
Computer and Information Science

CIS 415:
Operating Systems

File Systems

Spring 2014	

Prof. Kevin Butler

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Last class:	

‣ Virtual Memory	

• Today: 	

‣ Files

2

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

A System Problem?
• Got some data in your program	

‣ Want to keep it for a while	

• Got a long running program	

‣ Want to prevent loss of data if it crashes	

• Got a lot of programs, system resources, data, etc.
stored	

‣ Want a mechanism to refer to them all

3

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

File System Interface
• Most visible part of the OS	

• Consists of	

‣ Files	

‣ Directories	

• And sometimes	

‣ Partitions

4

ptg12449831

8.2 Models 325

8.2 Models

The following simple models illustrate some basic principles of file systems and
their performance.

8.2.1 File System Interfaces

A basic model of a file system is shown in Figure 8.1, in terms of its interfaces.

The locations where logical and physical operations occur are also labeled in the
figure. See Section 8.3.12, Logical versus Physical I/O, for more about these.

One approach for studying file system performance is to treat it as a black box,
focusing on the latency of the object operations. This is explained in more detail in
Section 8.5.2, Latency Analysis.

8.2.2 File System Cache

A generic file system cache stored in main memory is pictured in Figure 8.2, ser-
vicing a read operation.

The read returns either from cache (cache hit) or from disk (cache miss). Cache
misses are stored in the cache, populating the cache (warming it up).

Figure 8-1 File system interfaces

From the Library of Kevin Butler

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

What is a file?
!

• A repository for data	

!

• Is long lasting (until explicitly deleted).	

!

• Also, may refer to a system resource (device)

5

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Why not just an address space?

!

• You may want data to persist longer than a process	

• You may want data that is larger than a virtual
address space	

• Easier to share the data across processes.

6

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Two aspects to consider
!

• User’s view	

‣ Naming, type, structure, access, attributes, operations, …	

!

• System implementation

7

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Naming
!

• Typically x.y	

!

• x is supposed to give some clue about contents	

!

• y is supposed to be the nature of the file.

8

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Structure
!

• Byte stream	

!

• Sequence of Records	

!

• Indexed Records

9

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Types of File Objects
• Regular files (containing data)	

!

• Directories	

!

• Character special files (access a character at a time)	

!

• Block special files (access a block at a time)

10

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Attributes
!

• protection, creator, owner, creation time, access time,
current size, max size, record length, lock flags, ...

11

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

File Operations
• Sequential Access	

‣ reset	

‣ read next (advance file pointer automatically)	

‣ write next (advance file pointer automatically)	

• Direct Access	

‣ read n	

‣ write n	

‣ position to n	

‣ read next	

‣ write next 	

• n = relative block number
12

ptg12449831

328 Chapter 8 ! File Systems

8.3.3 Random versus Sequential I/O
A series of logical file system I/O can be described as random or sequential, based
on the file offset of each I/O. With sequential I/O, the next I/O begins at the end of
the previous I/O. Random I/O have no apparent relationship between them, and
the offset changes randomly. A random file system workload may also refer to
accessing many different files at random. Figure 8.4 illustrates these access pat-
terns, showing an ordered series of I/O and example file offsets.

Due to the performance characteristics of certain storage devices (described in
Chapter 9, Disks), file systems have historically attempted to reduce random I/O
by placing file data on disk sequentially and contiguously. The term fragmentation
describes when file systems do this poorly, causing file placement to become scat-
tered over a drive, so that sequential logical I/O yields random physical I/O.

File systems may measure logical I/O access patterns so that they can identify
sequential workloads, and then improve their performance using prefetch or read-
ahead. The next sections cover these topics.

Table 8-1 Example Cache Types

Cache Example

Page cache operating system page cache

File system primary cache ZFS ARC

File system secondary cache ZFS L2ARC

Directory cache directory cache, DNLC

inode cache inode cache

Device cache ZFS vdev

Block device cache buffer cache

Figure 8-4 Sequential and random file I/O

From the Library of Kevin Butler

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Sequential File Access

13

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Sequential File Access
Simulation of direct access:

14

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Directory
• A way of organizing files.	

!

• Each directory entry has:	

‣ File/directory name	

‣ A way (pointer) to get to the data blocks of that file/
directory

15

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Flat (only 1 directory) vs. hierarchical file system	

• File names: relative vs. absolute	

• Directory Operations:	

‣ Create	

‣ Delete directory	

‣ Open Dir	

‣ Close Dir	

‣ Read Dir	

‣ Rename	

‣ Link (allow a file to appear in more than 1 directory)	

‣ Unlink

Filesystem details

16

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Filesystem Hierarchy Standard
• UNIX filesystem hierarchy standard (FHS) is a convention	

‣ enables software and users to predict the location of installed files and
directories

17

/

bin
boot
etc
home
lib
sbin
tmp
usr
var

essential command binaries

static boot loader files

host system configuration

user directories

shared libs & kernel modules

system binaries

temp files

shareable read-only data

spool files, logs, etc.

bin
lib
local
share

bin
etc
man
sbinshare

etc
man

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Links in UNIX
• Makes a file appear in more than 1 directory.	

• Is a convenience in several situations.	

• 2 types of links:	

‣ Soft links	

‣ Hard links

18

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Soft links
!

‣ Create a file which contains the name of the other file.	

‣ Use this path name to get to the actual file when it is
accessed.	

‣ Problem: Extra overhead of parsing and following
components till the file is reached.

19

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Hard links
!

‣ Create a directory entry and make a reference that file.	

• Others may reference the same file	

‣ Problem: What if the creator wants to delete the file?	

• There are still other references to the file, potentially.	

• Cannot free up until all the other references are removed.	

• Done by keeping a counter that is incremented for each hard link.
On removing a link, decrement counter. Only if counter is 0,
remove the file.

20

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Partitions
• A way of organizing directories	

!

• Each partition contains a:	

‣ File system of directories	

!

• Examples:	

‣ Root file system ‘/’	

‣ Boot file system ‘/boot’	

‣ User’s homes ‘/home’

21

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

File System Mounting

22

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

File System Mounting

23

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

File Sharing
• In a multi-user system,	

‣ There is interest in sharing files	

• System files	

‣ Shared by all 	

‣ Examples?	

• Per user files	

‣ May want to work with others	

‣ Or with particular groups of users

24

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

File Sharing
• Where are the files to share?	

• Files and Links	

‣ Short cut through the file system	

• Hard and soft	

• Directories	

‣ Must provide the other user or group access to your

directory	

• Remote file systems	

‣ Access files on another machine	

‣ Must provide the other user or group access to your
machine and directory

25

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

User and Group Identity
• User identity	

‣ UID in UNIX 	

‣ Security ID in Windows NT	

• Group identity	

‣ GID in UNIX	

‣ Group ID in Windows NT	

• Give users and/or groups access to your files to
share them

26

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Protection
• File owner/creator should be able to control:	

‣ what can be done	

‣ by whom  

• Types of access	

‣ Read	

‣ Write	

‣ Execute	

‣ Append	

‣ Delete	

‣ List
27

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Access Control: Mode Bits
• Three classes of users: public, group, owner	

• Three types of access permissions:	

‣ read, write, execute	

!

• Example:

Owner Group Public
rwx= 111
Octal 7 5 5

101 101

What if no exec access and only owner can read/write?
28

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

UNIX File Permissions

29

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Access Control/Authorization

• An access control system determines what rights a
particular entity has for a set of objects	

• It answers the question	

‣ E.g., do you have the right to read /etc/passwd	

‣ Does Alice have the right to view the CIS website?	

‣ Do students have the right to share project data?	

‣ Does Prof. Butler have the right to change your grades?	

• An Access Control Policy answers these questions
30

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Simplified Access Control
• Subjects are the active entities that do things	

‣ E.g., you, Alice, students, Prof. Butler	

• Objects are passive things that things are done to	

‣ E.g., /etc/passwd, CS website, project data, grades	

• Rights are actions that are taken	

‣ E.g., read, view, share, change

31

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Policy Goals
• Secrecy	

‣ Don’t allow reading by unauthorized subjects	

‣ Control where data can be written by authorized subjects	

• Why is this important?	

• Integrity	

‣ Don’t permit dependence on lower integrity data/code	

• Why is this important?	

‣ What is “dependence”?	

• Availability	

‣ The necessary function must run	

‣ Doesn’t this conflict with above?

32

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

The Access Matrix
• An access matrix is one way to

represent policy.	

‣ Frequently used mechanism for
describing policy	

• Columns are objects, subjects
are rows.	

• To determine if Si has right to
access object Oj, find the
appropriate entry.	

• Succinct descriptor for  
O(|S|*|O|) entries	

• There is a matrix for each right.

O O O

S Y Y N

S N Y N

S N Y Y

33

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Access Control
• Suppose the private key file

for J is object O1	

‣ Only J can read	

• Suppose the public key file
for J is object O2	

‣ All can read, only J can modify	

• Suppose all can read and
write from object O3	

• What’s the access matrix?

O O O

J ? ? ?

S ? ? ?

S ? ? ?

34

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Trusted Processes
• Does it matter if we do not trust some of J’s

processes?

O O O

J R RW RW

S N R RW

S N R RW

35

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Secrecy
• Does the following protection state ensure the

secrecy of J’s private key in O1?

O O O

J R RW RW

S N R RW

S N R RW

36

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Integrity
• Does the following access matrix protect the

integrity of J’s public key file O2?

O O O

J R RW RW

S N R RW

S N R RW

37

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Protection vs Security
• Protection 	

‣ Security goals met under trusted processes	

‣ Protects against an error by a non-malicious entity	

• Security	

‣ Security goals met under potentially malicious processes	

‣ Protects against any malicious entity	

‣ Hence, For J:	

• Non-malicious process shouldn’t leak the private key by writing it to O3	

• A potentially malicious process may contain a Trojan horse that can
write the private key to O3

38

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Least Privilege
• Limit permissions to those required and no more	

• Consider three processes for user J	

‣ Restrict privilege of the process J1 to prevent leaks

O O O

J R R N

J N RW N

J N R RW

39

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Summary
• File System Interface	

‣ Files	

‣ Directories	

‣ Partitions	

• Operations on the interface	

‣ Mounting (partitions)	

‣ Sharing (files)	

‣ Protection (files)

40

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Next time: File System Implementation

41

