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• Last class:	


‣ File System Interface	


• Today: 	


‣ File System Implementation
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Protection vs Security
• Protection 	


‣ Security goals met under trusted processes	


‣ Protects against an error by a non-malicious entity	


• Security	


‣ Security goals met under potentially malicious processes	


‣ Protects against any malicious entity	


‣ Hence, For J:	


• Non-malicious process shouldn’t leak the private key by writing it to O3	


• A potentially malicious process may contain a Trojan horse that can 
write the private key to O3
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Disks as Secondary Store
• What makes them convenient for storing files?	


‣ Rewrite in place	


• Read, modify in memory, write back to original location	


‣ Access any block (sequentially or random)	


• Gotta move the head to get there	


• More detail next time
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File Control Block
• Logical file system’s representation of a file -- stored 

on disk 	


‣ In UNIX, called an inode
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Filesystem Structures
• On-disk structures	


‣ Boot control block	


• Info to boot the OS from the disk	


• Typically, the first block of the boot partition (boot block)	


‣ Partition control block	


• Info about a file system (number of blocks -- fixed size)	


• Includes free block information (superblock)	


‣ Directory Structure	


‣ File Control Blocks

6



Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Filesystem Structures
• In-memory structures	


‣ Partition table	


• Current mounted partitions 	


‣ Directory structure	


• Information on recently accessed directories	


‣ System-wide, open file table	


• All currently open files	


‣ Per-process, open file table	


• All of a given process’s open files
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fd=open(“a”,…); 
… 

read(fd,…); 
… 

close(fd);

P1

In-memory structures

fd=open(“b”,…); 
… 

write(fd,…); 
… 

close(fd);

P3

OS

inode of	

“b”

inode of	

“a”

Per-process	

Open File	

Descriptor	


Table

System-wide	

Open File	


Descriptor table

(all in	

Memory)

fd=open(“a”,…); 
… 

read(fd,…); 
… 

close(fd);

P2

For open() syscall:
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In-Memory File Structures
• To open and read a file	


‣ Index is a file descriptor
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Partition Structures
• Layout of a file system on a disk	


‣ Raw: no file system structure	


• E.g., swap space, database	


‣ Cooked: a file system structure	


• E.g., directories
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Boot Partition
• Contains information to boot the system	


‣ Image to be loaded at boot time	


• May boot more than one system	


‣ How is this done?	


‣ Bootloader is booted first (GRUB)	


• The you choose the OS to boot
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Mount Table
• OS has an in-memory table to store… 	


‣ Each file system that has been mounted	


• A file system (partition) is a device in UNIX	


‣ Where it is mounted	


• A directory	


‣ The type of the file system 	


• Physical file system (e.g., ext3, ntfs, …)	


‣ Some other attributes 	


• E.g., Read-only
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File System Layers
Virtual File System

Physical File System

Device Drivers
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Virtual File System
• File systems have general and storage method-

dependent parts	


‣ Virtual file system is specific to the OS	


• File system-generic operations	


• Works with inodes (FCB), files, directories, superblocks 
(partitions)	


• The stuff that we have discussed	


‣ Physical file system is specific to how secondary storage will 
be used to manage data	


• Converts the objects above into blocks
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Virtual File System
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• View the disk as a logical sequence of blocks	


• A block is the smallest unit of allocation.	


• Issues:	


‣ How do you assign the blocks to files?	


‣ Given a file, how do you find its blocks?

Filesystem Implementation
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File Allocation
• Direct access of disks gives us flexibility in 

implementing files	


‣ Relate to memory management problem	


• Choices	


‣ Contiguous	


‣ Non-contiguous	


• Linked	


• Indexed
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Contiguous Allocation
• Allocate a sequence of contiguous blocks to a file.	


• Advantages:	


‣ Need to remember only starting location to access any 
block	


‣ Good performance when reading successive blocks on disk	


• Disadvantages:	


‣ File size has to be known a priori.	


‣ External fragmentation
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Linked List Allocation
• Keep a pointer to first block of a file. 	


• The first few bytes of each block point to the next 
block of this file.	


• Advantages: No external fragmentation	


• Disadvantages: Random access is slow!
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Linked List Using Index
• In the previous scheme, we needed to go to disk  

to chase pointers since memory cannot hold all the 
blocks.	


• Why not remove the pointers from the blocks, and 
maintain the pointers separately?	


• Perhaps, then all (or most) of the pointers can fit in 
memory.	


• Allocation is still done using linked list.	


• However, pointer chasing can be done “entirely” in 
memory.
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File 1 File 2

Disk Blocks

Table of 

Pointers 

(in memory?) 

!
Called FAT 

in DOS

Blocks & Pointers
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Indexed Allocation
• For each file, direct pointers to all its blocks.	


• However, the number of pointers for a file can itself become 
large.	


• UNIX uses inodes.	


• An inode contains:	


‣ File attributes (time of creation, permissions, ….)	


‣ 10 direct pointers (logical disk block ids)	


‣ 1 one-level indirect pointer (points to a disk block which in turn contains 
pointers)	


‣ 1 two-level indirect pointer (points to a disk block of pointers to disk 
blocks of pointers)	


‣ 1 three-level indirect pointer (points to a disk block of pointers to disk 
blocks of pointers to pointers of disk blocks)
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Inodes

Filename 
Time 
Perm. 

 …

Disk Block

Disk Block Disk Block

Disk Block Disk Block Disk Block

Data

Disk Block
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Disk Block
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Disk Block

Data

Disk Block



Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Tracking free blocks
• List of free blocks	


‣ bit map: used when you can store the entire bit map in 
memory.	


‣ linked list of free blocks	


• each block contains ptrs to free blocks, and last ptr points to 
another block of ptrs. (in UNIX).	


• Pointer to a free FAT entry, which in turn points to another free 
entry, etc. (in DOS)
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• Exercise: Given that the FAT is in memory, find out 
how many disk accesses are needed to retrieve block 
“x” of a file from disk. (in DOS)	


!

• Exercise: Given that the inode for a file is in memory, 
find out how many disk access are needed to retrieve 
block “x” of this file from disk. (in UNIX)
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Finding Files
• Now we know how to retrieve the blocks of a file 

once we know:	


‣ The FAT entry for DOS	


‣ The inode of the file in UNIX	


!

• But how do we find these in the first place?	


‣ The directory where this file resides should contain this 
information
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Directory
• Contains a sequence (table) of entries for each file.	


• In DOS, each entry has	


‣ [Fname , Extension , Attributes , Time , Date , Size , First 
Block #]	


• In UNIX, each entry has	


‣ [Fname, inode #]
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Accessing a file block with DOS
• Go to “\” FAT entry (in memory)	


• Go to corresponding data block(s) of “\” to find 
entry for “a”	


• Read 1st data block of “a” to check if “b” present. 
Else, use the FAT entry to find the next block of “a” 
and search again for “b”, and so on. Eventually you will 
find entry for “b”.	


• Read 1st data block of “b” to check if “c” present...	


• Read the relevant block of “c”, by chasing the FAT 
entries in memory.
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Accessing File Block in UNIX

• Get “/” inode from disk (usually fixed, e.g. #2)	


• Get block after block of “/” using its inode until entry 
for “a” is found (gives its inode #).	


• Get inode of “a” from disk	


• Get block after block of “a” until entry for “b” is 
found (gives its inode #)	


• Get inode of “b” from disk
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• Get block after block of “b” till entry for “c” is found 
(gives its inode #)	


• Get inode of “c” from disk	


• Find out whether block you are searching for is in 1st 
10 ptrs, or 1-level or 2-level or 3-level indirect.	


• Based on this you can either directly get the block, or 
retrieve it after going through the levels of 
indirection.

30
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Inode Caching
• Imagine searching through the inodes each time you 

do a read() or write() on a file	


• Too much overhead!	


• However, once you have the inode of the file (or a 
FAT entry in DOS), then it is fairly efficient!	


• You want to cache the inode (or the ID of the FAT 
entry) for a file in memory and keep re-using it.	


• Open file descriptor table kept in memory does this 
for us
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fd=open(“a”,…); 
… 

read(fd,…); 
… 

close(fd);

P1

open() syscall

fd=open(“b”,…); 
… 

write(fd,…); 
… 

close(fd);

P3

OS

inode of 
“b”

inode of 
“a”

Per-process 
Open File 
Descriptor 

Table

System-wide 
Open File 

Descriptor table

(all in 
Memory)

fd=open(“a”,…); 
… 

read(fd,…); 
… 

close(fd);

P2
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File Caching
!

• Even if after all this (i.e. bringing the pointers to 
blocks of a file into memory), may not suffice since 
we still need to go to disk to get the blocks 
themselves.	


!

• How do we address this problem?	


‣ Cache disk (data) blocks in main memory	


‣ Called file caching
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File Caching/Buffering
• Cache disk blocks that are in need in physical memory.	


• On a read() system call, first look up this cache to 
check if block is present.	


‣ This is done in software	


‣ Look up is done based on logical block id.	


‣ Typically perform some kind of hashing	


• If present, copy this from OS cache/buffer into the data 
structure passed by user in the read() call.	


• Else, read block from disk, put in OS cache and then 
copy to user data structure.

34



Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

File Caching/Buffering
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• On a write, should we do write-back or a write-
through?	


‣ With write-back, you may lose data that is written if 
machine goes down before write-back	


‣ With write-through, you may be losing performance	


• Loss in opportunity to perform several writes at a time	


• Perhaps the write may not even be needed!	


• DOS uses write-through

Filesystem Caching
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Filesystem Caching (UNIX)
• In UNIX, 	


‣ writes are buffered, and they are propagated in the 
background after a delay, i.e. every 30 secs there is a  
sync() call which propagates dirty blocks to disk.	


‣ This is usually done in the background.	


‣ Metadata (directories/inodes) writes are propagated 
immediately.
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FS Prefetch
• Often we are reading data sequentially (e.g., file 

system backup)	


• If FS detects sequential workload based on current/
previous I/O offsets, it can predict that the next reads 
will likely be sequential as well	


• Populate the filesystem cache with these pre-fetches

38
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8.3 Concepts 329

8.3.4 Prefetch
A common file system workload involves reading a large amount of file data
sequentially, for example, for a file system backup. This data may be too large to fit
in the cache, or it may be read only once and is unlikely to be retained in the cache
(depending on the cache eviction policy). Such a workload would perform rela-
tively poorly, as it would have a low cache hit rate.

Prefetch is a common file system feature for solving this problem. It can detect a
sequential read workload based on the current and previous file I/O offsets, and
then predict and issue disk reads before the application has requested them. This
populates the file system cache, so that if the application does perform the
expected read, it results in a cache hit (the data needed was already in the cache).
An example scenario is as follows, given no data cached to begin with:

1. An application issues a file read(), passing execution to the kernel. 

2. The file system issues the read to disk. 

3. The previous file offset pointer is compared to the current location, and if 
they are sequential, the file system issues additional reads. 

4. The first read completes, and the kernel passes the data and execution back 
to the application.

5. Any additional reads complete, populating the cache for future application 
reads. 

This scenario is also illustrated in Figure 8.5, where application reads to offsets 1
and then 2 trigger prefetch of the next three offsets.

When prefetch detection works well, applications show significantly improved
sequential read performance; the disks keep ahead of application requests. When

Figure 8-5 File system prefetch

From the Library of Kevin Butler
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Linux FS Caches

39
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342 Chapter 8 ! File Systems

Page Cache
The page cache caches virtual memory pages, including file system pages, improv-
ing the performance of file and directory I/O. The size of the page cache is dynamic,
and it will grow to use available memory, freeing it again when applications need it
(along with paging, as controlled by swappiness; see Chapter 7, Memory).

Pages of memory that are dirty (modified) and are for use by a file system are
flushed to disk by kernel threads. Prior to Linux 2.6.32, there was a pool of page
dirty flush (pdflush) threads, between two and eight as needed. These have since
been replaced by the flusher threads (named flush), which are created per device to
better balance the per-device workload and improve throughput. Pages are flushed
to disk for the following reasons:

! After an interval (30 s) 

! The sync(), fsync(), or msync() system calls

! Too many dirty pages (dirty_ratio) 

! No available pages in the page cache 

If there is a system memory deficit, another kernel thread, the page-out dae-
mon (kswapd, also known as the page scanner), may also find and schedule dirty
pages to be written to disk so that it can free the memory pages for reuse (see

Figure 8-10 Linux file system caches

From the Library of Kevin Butler

Page cache: cache of virtual 
memory pages including 
memory-mapped files	


Buffer cache: stores blocks from 
disk, now unified with the page 
cache (why?)	


Page scanner: schedules dirty 
pages to be written to disk	


Dentry cache: remembers 
mappings from directory entry 
to inode (for what purpose?)	


Inode cache: stores inodes in 
hash table for fast lookup
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Cache space Limitations
• We need a replacement algorithm.	


• Here we can use LRU, since the OS gets called on 
each reference to a block and the management is 
done in software.	


• However, you typically do not do this on demand!	


• Use High and Low water marks:	


‣ When the # of free blocks falls below Low water mark, evict 
blocks from memory till it reaches High water mark.
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Buffer/Cache Management

Flusher() 
Propagates writes 

to disk. 
Done in background 

periodically

Replace/Evict() 
Creates free blocks 
Called when free list 

< low water mark, and 
it keeps evicting till 

free list >= high 
water mark

Free List

Clean Cached 
Blocks

Dirty Cached 
Blocks
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Block Sizes
!

• Larger block sizes => higher internal fragmentation.	


• Larger block sizes => higher disk transfer rates	


• Median file size in UNIX environments ~ 1K	


• Typical block sizes are of the order of 512, 1K or 4K.
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Free Space
!

• Find the block to use when one is needed	


‣ Find space quickly	


‣ Keep storage reasonable	


• Options	


‣ Bit vector	


‣ Linked List	


‣ Grouping	


‣ Counting
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Free-Space Management

• Bit vector   (n blocks)

…
0 1 2 n-1

bit[i] =
!
"
# 0 ⇒ block[i] free!

1  ⇒ block[i] occupied

Block number calculation

(number of bits per word) *!
(number of 0-value words) +!

offset of first 1 bit
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Free-Space Management
• Bit vector downside	


‣ Space	


• Example:	


• 	
 	
 block size = 2^12 bytes	


• 	
 	
 disk size = 2^30 bytes (1 gigabyte)	


• 	
 	
 n = 2^30/2^12 = 2^18 bits (or 32K bytes)
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Free-Space Linked List
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Linked List Optimizations
• Grouping	


‣ Store n free blocks in first free block	


‣ Last entry points to next block of free blocks	


• Counting	


‣ Specify start block and number of contiguous free blocks
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File System Reliability
!

• Availability of data and integrity of this data are both 
equally important.	


!

• Need to allow for different scenarios:	


‣ Disks (or disk blocks) can go bad	


‣ Machine can crash	


‣ Users can make mistakes
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Disks (blocks) go Bad
• Typically provide some kind of redundancy, e.g. 

Redundant Arrays of Inexpensive Disks (RAID)	


‣ Parity 	


‣ Complete Mirroring	


• When the data from the replicas/parity do not match, 
you employ some kind of voting to figure out which 
is correct.	


• Once bad blocks/sectors are detected, you mark 
them, and do not allocate on them.
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Machine crashes
• Note that data loss due to writes not being flushed 

immediately to disk is handled separately by setting 
frequency of flusher(). 	


• When the machine comes back up, we want to make 
sure the file system comes back up in a consistent 
state, e.g. a block does not appear in a file and free 
list at same time.	


• This is done by a routine called fsck().
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Fsck – File System Consistency Check

• Blocks:	

‣ for every block keep 2 counters: 	


• a) # occurrences in files	

• b) # occurrences in free list.	


‣ For every inode, increment all the (a)s for the blocks that the file covers.	

‣ For the free list, increment (b) for all blocks in the free list.	

‣ Ideally (a) + (b) = 1 for every block.	

‣ However, 	


• If (a) = (b) = 0,  missing block, add to free list.	

• If (a) = (b) = 1, remove the block from free list	

• If (b) > 1, remove duplicates from free list.	

• If (a) > 1, make copies of this block, and insert into each of the other files.
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File System Updates  

• To create a new file, we need to update:	


‣ Directories	


‣ File control blocks	


‣ Data blocks	


‣ Meta data -- free counts	


!

• What happens if there is a crash in the middle?
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Journaling File Systems
• File system changes are applied in a transaction	


• Once these changes are written, user process can 
proceed	


‣ Can then apply changes to actual file system structures	


• On crash, can apply committed transactions	


‣ What about those that were not completed?
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Summary
• File System Implementation	


‣ FAT and inodes	


‣ dentries	


‣ Directories	


‣ File Retrieval	


‣ Caching	


‣ Free-Space Management	


‣ Recovery
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• Next time: Storage

`
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