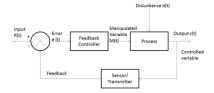
CIS 422/522

Software Life cycles and Process models Team Assignments & First Meeting


View of SE in this Course

- The purpose of software engineering is to gain and maintain intellectual and managerial control over the products and processes of software development.
- · Intellectual control implies
 - We understand the developmental goals
 - Can distinguish good choices from bad
 - We can effectively build to meet our goals
 - Behavioral requirements (functionality)
 Software Qualities (reliability, security, maintainability, etc.)
- Managerial control implies
 - We make accurate recourse estimates
 We deliver on schedule and within budget

CIS 422/522 Winter 2014

Control Realities

- · Reality Check:
 - Cannot fully predict consequences of our choices
 - Control is never absolute
- · Implication: maintaining control is an active process (view as a feedback-control loop)

Active Control

- · Control in a software development means
- Understand where we want to be (ideal)
 - Evaluate current delta
 - Make adjustments

CIS 422/522 Winter 2014

Control and Risk

- Risk: a risk is defined as a condition that can lead to a loss of control
 - Incorrect, misunderstood, or missing requirements
 - Poor design choices
 - Differing assumptions by developers
 - Inadequate testing, validation, etc.
- Can lead to delivering wrong product, late, over cost..
- Assessing and mitigating risk is a critical SE activity
- Assertion: well defined processes help organize work and control risks

CIS 422/522 Winter 2014

Need to Organize the Work

- · Nature of a software project
 - Software development produces a set of interlocking, interdependent work products
 - E.g. Requirements -> Design -> Code -> Test
 - Implies dependencies between tasks
 - Implies dependencies between people
- Must organize the work such that:
 - Every task gets done
 - Tasks get done in the right order
 - Tasks are done by the right people
 - The product has the desired qualities
 - The product is delivered on time

Addressed by Software Processes

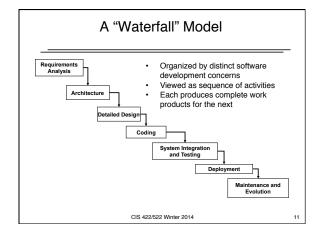
- Developed as a conceptual tool for organizing complex software developments
- · Answers the "who", "what", "when", etc. questions
 - What product should we work on next?
 - What kind of person should do the work?
 - What information is needed to do the work?
 - When is the work finished?
- · Intended use (idealized)
 - 1. Model of development (what does or should occur)
 - 2. Guide to developers in what to produce and when to produce it

CIS 422/522 Winter 2014

7

Definitions

- Software Life Cycle: evolution of a software development effort from concept to retirement
- Software Process Model: Abstract representation of a software life cycle as a set of
 - 1. Activities: tasks to be performed (how)
 - 2. Artifacts: work products produced (what)
 - 3. Roles: skills needed (who)
- Software Process: institutionalized version of a life software model defining specific roles, activities, and artifacts


CIS 422/522 Winter 2014

Examples of Use

- Software life-cycle: in choosing whether to build or buy, companies should consider the entire life-cycle cost of software.
- Software process model: many companies are currently adapting the agile model to fit their organizational constraints.
- Software process: many organizations standardize their software process across developments.

	_	

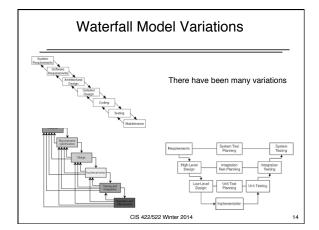
Common Process Models Waterfall Prototyping Iterative Spiral Agile

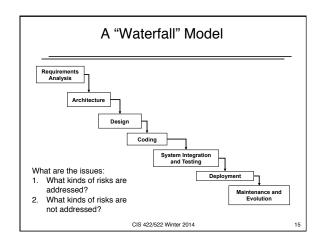
CIS 422/522 Winter 2014

Activities and Products

- · Requirements Analysis
 - Goal: understand and define what the software must do and any properties it must have
 - Product: Software Requirements Specification (SRS)
 - Role: Requirements Analyst
- · Architectural Design
 - Goal: decompose of the problem into components that together satisfy the requirements
 - Products: architectural design specification, interface specs.
- Role: Software Architect
- · Detail Design
 - Goal: internal design of components (e.g., objects) defining algorithms and data structures supporting the interface
 - Products: design documentation, pseudo-code
 - Role: Coder

CIS 422/522 Winter 2014

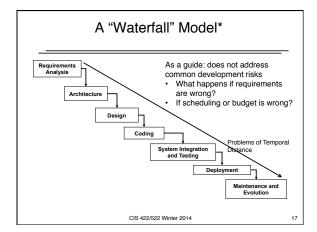

12



Phases and Products

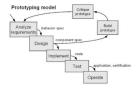
- · Implementation
 - Goal: realization of the design in machine-executable form
 - Product: code
 - Role: Coder
- · Integration and Testing
 - Goal: validation and verification of the implementation against requirements and design
 - Products: test plan, test cases
 - Roles: tester, user (customer)
- Maintenance (really multiple distinct activities)
 Goal: repair errors or update deployed system
 Products: bug fixes, patches, new versions

 - Role: Architect, Coder, Tester

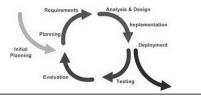


Limitations of the waterfall model

- Model implies that you should complete a given stage before moving on to the next


 Does not account for the fact that requirements constantly change
- It also means that customers cannot use anything until the entire system is complete
 Model implies that you can get the requirements
- right up front
- The entire functionality is developed and then tested all together at the end
- The model implies that once the product is finished, everything else is maintenance

CIS 422/522 Winter 2014


Characteristic Model: Prototyping

- · Waterfall variation
- · First system versions are prototypes, either:
 - Interface
 - Functional
- · Which waterfall risks does this try to address?

Characteristic Processes: The Iterative Model

- Process is viewed as a sequence of iterations
 - Essentially, a series of waterfalls
 - Each iteration builds on the previous one (e.g., adds requirements, design components, code features, tests)
 - Each iteration produces complete set of work products deliverable software
 - Customers provide feedback on each release
 - There is no "maintenance" phase each version includes problem fixes as well as new features

Iterative Model

- · Also called "incremental development"
- · Addresses some common waterfall risks
 - Risk that software cannot be completed build incremental subsets
 - Risk of building the wrong system stakeholder have opportunities to see the software each
 - Also, can double check feasibility, schedule, budget and others issues

CIS 422/522 Winter 2014

Advantages of Incremental Development

- Customers get usable functionality earlier than with waterfall
- · Early feedback improves likelihood of producing a product that satisfies customers
 - Reduces market risk: if customers hate the product, find out before investing too much effort and money
- The quality of the final product is better
 - The core functionality is developed early and tested multiple times
 - Only a relatively small subset of functionality added in each release: easier to get it right and test it thoroughly
 Detect design problems early and get a chance to

_			
_			
-			
-			
_			
_			
_			
_			
-			
-			
-			
_			
-			
-			
-			
-			
_			
_			
-			

Characteristic Processes: The Spiral Model

- Process viewed as repeating cycles of increasing scale
- Identify risks and determine (next set of) requirements
- Each cycle builds next version by extension, increasing scale each time

CIS 422/522 Winter 2014

Spiral Model determine goals Risk evaluation and Mitigation plan next phase CIS 422/522 Winter 2014 23

Spiral Model Goals

- Response lack of explicit risk analysis and risk mitigation in "waterfall" process
- Includes risk analysis and mitigation activities at each phase (e.g., prototyping)
- · Explicit Go/No-Go decision points in process

CIS 422/522 Winter 2014

24

Characteristic Processes: Agile (e.g. scrum)

- Process viewed as nested sequence of builds (sprints)

 Each build adds very small feature set (one or two)

 - Nightly build/test, frequent customer validation
 - Focus on delivering code, little or no time spent on documentation

Also...

- RAD models
- Extreme Programming
- · Etc., etc.

Why so many models?

CIS 422/522 Winter 2014

How do we Choose a Development Process?

E.g., for your projects

Objectives

- Goal: proceed as rationally and systematically as possible (I.e., in a controlled manner) from a statement of goals to a design that demonstrably meets those goals within design and management
 - Understand that any process description is an abstraction
 - Always must compensate for deviation from the ideal (e.g., by iteration)
 - Still important to have a well-defined process to follow and measure against

CIS 422/522 Winter 2014

A Software Engineering Perspective

- Question of control vs. cost: processes introduce overhead
- Choose process to provide an appropriate level of control for the given product and context
 Sufficient control to achieve results
 No more than necessary to contain cost and effort
 Provides a basis for choosing or evaluating
- processes, methods, etc.
 - Does it achieve our objectives at reasonable cost?
 - Does it address the most important developmental risks?
- Need to agree on kind of control you need and how you will accomplish it

CIS 422/522 Winter 2014

Exercise: Which Model?

Exercise: Project Processes

- Discuss: which process is the best fit for your projects and why?
- For each process you do not select, what characteristics do not fit well with the project?
- · For the process selected
 - How does it fit with project characteristics?
 - How does it help address project risks?

CIS 422/522 Winter 2014

21

Take-away

- Expected to know standard processes and their rationale
- Understand how and why people use different development models
- Understand how to choose an appropriate model for a given developments
 - Often poorly understood in industry

CIS 422/522 Winter 2014

32

Project Preparation

Project Requirements
Worksite
Teams

CIS 422/522 Winter 2014

33

•			
•			
•			
•			
•			
-			
•			
•			
•			

Project 1: Simple Address Book

- Simple programming exercise but with significant quality constraints
- Requires developing a number of non-code artifacts
 - Require significant time and effort
 - Must be planned for!
- Requires distributing and coordinating the work
 - Must have two or more programmers
 - Must show that system meets requirements

CIS 422/522 Winter 2014

24

Project Requirements

- Are the project requirements complete and well defined?
 - If not, what will you do about it?
- Goal for this week: be clear on what you plan to build
 - Extend, revise Address Book requirements
 - Generate questions for instructor
 - Plan iterations
- Think in terms of useful subsets
 - Build the smallest useful subset first: think about which capabilities will be needed by any future enhancements
 - Plan how you will add to it each increment

CIS 422/522 Winter 2014

35

Team Assignments

Team 2 Cooley, John Team 1 Alkhelaifi, Abdul Adams, Bryan Beick, Kevin Hollembaek, Braden Townsend, Evan Percival, Aaron Smith, Jaclyn Bascue, Adam Diwan, Sahil Walden, James Gvde, Nicholas Yablok, Sarah Watkins, Christina* Rodriguez, Isaac Team 5 Team 6 Team 7 Diao, Yakun Niu, Heidi Butler, Nels Graser, Tallack Brice, Holly Dodson, Tommy Casteel, Robert* Guo, TK Griggs, Brenda Gustavson-Falck, Nik Palmiter, David Rondenet, Lucas Schmidt, Josh Smith, Dillon Tern, Nicole Wang, Dex Kerndt, Rickie Phillippi, Andrew Zeryck, Max Zhao, Hans CIS 422/522 Winter 2014

Assignment		
Project Forward your emails from xxx@uoregon.edu or send me your preferred email address		
First meeting (in class) Plan and hold at least one project meeting out of class Assembla worksite assignment Assign team member to invite others to site		
Choose a team name Create team page on wiki Record meeting notes (Meeting Notes page) Fill out Developer Logs		
Monday: No class, work on projects Develop first cut a requirements, project plan Set up meeting with instructor		
	37	
Questions?		
CIS 422/522 Winter 2014	38	