

WEEK 3:

PYTHON BOOLEANS AND

CONDITIONALS

COURSE WEBSITE:

http://www.cs.uoregon.edu/Classes/15U/cis122

FLOW CONTROL

So far, we have only seen our programs execute in a straight line.

(Procedural).

BOOLS!

 To allow our programs to branch we need to be

able to have some kinds of tests and depending

on the result we go different directions

 In order to do that we need a new type: the

humble bool (short for boolean)

 bools can only have two values, either True or

False (both keywords). Notice both True and

False are capitalized.

OPERATORS THAT RETURN BOOLS

 There are a number of operators which return bools,
we call them comparison operators.

Operator Effective Meaning

== are these equal?

!= are these not equal?

<> same as != above

> is the first 'greater' than the
 second?

< is the first 'less' than the second?

>= is the first 'greater' than or equal
 to the second?

<= is the first 'less' than or equal to
 the second?

IF

 Great poem by Rudyard Kipling.

 The if statement gives us our first flow control

mechanism. Notice if is a keyword. How does it

work?

if 5 < 10:

 print("Five is less than ten.")

IF: PSEUDOCODE

if (some conditional):

 (code to run if the conditional is True)

 This is pseudocode, not real code

 Note the code to be run is indented, just like with

the function definitions. Also note like a function

definition the indent comes after a colon. The

indent serves the same purpose- to group some

text together.

AN EXAMPLE OF THE IF STATEMENT

def less_than_ten(x):

 if x < 10:

 print("Your number is less than ten.")

 return

 print("your number is more than ten")

 The second print would only happen if the

conditional were False.

 P.S. There's a logic error in the program above. See

it?

ELSE-A

 Haha Just kidding. Just had to let that one go.

 We may want to have a branch that specifically is followed
if the if conditional is false. We could have a separate if of
the opposite of our first condition but that's clunky. Instead
we can use else.

 You can only have an else with an if, it cannot exist by
itself. For a given if you can only have one else. Let's
rework our code using else.

def less_than_ten(x):

if x < 10:

 print("Your number is less than ten.")

else:

 print("your number is more than ten")

ELSE-IF OR ELIF

 Cool. But we had that logic error when x = 10. We can fix
that with the last component of if conditionals, else-if
abbreviated as elif.

 Like else, you can only have an elif with an if, it cannot
exist by itself. Unlike else, you can have any number of
elifs for each if. Let's rework our code using elif.

def less_than_ten(x):

if x < 10:

 print("Your number is less than ten.")

elif x ==10:

 print("Your number is equal to ten.")

else:

 print("your number is more than ten")

HOW DOES IT ALL WORK, THOUGH?

 Each test is sequential, only one branch will be
followed, other two ignored. If else used then we will
always follow one branch, otherwise we might follow
none of them.

def less_than_ten(x):

if x < 10:

 print("Your number is less than ten.")

elif x ==10:

 print("Your number is equal to ten.")

else:

 print("your number is more than ten")

THAT WILL BE ALL FOR TODAY

Psych! Group Question time:

Remember the calculator we built? Can we

make it more like an actual calculator?

WELCOME BACK!

WHERE WE ARE AT

A QUICK TEST: WHICH OF THE TWO WILL

WORK CORRECTLY?

Option 1: Option 2:

Hint: Try the Visualizer

IF-ELIF-ELSE V/S MULTIPLE IFS

 From the previous example we see the two ways

of approaching a problem.

 But which is right?

 This is firmly dependent on the problem at hand.

 Well, ok but what does that mean?

DESIGN DECISIONS

 The key questions to ask yourself are these:

 should my function only ever take on branch?

 if yes then use if and elifs

 if no then use repeated ifs

(think of non-exclusive traits for the latter case,
like biology classifications)

 should my function always take one branch?

 if yes, use an else

 if no, don't

(if checking for some specific state or case you often
don't need an else for example)

PRACTICE TIME!

 Let us assume we are writing a function that

returns whether a number is even or not.

 Lets call this function iseven()

 Given that the function archetype is iseven(num)

WHAT WOULD BE THE OBVIOUS WAY

LESS OBVIOUS AND BETTER WAY

ORDER OF OPERATIONS

NESTED IF

 You can freely nest if statements. The code below
looks first to establish letter grade then has a nested
if to establish any +'s or -'s. This could be done with
one big if-elif-else statement but this way has some
advantages

QUESTION TIME!

 Write a function that takes a number input and

outputs all the prime divisors up to 13 and

denotes it prime if there are none.

WELCOME BACK!

BOOLS REVISITED

 bools are a fundamental type in python. They

only have two possible values, True or False.

 bools have their own operators, similar to +, -, *,

etc for ints/floats.

 bool operators are and, or, and not

THE BOOL OPERATORS: AND

 and is an operator on bools, it returns True if

and only if both bools are True otherwise it

returns False

THE BOOL OPERATORS: OR

 or is the other boolean operator. It returns True if

either of the inputs is True and False only if both

are False.

 Think of it as the opposite of and in a way

THE BOOL OPERATORS: NOT

 Not is also known as the invertor. It converts

True to False and False to True. Denoted by !.

A SPECIAL CASE: XOR

 Xor or Exclusive or is not a boolean operator in
Python. Although it is a logical operator, you will be
implementing it in your project so it worth a quick
look.

 XOR returns True if and only if exactly one of the
inputs is true.

CHAINING OPERATORS

 True and True and True and False

 Not really that different than 1 + 1 + 1 + 0

1 + (1 + (1 + 0))

1 + (1 + (1)) 1 + (1 + 1)

1 + (2)

1 + 2

3

IF WASN’T COMPLICATED BEFORE CHECK

THIS OUT

LET’S GET WEIRD(ER)!

Try this:

x=1

y=2

print(x and y)

print(x or y)

SO WHAT HAPPENED THERE?

x = 1

y = 2

print(x and y)

print(x or y)

 Technically python returns one of the operands with and
and or. Why? no idea. It's a design choice of the language.
Essentially or returns the first "truthy" value it finds while
and returns the first "falsy" value it finds. In either case if
they don't find what they are looking for they return the
last value they found.

 If using True/False this isn't a problem but if you start
using logical operators on numbers/strings it will get
strange fast

QUESTION TIME

 Solve the following:

 True or True and True and True

 True or False and True and True

 True and not False and not True or False

 Write a function to check whether a number is a

multiple of 2 or 3. Print the number only if it is a

multiple of both.

WELCOME BACK!

LETS MAKE THINGS SLIGHTLY MORE

COMPLICATED

 We want to write a function that would check

whether a given number is greater than 10 and

another inputted number y

Do you see something wrong with this?

LOGIC ERROR

 We want a function that tests if the first argument is larger
than both the number 10 and also the second argument

BECAUSE PYTHON THAT’S WHY!

 this should have evaluated the following conditional:

not x > 10 and y

not 3 > 10 and 5

not False and 5

True and 5

TIME FOR THE BRAIN HURT

 Try:

 print(True + True)

BOOLEANS AS INTEGERS

 The binary nature of boolean values has led to

them being treated as 1s and 0s in a lot of

languages, and python is no exception.

 So 1 + True is the same as 1 + 1.

 5/False will give a divide by zero error.

 Consequently you may get a lot of strange

behavior if you aren't careful with booleans.

OTHER DATA-TYPES AS BOOLEANS

 Any number (int or float) is treated as True unless it

has a value of 0 in which case it is treated as False

 Similarly any string is treated as True unless it is an

empty string (i.e. "") in which case it is False

 so what does this do?

SOME THINGS THAT WORK..

 …although it doesn’t seem like they should.

