
Computer and Information Science

Spring 2014	

Prof. Kevin Butler

CIS 415:
Operating Systems

Deadlock

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Last class:	

‣ Synchronization	

• Today: 	

‣ Deadlocks

2

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Pthreads Synchronization
• Mutex Locks

– Protection Critical Sections

– pthread_mutex_lock(&lock), pthread_mutex_unlock(&lock)

• Condition Variables

– For Value-based Control

– pthread_cond_wait(&cond), pthread_cond_signal(&cond)

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

pthread_mutex_t lock;!
!
big_lock() {!
!
 pthread_mutex_init(&lock);!
!
 /*!
 … initial code!
 */!
 pthread_mutex_lock(&lock);!
!
 /*!
 … critical section !
 */!
 pthread_mutex_unlock(&lock);!
!
 /* !
 … remainder !
 */!
}

Put code like around every
critical section, like big_lock

!
What if reading and writing?

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Readers-writers using Pthreads

thread_ongoing_t *ongoing;!
int nr = 0, nw = 0;!
pthread_cond_t OKR, OKW;

void req_read(void) { !
! while (nw > 0) pthread_cond_wait(&OKR); !
! nr++; !
! pthread_cond_signal(&OKR); !
} !
void rel_read(void) { !
! nr--; !
! if (nr == 0) pthread_cond_signal(&OKW); !
} !
void req_write(void) { !
! while (nr > 0 || nw > 0) pthread_cond_wait(&OKW); !
! nw++; !
} !
void rel_write(void) { !
! nw--; !
! pthread_cond_signal(&OKW); !
! pthread_cond_signal(&OKR); !
}

Reader Thread: !
! rw.req_read(); !
! read ongoing !
! rw.rel_read(); !
Writer Thread: !
! rw.req_write(); !
! modify ongoing!
! rw.rel_write();

// Initialization done elsewhere

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Dining Philosophers Problem
Philosophers alternate between	

thinking and eating.	

!

When eating, they need both	

(left and right) chopsticks.	

!

A philosopher can pick up only 1	

chopstick at a time.	

!

After eating, the philosopher	

puts down both chopsticks.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Semaphore_t chopstick[5];!
!
Philosopher(i) {!
 while () {!
 P(chopstick[i]);!
 P(chopstick[(i+1)%5];!
!
 … eat …!
!
 V(chopstick[i]); !
 V(chopstick[(i+1)%5];!
!
 … think …!
 }!
}

This is NOT correct!	

!
Though no 2
philosophers	

 use the same chopstick	

 at any time, it can so 	

 happen that they all pick	

 up 1 chopstick and wait	

 indefinitely for another.	

!
This is called a deadlock

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Definition
• A set of processes is deadlocked if each process in

the set is waiting for an event that only another
process in the set can cause.	

!

• An event could be:	

‣ Waiting for a critical section	

‣ Waiting for a condition to change	

‣ Waiting for a physical resource

8

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Conditions for Deadlock
• Mutual exclusion: The requesting process is delayed until the resource

held by another is released.	

!

• Hold and wait: A process must be holding at least 1 resource and must
be waiting for 1 or more resources held by others.	

!

• No preemption: Resources cannot be preempted from one and given to
another.	

!

• Circular wait: A set (P0,P1,…Pn) of waiting processes must exist such
that P0 is waiting for a resource held by P1, P1 is waiting for …. by P2, …
Pn is waiting for … held by P0.

9

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Resource Allocation Graph
• Vertices (V) = Processes (Pi) and Resources (Rj)	

!

• Edges (E) = Assignments (Rj->Pi, Rj is allocated to Pi) and  
Request (Pi->Rj, Pi is waiting for Rj).	

!

• For each Resource Rj, there could be multiple instances.	

!

• A requesting process can be granted any one of those instances if
available.

10

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

An example

P1 P2 P3

R1 R3

R2 R4

11

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

A deadlock

P1 P2 P3

R1
R3

R2 R4

If there is a deadlock, there will be a cycle	

 (Necessary Condition).

12

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Cycle is NOT sufficient

P1

P2

P3

R1

R2
P4

13

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Strategies for Handling Deadlocks
• Ignore the problem altogether (ostrich algorithm) since

it may occur very infrequently, cost of detection/
prevention may not be worth it.	

!

• Detect and recover after its occurrence.	

!

• Avoidance by careful resource allocation	

!

• Prevention by structurally negating one of the four
necessary conditions

14

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Deadlock Prevention
• Note that all 4 necessary conditions need to hold for

deadlock to occur. 	

• We can try to disallow one of them from happening:	

‣ Mutual exclusion: This is usually not possible to avoid with
many resources.	

‣ No preemption: This is again not easy to address with many
resources. Possible for some resources (e.g. CPU)	

‣ Hold and Wait: 	

• Allow at most 1 resource to be held/requested at any time	

• Make sure all requests are made at the same time.	

• …

15

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

‣ Circular Wait	

• Number the resources, and make sure requests are always made
in increasing/decreasing order.	

• Or make sure you are never holding a lower numbered resource
when requesting a higher numbered resource.

16

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Deadlock Avoidance
• Avoid actions that may lead to a deadlock.	

• Visualize the system as a state machine moving from 1 state
to another as each instruction is executed.	

• A state can be: safe, unsafe or deadlocked.	

• Safe state is one where	

– it is not a deadlocked state 	

– there is some sequence by which all requests can be satisfied.	

• To avoid deadlocks, we try to make only those transitions
that will take you from one safe state to another.	

• This may be a little conservative, but it avoids deadlocks

17

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Safe

Unsafe

Deadlocked

Start End

State Transitions

18

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Safe State

Max. Needs
Currently
Allocated Still Needs

P0 10 5 5
P1 4 2 2
P2 9 2 7

1 resource with 12 units of that resource available.

Current State: Free = (12 – (5 + 2 + 2)) = 3

This state is safe because, there is a sequence
(P1 followed by P0 followed by P2) by which
max needs of each process can be satisfied.

This is called the reduction sequence.

Free = 3

After reducing P1,	

Free = 5

After reducing P0,	

Free = 10

Then reduce P2.

19

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Unsafe State
What if P2 requests 1 more and is allocated 1 more?

Max. Needs
Currently
Allocated Still Needs

P0 10 5 5

P1 4 2 2

P2 9 3 6

Only P1 can be reduced. If P0 and P2 then come and ask
 for their full needs, the system can become deadlocked.

Hence, by granting P2’s request for 1 more, we have moved
 from a safe to unsafe state.

Deadlock avoidance algorithm will NOT allow such a
 transition, and will not grant P2’s request immediately.

New State:

Free = 2

This is unsafe.

20

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Deadlock Avoidance
• Deadlock avoidance essentially allows requests to be

satisfied only when the allocation of that request
would lead to a safe state.	

!

• Else do not grant that request immediately.

21

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Banker’s algorithm
• When a request is made, check to see if after the

request is satisfied, there is (at least one!) sequence
of moves that can satisfy all possible requests. ie. the
new state is safe.	

!

• If so, satisfy the request, else make the request wait.

22

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Checking for Safe State
N processes and M resources!
!
Data Structures:!
 MaxNeeds[N][M];!
 Allocated[N][M];!
 StillNeeds[N][M];!
 Free[M];!
 Temp[M];!
 Done[N];

while () {!
 Temp[j]=Free[j] for all j!
 Find an i such that !
 a) Done[i] = False!
 b) StillNeeds[i,j] <= Temp[j]!
 if so {!
 Temp[j] += Allocated[i,j] for all j!
 Done[i] = TRUE /* release Allocated[i] */!
 }!
 else if Done[i] = TRUE for all i then state is safe!
 else state is unsafe!
}

M*N^2 steps to detect if a state is safe!

23

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

An example
5 processes, 3 resource types A (10 instances), B (5 instances), C (7 instances)

A B C

P0 7 5 3

P1 3 2 2

P2 9 0 2

P3 2 2 2

P4 4 3 3

A B C

P0 0 1 0

P1 2 0 0

P2 3 0 2

P3 2 1 1

P4 0 0 2

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

A B C

3 3 2

MaxNeeds Allocated StillNeeds Free

This state is safe, because there is a reduction sequence
<P1, P3, P4, P2, P0> that can satisfy all the requests.
Exercise: Formally go through each of the steps that
update these matrices for the reduction sequence.

24

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

If P1 requests 1 more instance of A and 2 more instances of C	

 can we safely allocate these? – Note these are all allocated together!	

 and we denote this set of requests as (1,0,2)

If allocated the resulting state would be:

A B C

P0 7 5 3

P1 3 2 2

P2 9 0 2

P3 2 2 2

P4 4 3 3

A B C

P0 0 1 0

P1 3 0 2

P2 3 0 2

P3 2 1 1

P4 0 0 2

A B C

P0 7 4 3

P1 0 2 0

P2 6 0 0

P3 0 1 1

P4 4 3 1

A B C

2 3 0

MaxNeeds Allocated StillNeeds Free

This is still safe since there is a reduction sequence
<P1,P3,P4,P0,P2> to satisfy all the requests. (work this out!)	

Hence the requested allocations can be made.

25

An example

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

After this allocation, P0 then makes a request for (0,2,0).	

If granted the resulting state would be:

A B C

P0 7 5 3

P1 3 2 2

P2 9 0 2

P3 2 2 2

P4 4 3 3

A B C

P0 0 3 0

P1 3 0 2

P2 3 0 2

P3 2 1 1

P4 0 0 2

A B C

P0 7 2 3

P1 0 2 0

P2 6 0 0

P3 0 1 1

P4 4 3 1

A B C

2 1 0

MaxNeeds Allocated StillNeeds Free

This is an UNSAFE state.	

!

So this request should NOT be granted.

An example

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Handling Deadlocks
• Ignore the problem altogether (ostrich algorithm)

since it may occur very infrequently, cost of
detection/prevention may not be worth it.	

• Detect and recover after its occurrence.	

• Avoidance by careful resource allocation	

• Prevention by structurally negating one of the four
necessary conditions

27

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Detection & Recovery
• If there is only 1 instance of each resource, then a

cycle in the resource-allocation graph is a “sufficient”
condition for a deadlock, i.e. you can run a cycle-
detection algorithm to detect a deadlock.	

• With multiple instances of each resource, ???

28

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Detection Algorithm
N processes, M resources!
!
Data structures:!
 Free[M];!
 Allocated[N][M];!
 Request[N][M];!
 Temp[M];!
 Done[N];

1. Temp[i] = Free[i] for all i!
 Done[i] = FALSE unless there is!
 no resources allocated to it.!
!
2. Find an index i such that both!
 (a) Done[i] == FALSE!
 (b) Request[i] <= Temp (vector comp.)!
 If no such i, go to step 4.!
!
3. Temp = Temp + Allocated[i] (vector add)!
 Done[i]= TRUE; /* release Allocated[i] */!
 Go to step 2.!
!
4. If Done[i]=FALSE for some i, then!
 there is a deadlock.

M*N^2 algorithm!

Basic idea is that there	

 is at least 1 execution 	

 that will unblock all	

 processes.

29

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Example
5 processes, 3 resource types A (7 instances), B (2 instances), C (6 instances)

A B C

P0 0 1 0

P1 2 0 0

P2 3 0 3

P3 2 1 1

P4 0 0 2

A B C

P0 0 0 0

P1 2 0 2

P2 0 0 0

P3 1 0 0

P4 0 0 2

A B C

0 0 0

Allocated FreeRequest

This state is NOT deadlocked.	

!

By applying algorithm, the sequence <P0, P2, P3, P1, P4>
will result in Done[i] being TRUE for all processes.

30

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Recovery
• Once deadlock is detected what should we do?	

‣ Preempt resources (whenever possible)	

‣ Kill the processes (and forcibly remove resources)	

‣ Checkpoint processes periodically, and roll them back to
last checkpoint (relinquishing any resources they may have
acquired since then).

31

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Ordering
• To date: we’ve thought about how to order events in

order to provide synchronization and prevent
deadlock	

• What have we been relying on in order to get
ordering?	

‣ A consistent clock amongst processes	

• What happens when processes  
aren’t sharing the same clock?	

‣ Distributed system

32

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Happened-Before
• Without sharing a clock, it’s not possible to get a

total ordering over events	

‣ Instead, we get partial ordering	

• Within a sequential process, all events are executed
in a totally ordered fashion	

• Message can only be received after it’s sent	

• Happened-before relation → reflects partial ordering

33

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Happened-Before
• Properties of the happened-before relation	

‣ If A, B are events in the same process and A executes  
before B then A → B	

‣ If A is a send message event from a process and B is a
receive message event from another process then A → B	

‣ If A → B and B → C then A → C (what property is this?)	

!

• If events A and B are not related by → then they can
execute concurrently (no effect of A on B)

34

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Concurrent vs →

35

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Implementing →
• Associate a timestamp with each system event	

‣ Require that for every pair of events A and B, if A → B, then
the timestamp of A is less than the timestamp of B	

• Associate logical (Lamport) clock LCi with process Pi	

‣ Implement as a simple counter incremented between any
two successive events executed within a process.	

• Process advances logical clock when receiving
message with timestamp > current value of LC	

• If TSA == TSB, events are concurrent (use process ID
to break ties and create a total ordering)

36

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Summary
• Deadlocks	

‣ Necessary and sufficient conditions	

• Resource allocation graph	

‣ Strategies	

• Ignore	

• Prevention	

‣ Safe States	

• Avoidance	

• Detection and recovery	

• Distributed ordering

37

