
Week 2: Functions

FINALLY!

2

 Remember when I bragged that Python has lots of built in
tools and libraries? Some built in functions:

 print()

 type()

 help() * *doesn’t need a print, take that consistency! More on
this later!

 min() / max()

 bin() / hex() / oct()

 id()

 input()

 int() / float()

 pow() round()

3

More examples of built-in functions

Just to name a few…

abs()

dict() help()

min()

setattr()

all()

dir()

hex()

next()

slice()

any()

divmod()

id()

object()

sorted()

ascii()

enumerate()

input()

oct()

bin()

eval()

int()

open()

str()

bool()

exec()

isinstance()

ord()

sum()

4

bytearray()

filter()

issubclass()

pow()

super()

bytes()

float()

iter()

print()

tuple()

callable()

format()

len()

property()

Arguments

 Not that kind of argument

 An argument is something passed to a function, it’s what

you want the function to work on. Functions can be

thought of as black boxes

 Aka a parameter.

5

Why Use functions?

 “Off the top of my head, I'd say you're looking at a

Bowski, a Jim Brown, a Miss Daisy, two Jethros and a Leon

Spinks, not to mention the biggest Ella Fitzgerald ever!”

 Or for those of us who are normal: Reusability.

 And unlike the previous example : Clarity.

6

Some useful built-in functions:

1. help()

7

min() / max()

 Running from Math? Python can help!

8

int/float/str

 Casting as we discussed earlier

9

 print()/input()

 The basic input and output functions in python

10

Quick Question:

 If we had to accept 2 numbers from a user, and check

which one of the two was greater, how would we do

that?

 …and one last one. Take two numbers from a user and

add them.

11

12

Since we will not be having class on

Friday, We will have the test on

Thursday during class.

There is a Project this week, I will

assign it on Friday. Please check

blackboard for it.

13

14

WELCOME BACK!

Where we are:

15

Types Functions Flow Control Keywords

Int print()

Float input()

String pow()

Boolean int()

 float()

 str()

 min()/max()

 help()

Built-In Functions

16

 Most of us like just the regular chocolate-chip or peanut

butter or snickerdoodle cookie varieties.

 But what if I (or the Dalai Lama) wanted one with

everything?

 Similarly, If we have a whole lot of built in “flavors” (read:

functions) in python. But what if we wanted our own

flavor?

User Defined Functions

17

User Defined Functions: Syntax

18

def times_two(num):

return num * 2

 def is a key word that tells python you are starting the
definition of a function

 times_two is the name of my function

 num is a parameter (or argument), it is an input passed
to the function, not all functions require arguments

 return is what the function is going to give back when
finished

Lets try this code, do you think it will work?

User Defined Functions: Indent

19

 Why didn’t that code work?

 Because we forgot a crucial part of function writing! The indent

 Try the one given below.

def times_two(num):

 return num * 2

 Luckily for us, IDLE does this automatically when it sees

the keyword def and the “:”.

 For the most part, python is flexible with whitespaces, the

biggest exception to this is the indent.

Indent continued:

20

 So why did it work?

def times_two(num):

 return num * 2

 Python uses indents to tell what code goes together

 when the code stops being indented then python knows
the function is complete

 so

def times_two(num):

return num * 2

 won’t work because the function times_two has no code

The “other” argument

21

def times_two(num):

 return num * 2

 num is a parameter (or argument), it is an input passed to the

function, not all functions require arguments

 What exactly is “num”?

 It’s essentially a variable, but one that only lives inside the

function.

 if we call times_two(4) then the first thing this code does is

 num = 4

 Arguments are what let us call functions on a variety of inputs

A Special kind of User-Defined Function:

The Hard Coded Function

22

def three_times_two():

 return 3 * 2

 We’ve written a version of times_two that doesn’t take

an argument and instead is hardcoded for a specific value

(i.e. fixed, not variable).

 this works the same way as times_two(3) would but is

obviously much less useful.

Side-Effects

23

def times_two(num):

 return num * 2

def times_two(num):

 print(num * 2)

 Do these do the same thing? Hint: NO.

 Note the color differences,

 orange is a keyword,

 purple is a built in function

 What does the second function return?

So what does it all mean?

24

 42

 Just Kidding. Simply put:

 print() exists to give information to a human being

 returns exist to pass data around between parts of the

program

 Lets take the examples of

 x= max(2,3)

And,

 print(max(2,3))

50 shades of IDLE

25

Ok there aren’t so many but here are the ones that are there

Python default syntax colors:

 Keywords orange

 Builtins royal purple

 Strings green

 Comments red

 Definitions blue

 Shell default colors:

 Console output brown

 stdout blue

 stderr red

 stdin black

This is also viewable on IDLE Help on the taskbar

Programming as Data

26

 a function is essentially a variable whose “value” is a

series of steps on some input. This was a HUGE

conceptual breakthrough.

27

28

WELCOME BACK!

Where we are:

29

Types Functions Flow Control Keywords

Int print() def

Float input() return

String pow()

Boolean int()

 float()

 str()

 min()/max()

 help()

Verbosity!

30

This code

def foo (a):

 return a * a

is a lot less easy to understand than this

def square(num):

 return num * num

Just like with variables giving functions and arguments good

names is a very good idea (which makes sense since

arguments and functions really are sorts of variables)

Introduction to Scope

31

def foo (A):

 doubleA = 2* A

print(doubleA)

Does this code work?

32

BUGS!!

A Quick Introduction to Entymology

33

 Syntax Errors

 Logic Errors

 Runtime Errors

This list is in ascending order of suck.

This list is non-exhaustive, there are many more types of

errors and all come under the category of exceptions

Syntax Error

34

def times_two(num:

 return num * 2

max(2 3)

def two()

return 2

Syntax error = your code sucks (or a typo)

Good news- easy to catch, easy to fix

Logical Errors

35

def times_two(num):

 return num * 3

 Logic error = your computational thinking sucks (or a

typo)

 May be easy or hard to spot, often frustrating to fix

Runtime Errors

36

“good” runtime error :

def times_two(nam):

 return num * 2

bad runtime error

def divide_ten(num):

 return 10 / num

 Runtime error = you didn’t think of an important case, or you referenced
non existing variables

 Can be nearly impossible to find without very good test cases. Often not
that hard to fix.

For more on errors and exceptions

37

 https://docs.python.org/3.4/library/exceptions.html

https://docs.python.org/3.4/library/exceptions.html
https://docs.python.org/3.4/library/exceptions.html

Question Time!

38

Group Question:

Given the information that simple interest is calculated with

the formula

S.I = Principle Amount x (Rate/100) x Time (in years)

Write a function to calculate Simple interest

