
Computer and Information Science

CIS 415:
Operating Systems

Processes

Prof. Kevin Butler	

Spring 2014

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Last class:	

‣ Operating system structure	

• Today: 	

‣ More basics, system calls, Process Management

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Administrivia
• Lab sections: everyone should know where you’re

going	

‣ this week: debugging	

!

• Assignment 1: due April 22	

!

• Project 1: out today, due April 24	

!

• Manage your time wisely!
3

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process Address Space
• All locations addressable by the

process	

• Can restrict use of addresses
(RW)	

• Restrictions enforced by OS	

• Every running program can have 
its own private address space	

‣ How?

4

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

System Call Handling

5

Procedure call in user process
Initial work in user mode (libc)
Trap instruction to invoke kernel (int 0x80)

Preparation (e.g., sys_read, mmap2)
I/O command (read from disk)
Wait (disk is slow)
Completion (interrupt handling)
Return-from-interrupt instruction
Final work in user mode (libc)
Ordinary return instruction

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Details on x86 / Linux
• A more accurate picture:	

‣ consider a typical Linux

process	

‣ its thread of execution can be
several places	

• in your program’s code	

• in glibc, a shared library
containing the C standard
library, POSIX support, and
more 	

• in the Linux architecture-
independent code	

• in Linux x86-32/x86-64 code

!
 your
 program

glibc

C standard
library POSIX

architecture-dependent code

architecture-independent code

Linux kernel

Linux
system calls

6

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

!
 your
 program

Details on x86 / Linux
• Some routines your

program invokes may be
entirely handled by glibc	

‣ without involving the kernel	

• e.g., strcmp() from stdio.h	

‣ ∃ some initial overhead when
invoking functions in
dynamically linked libraries	

‣ but, after symbols are
resolved, invoking glibc
routines is nearly as fast as a
function call within your
program itself

architecture-dependent code

architecture-independent code

Linux kernel

POSIX

7

glibc

C standard
library POSIX

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

!
 your
 program

glibc

Details on x86 / Linux
• Some routines may be

handled by glibc, but they in
turn invoke Linux system
calls	

‣ e.g., POSIX wrappers around
Linux syscalls	

• POSIX readdir() invokes the
underlying Linux readdir()	

‣ e.g., C stdio functions that read
and write from files	

• fopen(), fclose(), fprintf()
invoke underlying Linux open(),
read(), write(), close(), etc.

architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

8

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

!
 your
 program

glibc

Details on x86 / Linux
• Your program can

choose to directly invoke
Linux system calls as well	

‣ nothing forces you to link
with glibc and use it	

‣ but, relying on directly
invoked Linux system calls
may make your program
less portable across UNIX
varieties architecture-dependent code

architecture-independent code

Linux kernel

C standard
library POSIX

9

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

File Interface
• Goal: Provide a uniform abstraction for accessing the

OS and its resources	

• Abstraction: File	

‣ Use file system calls to access OS services	

‣ Devices, sockets, pipes, etc.	

‣ And OS in general

10

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

I/O with System Calls
• Much I/O is based on a streaming model	

‣ sequence of bytes	
 	

• write() sends a stream of bytes somewhere	
 	

• read() blocks until a stream of input is ready	
 	

• Annoying details:	
 	

‣ might fail, can block for a while	
 	

‣ file descriptors...	
 	

‣ arguments are pointers to character buffers	
 	

‣ see the read() and write() man pages	

11

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

File Descriptors
• A process might have several different I/O streams in

use at any given time	
	

• These are specified by a kernel data structure called a
file descriptor	
	

‣ each process has its own table of file descriptors	
 	

• open() associates a file descriptor with a file	
 	

• close() destroys a file descriptor	
 	

• Standard input and standard output are usually
associated with a terminal	
 	

‣ more on that later	

12

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Regular File
• File has a pathname: /tmp/foo	

• Can open the file	

‣ int fd = open(“/tmp/foo”, O_RDWR)	

‣ For reading and writing	

• Can read from and write to the file	

‣ bytes = read(fd, buf, max); /* buf get output */	

‣ bytes = write(fd, buf, len); /* buf has input */

13

flags for
read/write

access

pointer to buffer

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Socket File
• File has a pathname: /tmp/bar	

‣ Files provide a persistence for a communication channel	

‣ Usually used for local communication (UNIX domain
sockets) 	

• Open, read, and write via socket operations	

‣ sockfd = socket(AF_UNIX, TCP_STREAM, 0);	

‣ local.path is set to /tmp/bar	

‣ bind (sockfd, &local, len)	

‣ Use sock operations to read and write

14

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Device File
• Files for interacting with physical devices	

‣ /dev/null (do nothing)	

‣ /dev/cdrom (CD-drive)	

• Use file system operations, but are handled in device-
specific ways	

‣ open, read, write correspond to device-specific
functions	

• Function pointers!	

‣ Also, use ioctl (I/O control) to interact (later)

15

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Sysfs File and /proc Files
• These files enable reading from and writing to kernel	

• /proc files 	

‣ enable reading of kernel state for a process	

• Sysfs files	

‣ Provide functions that update kernel data	

• File’s write function updates kernel based on input data

16

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Other System Calls
• It’s possible to hook the output of one program into

the input of another: pipe()	

• It’s possible to block until one of several file
descriptor streams is ready: 	
 select()! 	

• Special calls for dealing with network	
 	

‣ AF_INET sockets, etc.	
 	

• Send a message to other (or all)  
processes: signal()!

• Most of these in section 2 of manual	

‣ e.g., man 2 select

17

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Syscall Functionality
• System calls are the main interface between

processes and the OS	
 	

‣ like an extended “instruction set” for user programs that

hide many details	
 	

‣ first Unix system had a couple dozen system calls	
 	

‣ current systems have many more (>300 in Linux,  
>500 in FreeBSD)	

‣ Understanding the system call interface of a given OS lets
you write useful programs under it	
	

• Natural questions to ask:	
 	

‣ is this the right interface? how to evaluate?	
 	

‣ how can these system calls be implemented?	

18

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• We have programs, so why do we need processes?

Why Processes?

19

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Overview
• Questions that we explore	

‣ How are processes created?	

• From binary program to process	

‣ How is a process represented and managed?	

• Process creation, process control block	

‣ How does the OS manage multiple processes?	

• Process state, ownership, scheduling	

‣ How can processes communicate?	

• Interprocess communication, concurrency, deadlock

20

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Supervisor and User Modes
• OS runs in supervisor mode	

‣ Has access to protected instructions only available in that
mode (ring 0)	

‣ Can manage the entire system	

• OS loads processes into user mode	

‣ Many processes can run in user mode	

• How does OS get programs loaded into processes in
user mode and keep them straight?

21

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process
• Address space + threads +

resources	

• Address space contains code
and data of a process	

• Threads are individual
execution contexts	

• Resources are physical support
necessary to run the process
(memory, disk, …)

Text

Data

22

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process Address Space
• Program (Text)	

• Global Data (Data)	

• Dynamic Data (Heap)	

• Thread-local Data (Stack)	

• Each thread has its own stack

23

0x00000000

0xFFFFFFFF OS kernel [protected]

stack

shared libraries

heap (malloc/free)

read/write segment
.data, .bss

read-only segment
.text, .rodata

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process Address Space
int value = 5; Global
!
int main()
{
 int *p; Stack

!
 p = (int *)malloc(sizeof(int)); Heap
!
 if (p == 0) {
 printf("ERROR: Out of memory\n”);
 return 1;
 }

 *p = value;
 printf("%d\n", *p);
 free(p);
 return 0;
}

24

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Heap + stack
OS kernel [protected]

stack

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

main
argc, argv

 nums
 ncopy

#include <stdlib.h>
!
int *copy(int a[], int size) {
 int i, *a2;
!
 a2 = malloc(
 size * sizeof(int));
 if (a2 == NULL)
 return NULL;
!
 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}
!
int main(...) {
 int nums[4] = {2,4,6,8};
 int *ncopy = copy(nums, 4);
 // ... do stuff ...
 free(ncopy);
 return 0;
}

25

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Heap + stack
OS kernel [protected]

stack

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

main
argc, argv

 nums
 ncopy

2 4 6 8

26

#include <stdlib.h>
!
int *copy(int a[], int size) {
 int i, *a2;
!
 a2 = malloc(
 size * sizeof(int));
 if (a2 == NULL)
 return NULL;
!
 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}
!
int main(...) {
 int nums[4] = {2,4,6,8};
 int *ncopy = copy(nums, 4);
 // ... do stuff ...
 free(ncopy);
 return 0;
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Heap + stack
OS kernel [protected]

stack

heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

main
argc, argv

 nums
 ncopy

2 4 6 8

copy
 i a2

27

#include <stdlib.h>
!
int *copy(int a[], int size) {
 int i, *a2;
!
 a2 = malloc(
 size * sizeof(int));
 if (a2 == NULL)
 return NULL;
!
 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}
!
int main(...) {
 int nums[4] = {2,4,6,8};
 int *ncopy = copy(nums, 4);
 // ... do stuff ...
 free(ncopy);
 return 0;
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Heap + stack
OS kernel [protected]

stack

!
heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

main
argc, argv

 nums
 ncopy

2 4 6 8

copy
 i a2

malloc

28

#include <stdlib.h>
!
int *copy(int a[], int size) {
 int i, *a2;
!
 a2 = malloc(
 size * sizeof(int));
 if (a2 == NULL)
 return NULL;
!
 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}
!
int main(...) {
 int nums[4] = {2,4,6,8};
 int *ncopy = copy(nums, 4);
 // ... do stuff ...
 free(ncopy);
 return 0;
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Heap + stack
OS kernel [protected]

stack

!
heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

main
argc, argv

 nums
 ncopy

2 4 6 8

copy
 i a2

29

#include <stdlib.h>
!
int *copy(int a[], int size) {
 int i, *a2;
!
 a2 = malloc(
 size * sizeof(int));
 if (a2 == NULL)
 return NULL;
!
 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}
!
int main(...) {
 int nums[4] = {2,4,6,8};
 int *ncopy = copy(nums, 4);
 // ... do stuff ...
 free(ncopy);
 return 0;
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Heap + stack
OS kernel [protected]

stack

!
heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

main
argc, argv

 nums
 ncopy

2 4 6 8

copy
 i a2

30

#include <stdlib.h>
!
int *copy(int a[], int size) {
 int i, *a2;
!
 a2 = malloc(
 size * sizeof(int));
 if (a2 == NULL)
 return NULL;
!
 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}
!
int main(...) {
 int nums[4] = {2,4,6,8};
 int *ncopy = copy(nums, 4);
 // ... do stuff ...
 free(ncopy);
 return 0;
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Heap + stack
OS kernel [protected]

stack

!
heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

main
argc, argv

 nums
 ncopy

2 4 6 8

copy
 i a2

31

#include <stdlib.h>
!
int *copy(int a[], int size) {
 int i, *a2;
!
 a2 = malloc(
 size * sizeof(int));
 if (a2 == NULL)
 return NULL;
!
 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}
!
int main(...) {
 int nums[4] = {2,4,6,8};
 int *ncopy = copy(nums, 4);
 // ... do stuff ...
 free(ncopy);
 return 0;
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Heap + stack
OS kernel [protected]

stack

!
heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

main
argc, argv

 nums
 ncopy

2 4 6 8

copy
 i a2

2 4 6 8

32

#include <stdlib.h>
!
int *copy(int a[], int size) {
 int i, *a2;
!
 a2 = malloc(
 size * sizeof(int));
 if (a2 == NULL)
 return NULL;
!
 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}
!
int main(...) {
 int nums[4] = {2,4,6,8};
 int *ncopy = copy(nums, 4);
 // ... do stuff ...
 free(ncopy);
 return 0;
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Heap + stack
OS kernel [protected]

stack

!
heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

main
argc, argv

 nums
 ncopy

2 4 6 8

copy
 i a2

2 4 6 8

33

#include <stdlib.h>
!
int *copy(int a[], int size) {
 int i, *a2;
!
 a2 = malloc(
 size * sizeof(int));
 if (a2 == NULL)
 return NULL;
!
 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}
!
int main(...) {
 int nums[4] = {2,4,6,8};
 int *ncopy = copy(nums, 4);
 // ... do stuff ...
 free(ncopy);
 return 0;
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Heap + stack
OS kernel [protected]

stack

!
heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

main
argc, argv

 nums
 ncopy

2 4 6 8

2 4 6 8

34

#include <stdlib.h>
!
int *copy(int a[], int size) {
 int i, *a2;
!
 a2 = malloc(
 size * sizeof(int));
 if (a2 == NULL)
 return NULL;
!
 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}
!
int main(...) {
 int nums[4] = {2,4,6,8};
 int *ncopy = copy(nums, 4);
 // ... do stuff ...
 free(ncopy);
 return 0;
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Heap + stack
OS kernel [protected]

stack

!
heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

main
argc, argv

 nums
 ncopy

2 4 6 8

2 4 6 8

free

35

#include <stdlib.h>
!
int *copy(int a[], int size) {
 int i, *a2;
!
 a2 = malloc(
 size * sizeof(int));
 if (a2 == NULL)
 return NULL;
!
 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}
!
int main(...) {
 int nums[4] = {2,4,6,8};
 int *ncopy = copy(nums, 4);
 // ... do stuff ...
 free(ncopy);
 return 0;
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Heap + stack
OS kernel [protected]

stack

!
heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

main
argc, argv

 nums
 ncopy

2 4 6 8

free

36

#include <stdlib.h>
!
int *copy(int a[], int size) {
 int i, *a2;
!
 a2 = malloc(
 size * sizeof(int));
 if (a2 == NULL)
 return NULL;
!
 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}
!
int main(...) {
 int nums[4] = {2,4,6,8};
 int *ncopy = copy(nums, 4);
 // ... do stuff ...
 free(ncopy);
 return 0;
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Heap + stack
OS kernel [protected]

stack

!
heap (malloc/free)

read/write segment
globals

read-only segment
(main, f, g)

main
argc, argv

 nums
 ncopy

2 4 6 8

37

#include <stdlib.h>
!
int *copy(int a[], int size) {
 int i, *a2;
!
 a2 = malloc(
 size * sizeof(int));
 if (a2 == NULL)
 return NULL;
!
 for (i = 0; i < size; i++)
 a2[i] = a[i];
 return a2;
}
!
int main(...) {
 int nums[4] = {2,4,6,8};
 int *ncopy = copy(nums, 4);
 // ... do stuff ...
 free(ncopy);
 return 0;
}

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process Creation
• Parent process create children processes, 	

‣ which, in turn create other processes, forming a tree of
processes 	

• Resource sharing options	

‣ Parent and children share all resources 	

‣ Children share subset of parent’s resources 	

‣ Parent and child share no resources 	

• Execution options	

‣ Parent and children execute concurrently 	

‣ Parent waits until children terminate

38

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process Creation
• Address space 	

‣ Child duplicate of parent 	

‣ Child has a program loaded into it 	

• UNIX examples 	

‣ fork system call creates new process	

‣ exec system call used after a fork to replace the process’s
memory space with a new program

39

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process Creation
• What happens?	

‣ New process object in kernel	

• Build process data structures	

‣ Allocate address space (abstract resource)	

• Later, allocate memory (physical resource)	

‣ Add to execution queue	

• Runnable?

40

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process Creation

41

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process Layout

42

Id=2000

State=ready

PCB of parent

RAM

OS

Processes
Parent’s memory

Process

calls fork

Id=2001 1. PCB with new
id created

2. Memory allocated for child

Initialized by copying over

 from the parent

Child’s memory

3. If parent had called wait,
 it is moved to a waiting queue

4. If child had called exec,
 its memory overwritten
 with new code & data

5. Child added to ready queue,
 all set to go now!

State=ready
PCB of child

14

Parent’s PCB Child’s PCB

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

1. PCB with new Id created

2. Memory allocated for child	

!
Initialized by copying over 	

 from the parent

Process Layout

42

Id=2000

State=ready

PCB of parent

RAM

OS

Processes
Parent’s memory

Process

calls fork

Id=2001 1. PCB with new
id created

2. Memory allocated for child

Initialized by copying over

 from the parent

Child’s memory

3. If parent had called wait,
 it is moved to a waiting queue

4. If child had called exec,
 its memory overwritten
 with new code & data

5. Child added to ready queue,
 all set to go now!

State=ready
PCB of child

14

Parent’s PCB Child’s PCB

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

1. PCB with new Id created

2. Memory allocated for child	

!
Initialized by copying over 	

 from the parent

3. If parent had called wait,	

 it is moved to a waiting queue

Process Layout

42

Id=2000

State=ready

PCB of parent

RAM

OS

Processes
Parent’s memory

Process

calls fork

Id=2001 1. PCB with new
id created

2. Memory allocated for child

Initialized by copying over

 from the parent

Child’s memory

3. If parent had called wait,
 it is moved to a waiting queue

4. If child had called exec,
 its memory overwritten
 with new code & data

5. Child added to ready queue,
 all set to go now!

State=ready
PCB of child

14

Parent’s PCB Child’s PCB

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

1. PCB with new Id created

2. Memory allocated for child	

!
Initialized by copying over 	

 from the parent

3. If parent had called wait,	

 it is moved to a waiting queue

4. If child had called exec,	

 its memory overwritten	

 with new code & data

Process Layout

42

Id=2000

State=ready

PCB of parent

RAM

OS

Processes
Parent’s memory

Process

calls fork

Id=2001 1. PCB with new
id created

2. Memory allocated for child

Initialized by copying over

 from the parent

Child’s memory

3. If parent had called wait,
 it is moved to a waiting queue

4. If child had called exec,
 its memory overwritten
 with new code & data

5. Child added to ready queue,
 all set to go now!

State=ready
PCB of child

14

Parent’s PCB Child’s PCB

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

1. PCB with new Id created

2. Memory allocated for child	

!
Initialized by copying over 	

 from the parent

3. If parent had called wait,	

 it is moved to a waiting queue

4. If child had called exec,	

 its memory overwritten	

 with new code & data

5. Child added to ready queue,	

 all set to go now!

Process Layout

42

Id=2000

State=ready

PCB of parent

RAM

OS

Processes
Parent’s memory

Process

calls fork

Id=2001 1. PCB with new
id created

2. Memory allocated for child

Initialized by copying over

 from the parent

Child’s memory

3. If parent had called wait,
 it is moved to a waiting queue

4. If child had called exec,
 its memory overwritten
 with new code & data

5. Child added to ready queue,
 all set to go now!

State=ready
PCB of child

14

Parent’s PCB Child’s PCB

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

C Program Forking Separate Process
int main()!
{!
pid_t pid;!
! /* fork another process */!
! pid = fork();!
! if (pid < 0) { /* error occurred */!
! !fprintf(stderr, "Fork Failed");!
! !exit(-1);!
! }!
! else if (pid == 0) { /* child process */!
! !execlp("/bin/ls", "ls", NULL);!
! }!
! else { /* parent process */!
! !/* parent will wait for the child to
complete */!

! !wait (NULL);!
! !printf ("Child Complete");!
! !exit(0);!
! }!
}

43

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

server

44

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

server

client

45

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

server

client

connect

46

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

server

client

server
fork() child

47

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

server

client server

child exit()’s / parent wait()’s

48

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

server

client server

parent closes its	

client connection

49

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

server

client server

50

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

server

client server

client

server

fork() child

51

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

server

client server

client server

52

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Graphically

server

client server

client server

client server

client server

client server

client server

client server

client server

client server

53

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Program Creation
• Design Choices	

‣ Resource Sharing	

• What resources of parent should the child share?	

• What about after exec?	

‣ Execution	

• Should parent wait for child?	

‣ What is the relationship between parent and child?	

• Hierarchical or grouped or …?

54

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Program Creation
• fork -- copy address space and all threads	

• forkl -- copy address space and only calling thread	

• vfork -- do not copy address space; shared between
parent and child	

• exec -- load new program; replace address space	

‣ Some resources may be transferred (open file descriptors)	

‣ Specified by arguments

55

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

A tree of processes on a typical system

56

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process Termination
• Process executes last statement and asks the operating

system to delete it (exit) 	

‣ Output data from child to parent (via wait)	

‣ Process’ resources are deallocated by operating system 	

• Parent may terminate execution of children processes
(abort) 	

‣ Child has exceeded allocated resources 	

‣ Task assigned to child is no longer required 	

‣ If parent is exiting 	

• Some operating system do not allow child to continue if  
parent terminates 	

• All children terminated - cascading termination

57

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Executing a Process
• What to execute?	

‣ Register that stores the program counter	

• Next instruction to be executed	

• Registers store state of execution in CPU	

‣ Stack pointer	

‣ Data registers	

• Thread of execution	

‣ Has its own stack

58

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Executing a Process
• Thread executes over the process’s address space	

‣ Usually the text segment	

• Until a trap or interrupt…	

‣ Time slice expires (timer interrupt)	

‣ Another event (e.g., interrupt from other device)	

‣ Exception (oops)	

‣ System call (switch to kernel mode)

59

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Relocatable Memory
• Mechanism that enables the OS to place a program in

an arbitrary location in memory	

‣ Gives the programmer the impression that they own the
processor	

• Program is loaded into memory at program-specific
locations	

‣ Need virtual memory to do this	

• Also, may need to share program  
code across processes

60

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process State
• What do we need to track about a process?	

‣ how many processes?	

‣ what’s the state of each of them?	

• Process table: kernel data structure tracking
processes on system	

• Process control block: structure for tracking process
context

61

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Scheduling Processes
• Processes transition among execution states

62

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process States
• Running	

‣ Running == in processor and in memory with all resources	

• Ready	

‣ Ready == in memory with all resources, waiting for dispatch	

• Waiting	

‣ Waiting == waiting for some  
event to occur

63

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

State Transitions
• New Process ==> Ready	

‣ Allocate resources	

‣ End of process queue	

• Ready ==> Running	

‣ Head of process queue	

‣ Scheduled	

• Running ==> Ready	

‣ Interrupt (Timer)	

‣ Back to end of process queue

64

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

State Transitions: Page Fault Handling

• Running ==> Waiting	

‣ Page fault exception (similar for syscall or I/O interrupt)	

‣ Wait for event	

• Waiting ==> Ready	

‣ Event has occurred (page fault serviced)	

‣ End of process queue (or head?)	

• Ready ==> Running	

‣ As before…

65

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

State Transitions: Other Issues

• Priorities	

‣ Can provide policy indicating which process should run next	

• More when we discuss scheduling…	

• Yield	

‣ System call to give up processor 	

‣ For a specific amount of time  
(sleep)	

• Exit	

‣ Terminating signal (Ctrl-C)

66

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Process Control Block

• State of running process	

• Linked list of process control information

67

Process Control Block

•! State of running process

•! Linked list of process control information

Process id

Program Counter

…

Other registers

Process state

Ptr to linked list

Main Memory (RAM)

OS

Processes

5

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Per Process Control Info
• Process state	

‣ Ready, running, waiting (momentarily)	

• Links to other processes	

‣ Children	

• Memory Management	

‣ Segments and page tables	

• Resources	

‣ Open files	

• And Much More…
68

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

/proc File System
• Linux and Solaris	

‣ ls /proc	

‣ A directory for each process	

• Various process information	

‣ /proc/<pid>/io -- I/O statistics	

‣ /proc/<pid>/environ -- Environment variables (in
binary)	

‣ /proc/<pid>/stat -- process status and info

7

69

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Context Switch
• OS switches from one execution context to another	

‣ One process to another process	

‣ Interrupt handling 	

‣ Process to kernel (mode transition, not context switch)	

• Current Process to New Process	

‣ Save the state of the current process	

• Process control block: describes the state of the process in the CPU	

‣ Load the saved context for the new process	

• Load the new process’s process control block into OS and registers	

‣ Start the new process	

• Does this differ if we are running an interrupt handler?

70

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Context Switch

71

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Context Switch
• No useful work is being done during a context switch	

‣ Speed it up and limit system calls to things that can’t be
done in user mode	

• Hardware support	

‣ Multiple register sets (Sun UltraSPARC)	

• However, hardware optimization may conflict	

‣ TLB flush is necessary	

‣ Different virtual to physical mappings on different processes

72

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Next class
• IPC

73

