
Python
Debugging and

Testing
www.cs.uoregon.edu/Classes/15U/cis122

Welcome Back!

A Quick Recap

Prethinking v/s Rethinking
You basically have two options when programming:

- you can spend time thinking before coding, or

- you can spend time rethinking after coding (i.e. debugging)

The 3rd Option
The third option is slightly more messy. This is when you do double the work.

Input and Solution Spaces
Functions (in the mathematical sense) map inputs to outputs (or solutions).

Similarly..
Computer science functions also map inputs to solutions but we often have to
give more thought to carefully evaluating a variety of inputs and how they might
map to unexpected values or errors.

Test Cases
If we can't test exhaustively (and we can't) what can we do?
Choose a good assortment of test cases. We'll discuss this more tomorrow.

Integrated Testing

with integrated testing we test the entire run of the program, or at least a major section of it, potentially testing dozens or hundreds
of individual function calls at one time.

Unit Testing

With Unit Testing, we check each function/module individually.

But, Which one do we use?

The answer is almost always both.

Unit testing lets you isolate problems within specific functions that integrated testing might notice but have trouble pinning down
("somewhere my program went bad but I don't know if it was in function 2, 4, or 5"). Unit testing is also good for testing for edge or
corner cases that may cause problems.

Integrated testing lets you find problems between functions (i.e. mismatches of outputs to inputs) which unit testing is oblivious to.
Example: function 1 returns a string as an output which is used as the input of function 2, but function 2 was written expecting an
int input. Both functions work in isolation but when tested as an integrated whole they break down.

Excercise

So in keeping with a theme:
randomness

Random Module
Python's random module generates pseudorandom numbers for us (and has
other functionality).
import random
print(random.randint(0,10))
print(random.randint(0,10))
print(random.randint(0,10))

 generates a random int between 0 and 10 inclusive of both (unusual in
python).

Pseudorandomness

images from: http://boallen.com/random-numbers.html

The difference
Pseudorandom numbers are sequences mathematically generated to
approximate a random distribution of numbers, but they are actually
deterministic based on a specific starting seed.
The seed is a number or vector used for initialization of the process. Enter the
same seed you get the same sequence of numbers.
 Ever play a computer game where if you take a turn some stuff happens, but if
you save first and then take the turn multiple times the same random events
happen every time? Welcome to pseudorandom.

Seeds
Speaking of seeds
 import random
 random.seed(1)
 print(random.randint(0,10))
 random.seed(1)
 print(random.randint(0,10))

Not exactly random.
seed() initializes the seed used by the pseudorandom number generator. If
called with no argument it uses the current system time.

randrange()
randrange() works very similar to randint() except the end is exclusive (i.e.
below a 10 cannot be generated)
 import random
print(random.randrange(0,10))
 print(random.randrange(0,10))
 print(random.randrange(0,10))
generates a random int between 0 and 10 inclusive of 0 but not 10. Let’s test
that…

(printing is slooooooooooooooow)

choice
choice selects one member of a sequence pseudorandomly

import random
 str1 = "abcd"
 print(random.choice(str1))
 print(random.choice(str1))
 print(random.choice(str1))

each object has essentially the same chance of being picked.

sample
similar to choice but can select multiple times from the sequence returning the
result as a list

import random
str1 = "abcd"
print(random.sample(str1, 3))

each object has essentially the same chance of being picked.

sample/choice+range
remember range() gave us a sequence of number?

 import random print(random.choice(range(1000000000000)))

 (you could do the same thing with randint() but I believe this method is faster)

Generate your own random strings
Remember the string constants?
string.ascii_letters
string.digits
string.punctuation

 We can use these now to generate random strings!

