PARMA: A Parallel Randomized Algorithm for Approximate Association Rules Mining in MapReduce

Date : 2013/10/16

Source : CIKM'12

Outline

- Introduction
- Approach
- Experiment
- Conclusion

Association Rules

- Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

\{Diaper\} \rightarrow \{Beer\},
$\{$ Milk, Bread $\} \rightarrow\{$ Eggs,Coke\}, $\{$ Beer, Bread $\} \rightarrow\{$ Milk $\}$,

Itemset

- I=\{Bread, Milk, Diaper, Beer, Eggs, Coke\}
- Itemsets
- 1-itemsets: \{Beer\}, \{Milk\}, \{Bread\}, ...
- 2-itemsets: \{Bread, Milk\}, \{Bread, Beer\}, ...
- 3-itemsets: \{Milk, Eggs, Coke\}, \{Bread, Milk, Diaper\},...
- t1 contains \{Bread, Milk\}, but doesn’t contain \{Bread, Beer\}

TID	Items
$\mathbf{1}$	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Frequent Itemset

- Support count : $\sigma(\mathrm{X})$
- Frequency of occurrence of an itemset X
- $\sigma(X)=\left|\left\{\mathrm{t}_{\mathrm{i}} \mid X \subseteq \mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{i}} \in \mathrm{T}\right\}\right|$
- E.g. $\sigma(\{$ Milk, Bread, Diaper $\})=2$

TID	Items
$\mathbf{1}$	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

- Support
- Fraction of transactions that contain an itemset X
- $s(X)=\sigma(X) /|T|$
- E.g. $s(\{$ Milk, Bread, Diaper $\})=2 / 5$
- Frequent Itemset
- An itemset $\mathrm{X} s(\mathrm{X}) \geq$ minsup

Association Rule

- Association Rule
- $\mathrm{X} \rightarrow \mathrm{Y}$, where X and Y are itemsets
- Example:
\{Milk, Diaper\} \rightarrow \{Beer\}
- Rule Evaluation Metrics
- Support
- Fraction of transactions that contain both X and Y
- $s(X \rightarrow Y)=\sigma(X \cup Y) /|T|$
- Confidence
- How often items in Y appear in the transactions that contain X
- $c(X \rightarrow Y)=\sigma(X \cup Y) / \sigma(X)$

TID	Items
$\mathbf{1}$	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
$\mathbf{5}$	Bread, Milk, Diaper, Coke

Example:

$\{$ Milk, Diaper $\} \Rightarrow\{$ Beer $\}$

$$
\begin{aligned}
& s=\frac{\sigma(\text { Milk, Diaper,Beer })}{|\mathrm{T}|}=\frac{2}{5}=0.4 \\
& c=\frac{\sigma(\text { Milk,Diaper,Beer })}{\sigma(\text { Milk, Diaper })}=\frac{2}{3}=0.67
\end{aligned}
$$

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
- support \geq minsup
- confidence \geq minconf

Goal

- Because :
- Number of transactions

- Cost of the existing algorithm, e.g. Apriori, FP-Tree

- What can we do in big data ?
- Sampling
- Parallel
- Goal :
- A MapReduce algorithm for discovering approximate collections of frequent itemsets or association rules

Outline

- Introduction
- Approach
- Experiment
- Conclusion

Sampling

Original
 Data

Sampling

Find Fl in Sample

Question : Is the sample always good?

Definition

$\mathrm{Fl}(\mathcal{D}, \mathcal{I}, \theta)=\left\{\left(A, f_{\mathcal{D}}(A)\right): A \in 2^{\mathcal{I}}\right.$ and $\left.f_{\mathcal{D}}(A) \geq \theta\right\}$.
$\operatorname{TOPK}(\mathcal{D}, \mathcal{I}, K)=\operatorname{FI}\left(\mathcal{D}, \mathcal{I}, f_{\mathcal{D}}^{(K)}\right)$.
$\left(\varepsilon_{1}, \varepsilon_{2}\right)$ approximation of $\operatorname{FI}(D, I, \theta)$ is a set
$C=\left\{\left(A, f_{A}, K_{A}\right): A \in 2^{I}, f_{A} \in K_{A} \subseteq[0,1]\right\}$

1. \mathcal{C} contains all itemsets appearing in $\mathrm{Fl}(\mathcal{D}, \mathcal{I}, \theta)$;
2. \mathcal{C} contains no itemset A with frequency $f_{\mathcal{D}}(A)<\theta-\varepsilon_{1}$;
3. For every triplet $\left(A, f_{A}, \mathcal{K}_{A}\right) \in \mathcal{C}$, it holds
(a) $\left|f_{\mathcal{D}}(A)-f_{A}\right| \leq \varepsilon_{2}$.
(b) f_{A} and $f_{\mathcal{D}}(A)$ belong to \mathcal{K}_{A}.
(c) $\left|\mathcal{K}_{A}\right| \leq 2 \varepsilon_{2}$.

How many samples do we need?

Lemma 1. [29, Lemma 1] Let \mathcal{D} be a dataset with transactions built on an alphabet \mathcal{I}, and let d be the maximum integer such that \mathcal{D} contains at least d transactions of size at least d. Let $0<$ $\varepsilon, \delta, \theta<1$. Let \mathcal{S} be a random sample of \mathcal{D} containing $|\mathcal{S}|=$ $\frac{2}{\varepsilon^{2}}\left(d+\log \frac{1}{\delta}\right)$ transactions drawn uniformly and independently at random with replacement from those in \mathcal{D}, then with probability at least $1-\delta$, the set $\mathrm{FI}\left(\mathcal{S}, \mathcal{I}, \theta-\frac{\varepsilon}{2}\right)$ is a $(\varepsilon, \varepsilon / 2)$-approximation of $\operatorname{FI}(\mathcal{D}, \mathcal{I}, \theta)$.

Introduction of MapReduce

The overall MapReduce word count process

Concept

Figure 1: A system overview of PARMA. Ellipses represent data, squares represent computations on that data and arrows show the movement of data through the system.

Parameter Space

- p: number of processors/nodes
- m: memory within each node
- w: sample size
- \mathbf{N} : number of samples
- ε : error probability
- $\mathbf{\delta}$: confidence bound

Given a fixed ε and δ value we can measure the sample size using Lemma1. If the sample size is greater than \mathbf{m} we have to increase the number of samples.

Trade-offs

Probability to get
Number of samples

the wrong

 approximation- Variables: non-negative integer N, real $\phi \in(0,1)$,
- Objective: minimize $2 N / \varepsilon^{2}(d+\log (1 / \phi))$.

$$
\begin{aligned}
& N \leq p \\
& \phi \geq e^{-m \varepsilon^{2} / 2+d} \\
& N(1-\phi)-\sqrt{N(1-\phi) 2 \log (1 / \delta)} \geq N / 2+1
\end{aligned}
$$

In Reduce 2

- For each itemset, we have

$$
\mathcal{F}_{A}=\left(f_{\mathcal{S}_{i}}(A),\left[f_{\mathcal{S}_{i}}(A)-\varepsilon / 2, f_{\mathcal{S}_{i}}(A)+\varepsilon / 2\right]\right)
$$

- Then we use

$$
\begin{equation*}
R=N(1-\phi)-\sqrt{N(1-\phi) 2 \log (1 / \delta)} \tag{5}
\end{equation*}
$$

Result

- The itemset A is declared globally frequent and will be present in the output if and only if $\left|\mathcal{F}_{A}\right| \geq R$
- Let $\left[a_{A}, b_{A}\right]$ be the shortest interval such that there are at least $\mathrm{N}-\mathrm{R}+1$ elements from \mathcal{F}_{A} that belong to this interval.

$$
\begin{aligned}
& \tilde{f}(A)=a_{A}+\frac{b_{A}-a_{A}}{2} \\
& \mathcal{K}_{A}=\left[a_{A}-\frac{\varepsilon}{2}, b_{A}+\frac{\varepsilon}{2}\right] \\
& \left(A,\left(\tilde{f}(A), \mathcal{K}_{A}\right)\right)
\end{aligned}
$$

Association Rules

Lemma 2. [29, Lemma 6] Let \mathcal{D} be a dataset with transactions built on an alphabet \mathcal{I}, and let d be the maximum integer such that \mathcal{D} contains at least d transactions of size at least d. Let $0<$ $\varepsilon, \delta, \theta, \gamma<1$ and let $\varepsilon_{\mathrm{rel}}=\frac{\varepsilon}{\max \{\theta, \gamma\}}$. Fix $c>4-2 \varepsilon_{\mathrm{rel}}, \eta=$ $\frac{\varepsilon_{\mathrm{rel}}}{c}$, and $p=\frac{1-\eta}{1+\eta} \theta$. Let \mathcal{S} be a random sample of \mathcal{D} containing $\frac{1}{\eta^{2} p}\left(d \log \frac{1}{p}+\log \frac{1}{\delta}\right)$ transactions from \mathcal{D} sampled independently and uniformly at random. Then $\operatorname{AR}\left(\mathcal{S}, \mathcal{I},(1-\eta) \theta, \frac{1-\eta}{1+\eta} \gamma\right)$ is an $(\varepsilon, \varepsilon / 2)$ approximation to $\operatorname{AR}(\mathcal{D}, \mathcal{I}, \theta, \gamma)$.

Outline

- Introduction
- Approach
- Experiment
- Conclusion

Implementation

- Amazon Web Service : ml.xlarge-17GB
- Hadoop with 8 nodes
- Parameters :

$$
\varepsilon=0.05 \text { and } \delta=0.01
$$

- Compare against DistCount,PFP

number of items	1000
average transaction length	5
average size of maximal potentially large itemsets	5
number of maximal potentially large itemsets	5
correlation among maximal potentially large itemsets	0.1
corruption of maximal potentially large itemsets	0.1

number of items	10000
average transaction length	10
average size of maximal potentially large itemsets	5
number of maximal potentially large itemsets	20
correlation among maximal potentially large itemsets	0.1
corruption of maximal potentially large itemsets	0.1

Compare with other Algorithm

Figure 2: A runtime comparison of PARMA with DistCount (top) and PFP (bottom).

Runtime in Each Step

Figure 3: A comparison of runtimes of the map/reduce/shuffle phases of PARMA, as a function of number of transactions. Run on an 8 node Elastic MapReduce cluster.

Acceptable False Positives

θ	Real FI's	Output AFP's	Max AFP's
0.06	11016	11797	201636
0.09	2116	4216	10723
0.12	1367	335	1452
0.15	1053	299	415

Table 3: Acceptable False Positives in the output of PARMA

Error in frequency estimations

Figure 7: Error in frequency estimations as frequency varies.

Figure 8: Width of the confidence intervals as frequency varies.

Outline

- Introduction
- Approach
- Experiment
- Conclusion

Conclusion

- A parallel algorithm for mining quasi-optimal collections of frequent itemsets and association rules in MapReduce.
- 30-55\% runtime improvement over PFP.
- Verify the accuracy of the theoretical bounds, as well as show that in practice our results are orders of magnitude more accurate than is analytically guaranteed.

