
FWS	
 Interface	
 Specifications	

1. DataBanker	

1.1 Introduction	

The Data Banker provides synchronized storage for sensor readings.

1.2 Interface	
 Overview	

1.2.1 Services	
 Provided	

Service Provided By Tested By
1. Initialize the set of stored sensor readings.

initialize

TC1, TC2, TC3, TC4,
TC5

2. Store a new sensor reading, maintaining only
the necessary history, and retrieve the current
sensor reading history, keeping reads and writes
synchronized.

read, write TC1, TC2, TC3, TC4,
TC5

1.2.2 	
 Access	
 Methods	

1.2.3 Access	
 Method	
 Effects	

Access
Method

Description

initialize	
 Initializes a vector of elements of type sensorType of length HistoryLength for each
sensor of sensorType with initial values of null

write	
 Adds the SensorReading r to the back of the queue and removes the oldest sensor
reading value from the front of the queue.

Access
Method

Parameter
name

Parameter
type

Description Exceptions Map to
services

initialize	
 sensorType String Type of sensor. 1
write	
 sensorType:I

r:I
String	

SensorReading	

Type of sensor.
Sensor reading value

 2

read:O	
 sensorType:I
:O

String	

Vector<SensorReading>

Type of sensor.
Vector of elements of
type SensorReading

 2

read	
 Returns the vector of sensor readings of type sensorType. With the most recent
values of the sensor readings. The vector is of length (HistoryLength * number of
sensors) of that type.

Synchronization: This module supports concurrent access to the read and write methods. Where
any read or write can occur concurrently, the read and write statements act as atomic operators
(i.e., the user will see either the sequence read.write or the sequence write.read).

1.3 Local	
 Types	

Type Value Space

HistoryLength	
 The number of sequential, past sensor values kept

1.4 Terms	

1.5 Uses	

Type Value Space

SensorReading	
 A triple (r, v, w) where r is of type SensorReading.resolution,
v is of type SensorReading.value, and
w of type SensorReading.weight

1.6 Exception	
 Dictionary	

None

1.7 Test	
 Cases	

1.7.1 T1	

1.7.2 T2	

….

Step Description Input Type/Value Expected Results Service Preamble

1	
 Initialize sensorType Type of sensor. 1
2	
 read sensorType	
 Returns vector of null

values

 2

1.8 Design	
 issues	

1. Should we let the user read an empty vector of sensor readings after initialization, or just throw
an exception?
A1. Yes. An empty vector should be treated just as any other.
A2. No. There are no valid values in an empty vector that can be averaged, so we should let he
user know that the vector is empty by throwing the exception.
Resolution: Yes. We will check values during testing during testing to save space and CPU
cycles.

