
Computer and Information Science

CIS 415:
Operating Systems

Filesystem Implementation

Spring 2014	

Prof. Kevin Butler

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Last class:	

‣ File System Interface	

• Today: 	

‣ File System Implementation

2

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Protection vs Security
• Protection 	

‣ Security goals met under trusted processes	

‣ Protects against an error by a non-malicious entity	

• Security	

‣ Security goals met under potentially malicious processes	

‣ Protects against any malicious entity	

‣ Hence, For J:	

• Non-malicious process shouldn’t leak the private key by writing it to O3	

• A potentially malicious process may contain a Trojan horse that can
write the private key to O3

3

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Disks as Secondary Store
• What makes them convenient for storing files?	

‣ Rewrite in place	

• Read, modify in memory, write back to original location	

‣ Access any block (sequentially or random)	

• Gotta move the head to get there	

• More detail next time

4

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

File Control Block
• Logical file system’s representation of a file -- stored

on disk 	

‣ In UNIX, called an inode

5

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Filesystem Structures
• On-disk structures	

‣ Boot control block	

• Info to boot the OS from the disk	

• Typically, the first block of the boot partition (boot block)	

‣ Partition control block	

• Info about a file system (number of blocks -- fixed size)	

• Includes free block information (superblock)	

‣ Directory Structure	

‣ File Control Blocks

6

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Filesystem Structures
• In-memory structures	

‣ Partition table	

• Current mounted partitions 	

‣ Directory structure	

• Information on recently accessed directories	

‣ System-wide, open file table	

• All currently open files	

‣ Per-process, open file table	

• All of a given process’s open files

7

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

fd=open(“a”,…);
…

read(fd,…);
…

close(fd);

P1

In-memory structures

fd=open(“b”,…);
…

write(fd,…);
…

close(fd);

P3

OS

inode of	

“b”

inode of	

“a”

Per-process	

Open File	

Descriptor	

Table

System-wide	

Open File	

Descriptor table

(all in	

Memory)

fd=open(“a”,…);
…

read(fd,…);
…

close(fd);

P2

For open() syscall:

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

In-Memory File Structures
• To open and read a file	

‣ Index is a file descriptor

9

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Partition Structures
• Layout of a file system on a disk	

‣ Raw: no file system structure	

• E.g., swap space, database	

‣ Cooked: a file system structure	

• E.g., directories

10

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Boot Partition
• Contains information to boot the system	

‣ Image to be loaded at boot time	

• May boot more than one system	

‣ How is this done?	

‣ Bootloader is booted first (GRUB)	

• The you choose the OS to boot

11

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Mount Table
• OS has an in-memory table to store… 	

‣ Each file system that has been mounted	

• A file system (partition) is a device in UNIX	

‣ Where it is mounted	

• A directory	

‣ The type of the file system 	

• Physical file system (e.g., ext3, ntfs, …)	

‣ Some other attributes 	

• E.g., Read-only

12

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

File System Layers
Virtual File System

Physical File System

Device Drivers

13

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Virtual File System
• File systems have general and storage method-

dependent parts	

‣ Virtual file system is specific to the OS	

• File system-generic operations	

• Works with inodes (FCB), files, directories, superblocks
(partitions)	

• The stuff that we have discussed	

‣ Physical file system is specific to how secondary storage will
be used to manage data	

• Converts the objects above into blocks

14

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Virtual File System

15

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• View the disk as a logical sequence of blocks	

• A block is the smallest unit of allocation.	

• Issues:	

‣ How do you assign the blocks to files?	

‣ Given a file, how do you find its blocks?

Filesystem Implementation

16

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

File Allocation
• Direct access of disks gives us flexibility in

implementing files	

‣ Relate to memory management problem	

• Choices	

‣ Contiguous	

‣ Non-contiguous	

• Linked	

• Indexed

17

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Contiguous Allocation
• Allocate a sequence of contiguous blocks to a file.	

• Advantages:	

‣ Need to remember only starting location to access any
block	

‣ Good performance when reading successive blocks on disk	

• Disadvantages:	

‣ File size has to be known a priori.	

‣ External fragmentation

18

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Linked List Allocation
• Keep a pointer to first block of a file. 	

• The first few bytes of each block point to the next
block of this file.	

• Advantages: No external fragmentation	

• Disadvantages: Random access is slow!

19

File 1 File 2

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Linked List Using Index
• In the previous scheme, we needed to go to disk  

to chase pointers since memory cannot hold all the
blocks.	

• Why not remove the pointers from the blocks, and
maintain the pointers separately?	

• Perhaps, then all (or most) of the pointers can fit in
memory.	

• Allocation is still done using linked list.	

• However, pointer chasing can be done “entirely” in
memory.

20

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

File 1 File 2

Disk Blocks

Table of

Pointers

(in memory?)

!
Called FAT

in DOS

Blocks & Pointers

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Indexed Allocation
• For each file, direct pointers to all its blocks.	

• However, the number of pointers for a file can itself become
large.	

• UNIX uses inodes.	

• An inode contains:	

‣ File attributes (time of creation, permissions, ….)	

‣ 10 direct pointers (logical disk block ids)	

‣ 1 one-level indirect pointer (points to a disk block which in turn contains
pointers)	

‣ 1 two-level indirect pointer (points to a disk block of pointers to disk
blocks of pointers)	

‣ 1 three-level indirect pointer (points to a disk block of pointers to disk
blocks of pointers to pointers of disk blocks)

22

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Inodes

Filename
Time
Perm.

 …

Disk Block

Disk Block Disk Block

Disk Block Disk Block Disk Block

Data

Disk Block

Data

Disk Block

Data

Disk Block

Data

Disk Block

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Tracking free blocks
• List of free blocks	

‣ bit map: used when you can store the entire bit map in
memory.	

‣ linked list of free blocks	

• each block contains ptrs to free blocks, and last ptr points to
another block of ptrs. (in UNIX).	

• Pointer to a free FAT entry, which in turn points to another free
entry, etc. (in DOS)

24

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Exercise: Given that the FAT is in memory, find out
how many disk accesses are needed to retrieve block
“x” of a file from disk. (in DOS)	

!

• Exercise: Given that the inode for a file is in memory,
find out how many disk access are needed to retrieve
block “x” of this file from disk. (in UNIX)

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Finding Files
• Now we know how to retrieve the blocks of a file

once we know:	

‣ The FAT entry for DOS	

‣ The inode of the file in UNIX	

!

• But how do we find these in the first place?	

‣ The directory where this file resides should contain this
information

26

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Directory
• Contains a sequence (table) of entries for each file.	

• In DOS, each entry has	

‣ [Fname , Extension , Attributes , Time , Date , Size , First
Block #]	

• In UNIX, each entry has	

‣ [Fname, inode #]

27

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Accessing a file block with DOS
• Go to “\” FAT entry (in memory)	

• Go to corresponding data block(s) of “\” to find
entry for “a”	

• Read 1st data block of “a” to check if “b” present.
Else, use the FAT entry to find the next block of “a”
and search again for “b”, and so on. Eventually you will
find entry for “b”.	

• Read 1st data block of “b” to check if “c” present...	

• Read the relevant block of “c”, by chasing the FAT
entries in memory.

28

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Accessing File Block in UNIX

• Get “/” inode from disk (usually fixed, e.g. #2)	

• Get block after block of “/” using its inode until entry
for “a” is found (gives its inode #).	

• Get inode of “a” from disk	

• Get block after block of “a” until entry for “b” is
found (gives its inode #)	

• Get inode of “b” from disk

29

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Get block after block of “b” till entry for “c” is found
(gives its inode #)	

• Get inode of “c” from disk	

• Find out whether block you are searching for is in 1st
10 ptrs, or 1-level or 2-level or 3-level indirect.	

• Based on this you can either directly get the block, or
retrieve it after going through the levels of
indirection.

30

Accessing File Block in UNIX

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Inode Caching
• Imagine searching through the inodes each time you

do a read() or write() on a file	

• Too much overhead!	

• However, once you have the inode of the file (or a
FAT entry in DOS), then it is fairly efficient!	

• You want to cache the inode (or the ID of the FAT
entry) for a file in memory and keep re-using it.	

• Open file descriptor table kept in memory does this
for us

31

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

fd=open(“a”,…);
…

read(fd,…);
…

close(fd);

P1

open() syscall

fd=open(“b”,…);
…

write(fd,…);
…

close(fd);

P3

OS

inode of
“b”

inode of
“a”

Per-process
Open File
Descriptor

Table

System-wide
Open File

Descriptor table

(all in
Memory)

fd=open(“a”,…);
…

read(fd,…);
…

close(fd);

P2

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

File Caching
!

• Even if after all this (i.e. bringing the pointers to
blocks of a file into memory), may not suffice since
we still need to go to disk to get the blocks
themselves.	

!

• How do we address this problem?	

‣ Cache disk (data) blocks in main memory	

‣ Called file caching

33

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

File Caching/Buffering
• Cache disk blocks that are in need in physical memory.	

• On a read() system call, first look up this cache to
check if block is present.	

‣ This is done in software	

‣ Look up is done based on logical block id.	

‣ Typically perform some kind of hashing	

• If present, copy this from OS cache/buffer into the data
structure passed by user in the read() call.	

• Else, read block from disk, put in OS cache and then
copy to user data structure.

34

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

File Caching/Buffering

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• On a write, should we do write-back or a write-
through?	

‣ With write-back, you may lose data that is written if
machine goes down before write-back	

‣ With write-through, you may be losing performance	

• Loss in opportunity to perform several writes at a time	

• Perhaps the write may not even be needed!	

• DOS uses write-through

Filesystem Caching

36

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Filesystem Caching (UNIX)
• In UNIX, 	

‣ writes are buffered, and they are propagated in the
background after a delay, i.e. every 30 secs there is a  
sync() call which propagates dirty blocks to disk.	

‣ This is usually done in the background.	

‣ Metadata (directories/inodes) writes are propagated
immediately.

37

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

FS Prefetch
• Often we are reading data sequentially (e.g., file

system backup)	

• If FS detects sequential workload based on current/
previous I/O offsets, it can predict that the next reads
will likely be sequential as well	

• Populate the filesystem cache with these pre-fetches

38

ptg12449831

8.3 Concepts 329

8.3.4 Prefetch
A common file system workload involves reading a large amount of file data
sequentially, for example, for a file system backup. This data may be too large to fit
in the cache, or it may be read only once and is unlikely to be retained in the cache
(depending on the cache eviction policy). Such a workload would perform rela-
tively poorly, as it would have a low cache hit rate.

Prefetch is a common file system feature for solving this problem. It can detect a
sequential read workload based on the current and previous file I/O offsets, and
then predict and issue disk reads before the application has requested them. This
populates the file system cache, so that if the application does perform the
expected read, it results in a cache hit (the data needed was already in the cache).
An example scenario is as follows, given no data cached to begin with:

1. An application issues a file read(), passing execution to the kernel.

2. The file system issues the read to disk.

3. The previous file offset pointer is compared to the current location, and if
they are sequential, the file system issues additional reads.

4. The first read completes, and the kernel passes the data and execution back
to the application.

5. Any additional reads complete, populating the cache for future application
reads.

This scenario is also illustrated in Figure 8.5, where application reads to offsets 1
and then 2 trigger prefetch of the next three offsets.

When prefetch detection works well, applications show significantly improved
sequential read performance; the disks keep ahead of application requests. When

Figure 8-5 File system prefetch

From the Library of Kevin Butler

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Linux FS Caches

39
ptg12449831

342 Chapter 8 ! File Systems

Page Cache
The page cache caches virtual memory pages, including file system pages, improv-
ing the performance of file and directory I/O. The size of the page cache is dynamic,
and it will grow to use available memory, freeing it again when applications need it
(along with paging, as controlled by swappiness; see Chapter 7, Memory).

Pages of memory that are dirty (modified) and are for use by a file system are
flushed to disk by kernel threads. Prior to Linux 2.6.32, there was a pool of page
dirty flush (pdflush) threads, between two and eight as needed. These have since
been replaced by the flusher threads (named flush), which are created per device to
better balance the per-device workload and improve throughput. Pages are flushed
to disk for the following reasons:

! After an interval (30 s)

! The sync(), fsync(), or msync() system calls

! Too many dirty pages (dirty_ratio)

! No available pages in the page cache

If there is a system memory deficit, another kernel thread, the page-out dae-
mon (kswapd, also known as the page scanner), may also find and schedule dirty
pages to be written to disk so that it can free the memory pages for reuse (see

Figure 8-10 Linux file system caches

From the Library of Kevin Butler

Page cache: cache of virtual
memory pages including
memory-mapped files	

Buffer cache: stores blocks from
disk, now unified with the page
cache (why?)	

Page scanner: schedules dirty
pages to be written to disk	

Dentry cache: remembers
mappings from directory entry
to inode (for what purpose?)	

Inode cache: stores inodes in
hash table for fast lookup

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Cache space Limitations
• We need a replacement algorithm.	

• Here we can use LRU, since the OS gets called on
each reference to a block and the management is
done in software.	

• However, you typically do not do this on demand!	

• Use High and Low water marks:	

‣ When the # of free blocks falls below Low water mark, evict
blocks from memory till it reaches High water mark.

40

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Buffer/Cache Management

Flusher()
Propagates writes

to disk.
Done in background

periodically

Replace/Evict()
Creates free blocks
Called when free list

< low water mark, and
it keeps evicting till

free list >= high
water mark

Free List

Clean Cached
Blocks

Dirty Cached
Blocks

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Block Sizes
!

• Larger block sizes => higher internal fragmentation.	

• Larger block sizes => higher disk transfer rates	

• Median file size in UNIX environments ~ 1K	

• Typical block sizes are of the order of 512, 1K or 4K.

42

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Free Space
!

• Find the block to use when one is needed	

‣ Find space quickly	

‣ Keep storage reasonable	

• Options	

‣ Bit vector	

‣ Linked List	

‣ Grouping	

‣ Counting

43

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Free-Space Management

• Bit vector (n blocks)

…
0 1 2 n-1

bit[i] =
!
"
0 ⇒ block[i] free!

1 ⇒ block[i] occupied

Block number calculation

(number of bits per word) *!
(number of 0-value words) +!

offset of first 1 bit

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Free-Space Management
• Bit vector downside	

‣ Space	

• Example:	

• 	
 	
 block size = 2^12 bytes	

• 	
 	
 disk size = 2^30 bytes (1 gigabyte)	

• 	
 	
 n = 2^30/2^12 = 2^18 bits (or 32K bytes)

45

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Free-Space Linked List

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Linked List Optimizations
• Grouping	

‣ Store n free blocks in first free block	

‣ Last entry points to next block of free blocks	

• Counting	

‣ Specify start block and number of contiguous free blocks

47

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

File System Reliability
!

• Availability of data and integrity of this data are both
equally important.	

!

• Need to allow for different scenarios:	

‣ Disks (or disk blocks) can go bad	

‣ Machine can crash	

‣ Users can make mistakes

48

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Disks (blocks) go Bad
• Typically provide some kind of redundancy, e.g.

Redundant Arrays of Inexpensive Disks (RAID)	

‣ Parity 	

‣ Complete Mirroring	

• When the data from the replicas/parity do not match,
you employ some kind of voting to figure out which
is correct.	

• Once bad blocks/sectors are detected, you mark
them, and do not allocate on them.

49

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Machine crashes
• Note that data loss due to writes not being flushed

immediately to disk is handled separately by setting
frequency of flusher(). 	

• When the machine comes back up, we want to make
sure the file system comes back up in a consistent
state, e.g. a block does not appear in a file and free
list at same time.	

• This is done by a routine called fsck().

50

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Fsck – File System Consistency Check

• Blocks:	

‣ for every block keep 2 counters: 	

• a) # occurrences in files	

• b) # occurrences in free list.	

‣ For every inode, increment all the (a)s for the blocks that the file covers.	

‣ For the free list, increment (b) for all blocks in the free list.	

‣ Ideally (a) + (b) = 1 for every block.	

‣ However, 	

• If (a) = (b) = 0, missing block, add to free list.	

• If (a) = (b) = 1, remove the block from free list	

• If (b) > 1, remove duplicates from free list.	

• If (a) > 1, make copies of this block, and insert into each of the other files.

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

File System Updates  

• To create a new file, we need to update:	

‣ Directories	

‣ File control blocks	

‣ Data blocks	

‣ Meta data -- free counts	

!

• What happens if there is a crash in the middle?

52

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Journaling File Systems
• File system changes are applied in a transaction	

• Once these changes are written, user process can
proceed	

‣ Can then apply changes to actual file system structures	

• On crash, can apply committed transactions	

‣ What about those that were not completed?

53

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

Summary
• File System Implementation	

‣ FAT and inodes	

‣ dentries	

‣ Directories	

‣ File Retrieval	

‣ Caching	

‣ Free-Space Management	

‣ Recovery

Oregon Systems Infrastructure Research and Information Security (OSIRIS) Lab

• Next time: Storage

`

55

