
1!
CIS 422/522

CIS 422/522 Winter 2014! 1!

CIS 422/522  
!

Software Requirements!
and a little Quality Assurance (2)!

!

CIS 422/522 Winter 2014! 2!

Technical Specification!

The SRS!
The role of rigorous specification!

CIS 422/522 Winter 2014! 3!

Requirements Documentation!

•  Is a detailed requirements specification necessary?!
•  How do we know what “correct” means?!

–  How do we decide exactly what capabilities the modules
should provide?!

–  How do we know which test cases to write and how to
interpret the results?!

–  How do we know when we are done implementing?!
–  How do we know if we’ve built what the customer asked for

(may be distinct from “want” or “need”)?!
–  Etc…!

•  Correctness is a relation between a spec and an
implementation (M. Young)!

•  Implication: until you have a spec, you have no
standard for “correctness”!

2!
CIS 422/522

CIS 422/522 Winter 2014! 4!

Technical Requirements!

•  Focus on developing a technical specification!
–  Should be straight-forward to determine acceptable inputs and

outputs!
–  Preferably, can systematically check completeness consistency!

•  A little rigor in the right places can help a lot!
–  Adding formality is not an all-or-none decision!
–  Use it where it matters most to start (critical parts, potentially

ambiguous parts)!
–  Often easier, less time consuming than trying to say the same

thing in prose!
•  E.g. in describing conditions or cases!

–  Use predicates (i.e., basic Boolean expressions)!
–  Use mathematical expressions !
–  Use tables where possible!

CIS 422/522 Winter 2014! 5!

SE, Modeling, Hans van Vliet, ©2008

5

Example state transition diagram!
Does the Address Book have stateful behavior?
What are the states? Transitions?

CIS 422/522 Winter 2014! 6!

Formal Specification Example!

•  SCR formal model!
–  Define explicit types!
–  Variables monitored or controlled!

3!
CIS 422/522

CIS 422/522 Winter 2014! 7!

Quality Requirements!

CIS 422/522 Winter 2014! 8!

Terminology!

•  Avoid “functional” and non-functional" classification!
•  Behavioral Requirements – any information

necessary to determine if the run-time behavior of a
given implementation constitutes an acceptable
system!
–  All quantitative constraints on the system's run-time behavior!
–  Other objective measures (safety, performance, fault-

tolerance)!
–  In theory all can be validated by observing the running

system and measuring the results!
•  Developmental Quality Attributes - any constraints on

the system's static construction!
–  Maintainability, reusability, ease of change (mutability)!
–  Measures of these qualities are necessarily relativistic (I.e.,

in comparison to something else!

CIS 422/522 Winter 2014! 9!

Behavioral vs. Developmental !
Behavioral (observable)!

•  Performance!
•  Security !
•  Availability !
•  Reliability!
•  Usability 

!
!

! 
Properties resulting from the
behavior of components,
connectors and interfaces
that exist at run time.!

Developmental Qualities!
•  Modifiability(ease of change)!
•  Portability!
•  Reusability!
•  Ease of integration !
•  Understandability!
•  Support concurrent

development 
!
!Properties resulting from the
structure of components,
connectors and interfaces
that exist at design time
whether or not they have any
distinct run-time
manifestation.!

4!
CIS 422/522

CIS 422/522 Winter 2014! 10!

Specifying Quality Requirements!

•  Is it important to specify the quality
requirements explicitly? Unambiguously?!
–  Hint: what role would quality requirements play in

customer acceptance?!
•  Are these kinds of specifications adequate?!

–  “The system interface shall be easy to use.”!
–  “The system shall support the maximum number

of simultaneous users”!

CIS 422/522 Winter 2014! 11!

Specifying Quality Requirements!

•  When using natural language, write objectively
verifiable requirements when possible!
–  Load handling: “The system will support 15 or more

concurrent users while staying within required
performance bounds.”!

–  Maintainability: “The following kinds of requirements
changes will require changes in no more than one
module of the system…”!

–  Performance: !
•  “System output X has a deadline of 5 ms from the input

event.”!
•  “System output Y must be updated at a frequency of no less

than 20 ms.”!

CIS 422/522 Winter 2014! 12!

Example Timing Requirements

5!
CIS 422/522

CIS 422/522 Winter 2014! 13!

Requirements Validation and Verification!

•  Feedback-control for requirements!
•  Should answer two distinct questions: !

–  Validation: “Are we building to the right requirements?”!
–  Verification: “Are we building what we specified?”!

•  Validation requires going back to the stakeholders:
can, and should, use many techniques!
–  Review of specifications!
–  Prototyping!
–  Story-boarding!
–  Use case walkthroughs!
–  Review software iterations!

•  Verification requires checking work products against
specifications!
–  Review!
–  Testing!
–  Formal modeling and analysis!

CIS 422/522 Winter 2014! 14!

Summary!

•  Requirements characterize “correct” system
behavior!

•  Being in control of development requires:!
–  Getting the right requirements!
–  Communicating them to the stakeholders!
–  Using them to guide development!

•  Requirements activities must be incorporated
in the project plan!
–  Requirements baseline!
–  Requirements change management !

CIS 422/522 Winter 2014! 15!

Questions?!

6!
CIS 422/522

CIS 422/522 Winter 2014! 16!

Requirements Phase Goals!

•  What does “getting the requirements right” mean
in the systems development context?!

•  Only three goals!
1.  Understand precisely what is required of the software!
2.  Communicate that understanding to all of the parties

involved in the development (stakeholders)!
3.  Control production to ensure the final system satisfies

the requirements!
•  Sounds easy but hard to do in practice!
•  Understanding what makes these goals difficult

to accomplish helps us understand how to
mitigate the risks!

CIS 422/522 Winter 2014! 17!

A Requirements Process Framework!

•  Requirements Understanding!
–  Requirements Elicitation - establish “what people want”!
–  Requirements Negotiation - resolve stakeholder

conflicts!
•  Requirements Specification!

–  Concept of Operations - communicate with non-
programming audiences!

–  Software Requirements Specification - specify
precisely what the software must do!

•  Requirements Validation and Verification!
–  Establish that we have the right requirements

(feedback)!
–  Ensure our specification is good quality!

CIS 422/522 Winter 2014! 18!

Questions?!

