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Association Rules
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• Market-Basket transactions



Itemset
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• I={Bread, Milk, Diaper, Beer, Eggs, Coke}

• Itemsets

• 1-itemsets: {Beer}, {Milk}, {Bread}, …

• 2-itemsets: {Bread, Milk}, {Bread, Beer}, …

• 3-itemsets: {Milk, Eggs, Coke}, {Bread, Milk, Diaper},…

• t1 contains {Bread, Milk}, but doesn’t contain {Bread, 
Beer}

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 



Frequent Itemset

• Support count : (X)
• Frequency of occurrence of an itemset X

• (X) = |{ti | X  ti , tiT}|

• E.g.   ({Milk, Bread, Diaper}) = 2 

• Support

• Fraction of transactions that contain an itemset X

• s(X) = (X) /|T|

• E.g.   s({Milk, Bread, Diaper}) = 2/5

• Frequent Itemset

• An itemset X s(X) minsup 5

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  

 



Association Rule
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Example:

Beer}{}Diaper,Milk{ 

 Association Rule

– X  Y, where X and Y are 

itemsets

– Example:

{Milk, Diaper}  {Beer}

 Rule Evaluation Metrics

– Support

 Fraction of transactions that 

contain both X and Y 

 s(XY)= (XY)/|T|

– Confidence

 How often items in Y appear in 

the transactions that contain X

 c(XY)= (XY)/ (X)

TID Items 

1 Bread, Milk 

2 Bread, Diaper, Beer, Eggs 

3 Milk, Diaper, Beer, Coke  

4 Bread, Milk, Diaper, Beer 

5 Bread, Milk, Diaper, Coke  
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Association Rule Mining Task

• Given a set of transactions T, the goal of association rule 
mining is to find all rules having

• support ≥ minsup

• confidence ≥ minconf
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Goal

• Because : 

• Number of transactions 

• Cost of the existing algorithm, e.g. Apriori, FP-Tree

• What can we do in big data ?

• Sampling

• Parallel

• Goal : 

• A MapReduce algorithm for discovering approximate collections 
of frequent itemsets or association rules
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Sampling
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Original 
Data

Sampling
Find FI in 
Sample

Question : Is the sample always good ?



Definition
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𝜀1 , 𝜀2  𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐹𝐼 𝐷, 𝐼, 𝜃   𝑖𝑠 𝑎 𝑠𝑒𝑡 
𝐶 = { 𝐴, 𝑓𝐴, 𝐾𝐴 : 𝐴 ∈ 2𝐼 , 𝑓𝐴 ∈ 𝐾𝐴 ⊆ [0,1]}

𝜃

𝜀1

𝑓𝐷(𝐴)

𝜀2

𝑓𝐴



How many samples do we need?
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Introduction of MapReduce
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Concept
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PARMA
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Parameter Space

• p: number of processors/nodes

• m: memory within each node

• w: sample size

• N: number of samples

• ε: error probability

• δ: confidence bound

Given a fixed ε and δ value we can measure the sample 

size using Lemma1. If the sample size is greater than m

we have to increase the number of samples.
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Trade-offs
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Number of 
samples

Probability to get 
the wrong 

approximation



In Reduce 2

• For each itemset, we have   

• Then we use 
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Result

• The itemset A is declared globally frequent and will be present

in the output if and only if 

• Let               be the shortest interval such that there are at least 
N-R+1 elements from that belong to this interval.
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Association Rules
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Implementation

• Amazon Web Service : ml.xlarge - 17GB

• Hadoop with 8 nodes

• Parameters : 

• Compare against DistCount,PFP
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Compare with other Algorithm
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Runtime in Each Step
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Acceptable False Positives
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Error in frequency estimations
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Conclusion

• A parallel algorithm for mining quasi-optimal collections of 
frequent itemsets and association rules in MapReduce.

• 30-55% runtime improvement over PFP.

• Verify the accuracy of the theoretical bounds, as well as show 
that in practice our results are orders of magnitude more 
accurate than is analytically guaranteed.
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