all of the dependencies to the area (commented at the bottom). Make any
other changes to the Makefile you feel are necessary.

5. Run the program with the example workload files and confirm that they run to completion. Sample output
will be provided to compare against your run.

Bonus Points: You are to implement a function that saves the entire contents of the drum array to drum when
unmount is called, and loads the contents back from drum into the array when mount is called. In essence,
making the SMSA persistent across workload runs.

3 Submission Instructions

You must turn in the following:

1. A README file. The README will contain the following:

• Your name

• A list of submitted source files

• Compilation instructions

• General comments and anything that can help us grade your code

• Number of hours spent on the project and level of effort required.

2. All of the source files neceesary to make the project, and the corresponding Makefile.

3. Any build files that you have created.

3

You can use the same directory structure as the unpacked tarball. Re-archive this directory using tar and
gzip the file.

cd up a directory so that hw1 is a subdirectory of your working directory, and run the following command
to create your submission tarball, but replacing ”UOEMAIL” with your cs.uoregon.edu email account name.

[frame=single,fillcolor=] tar cvzf hw3submissionUOEMAIL.tar.gzproject3
Use the turnin script, located at http://systems.cs.uoregon.edu/apps/turnin.php, to sub-

mit your tarball.

4 Grading Guidelines

This programming project will be graded as follows:

• 10% General information about the program, and code design

• 15% Proper implementation of smsa vmount

• 15% Proper implementation of smsa unmount

• 25% Proper implementation of smsa vread

• 25% Proper implementation of smsa vwrite

• 10% Testing to be free of bugs and memory errors.

The assignment is due at 11:59 PM Samoan Standard Time about this time zone on June 10, 2014. You will
have three grace days for late assignments for this class with the ability to use a maximum of two on any given
assignment. You must specify that you intend to use these in your README file. If you exceed your allotment
of grace days, points will be deducted at 25% per day.
Note: Like all assignments in this class you are prohibited from copying any content from the Internet or
discussing, sharing ideas, code, configuration, text or anything else or getting help from anyone in or outside
of the class. Consulting online sources is acceptable, but under no circumstances should anything be copied.
Failure to abide by this requirement will result dismissal from the class as described in our course syllabus.

4

