
Week 2: Functions

FINALLY!

2

 Remember when I bragged that Python has lots of built in
tools and libraries? Some built in functions:

 print()

 type()

 help() * *doesn’t need a print, take that consistency! More on
this later!

 min() / max()

 bin() / hex() / oct()

 id()

 input()

 int() / float()

 pow() round()

3

More examples of built-in functions

Just to name a few…

abs()

dict() help()

min()

setattr()

all()

dir()

hex()

next()

slice()

any()

divmod()

id()

object()

sorted()

ascii()

enumerate()

input()

oct()

bin()

eval()

int()

open()

str()

bool()

exec()

isinstance()

ord()

sum()

4

bytearray()

filter()

issubclass()

pow()

super()

bytes()

float()

iter()

print()

tuple()

callable()

format()

len()

property()

Arguments

 Not that kind of argument

 An argument is something passed to a function, it’s what

you want the function to work on. Functions can be

thought of as black boxes

 Aka a parameter.

5

Why Use functions?

 “Off the top of my head, I'd say you're looking at a

Bowski, a Jim Brown, a Miss Daisy, two Jethros and a Leon

Spinks, not to mention the biggest Ella Fitzgerald ever!”

 Or for those of us who are normal: Reusability.

 And unlike the previous example : Clarity.

6

Some useful built-in functions:

1. help()

7

min() / max()

 Running from Math? Python can help!

8

int/float/str

 Casting as we discussed earlier

9

 print()/input()

 The basic input and output functions in python

10

Quick Question:

 If we had to accept 2 numbers from a user, and check

which one of the two was greater, how would we do

that?

 …and one last one. Take two numbers from a user and

add them.

11

12

Since we will not be having class on

Friday, We will have the test on

Thursday during class.

There is a Project this week, I will

assign it on Friday. Please check

blackboard for it.

13

14

WELCOME BACK!

Where we are:

15

Types Functions Flow Control Keywords

Int print()

Float input()

String pow()

Boolean int()

 float()

 str()

 min()/max()

 help()

Built-In Functions

16

 Most of us like just the regular chocolate-chip or peanut

butter or snickerdoodle cookie varieties.

 But what if I (or the Dalai Lama) wanted one with

everything?

 Similarly, If we have a whole lot of built in “flavors” (read:

functions) in python. But what if we wanted our own

flavor?

User Defined Functions

17

User Defined Functions: Syntax

18

def times_two(num):

return num * 2

 def is a key word that tells python you are starting the
definition of a function

 times_two is the name of my function

 num is a parameter (or argument), it is an input passed
to the function, not all functions require arguments

 return is what the function is going to give back when
finished

Lets try this code, do you think it will work?

User Defined Functions: Indent

19

 Why didn’t that code work?

 Because we forgot a crucial part of function writing! The indent

 Try the one given below.

def times_two(num):

 return num * 2

 Luckily for us, IDLE does this automatically when it sees

the keyword def and the “:”.

 For the most part, python is flexible with whitespaces, the

biggest exception to this is the indent.

Indent continued:

20

 So why did it work?

def times_two(num):

 return num * 2

 Python uses indents to tell what code goes together

 when the code stops being indented then python knows
the function is complete

 so

def times_two(num):

return num * 2

 won’t work because the function times_two has no code

The “other” argument

21

def times_two(num):

 return num * 2

 num is a parameter (or argument), it is an input passed to the

function, not all functions require arguments

 What exactly is “num”?

 It’s essentially a variable, but one that only lives inside the

function.

 if we call times_two(4) then the first thing this code does is

 num = 4

 Arguments are what let us call functions on a variety of inputs

A Special kind of User-Defined Function:

The Hard Coded Function

22

def three_times_two():

 return 3 * 2

 We’ve written a version of times_two that doesn’t take

an argument and instead is hardcoded for a specific value

(i.e. fixed, not variable).

 this works the same way as times_two(3) would but is

obviously much less useful.

Side-Effects

23

def times_two(num):

 return num * 2

def times_two(num):

 print(num * 2)

 Do these do the same thing? Hint: NO.

 Note the color differences,

 orange is a keyword,

 purple is a built in function

 What does the second function return?

So what does it all mean?

24

 42

 Just Kidding. Simply put:

 print() exists to give information to a human being

 returns exist to pass data around between parts of the

program

 Lets take the examples of

 x= max(2,3)

And,

 print(max(2,3))

50 shades of IDLE

25

Ok there aren’t so many but here are the ones that are there

Python default syntax colors:

 Keywords orange

 Builtins royal purple

 Strings green

 Comments red

 Definitions blue

 Shell default colors:

 Console output brown

 stdout blue

 stderr red

 stdin black

This is also viewable on IDLE Help on the taskbar

Programming as Data

26

 a function is essentially a variable whose “value” is a

series of steps on some input. This was a HUGE

conceptual breakthrough.

27

28

WELCOME BACK!

Where we are:

29

Types Functions Flow Control Keywords

Int print() def

Float input() return

String pow()

Boolean int()

 float()

 str()

 min()/max()

 help()

Verbosity!

30

This code

def foo (a):

 return a * a

is a lot less easy to understand than this

def square(num):

 return num * num

Just like with variables giving functions and arguments good

names is a very good idea (which makes sense since

arguments and functions really are sorts of variables)

Introduction to Scope

31

def foo (A):

 doubleA = 2* A

print(doubleA)

Does this code work?

32

BUGS!!

A Quick Introduction to Entymology

33

 Syntax Errors

 Logic Errors

 Runtime Errors

This list is in ascending order of suck.

This list is non-exhaustive, there are many more types of

errors and all come under the category of exceptions

Syntax Error

34

def times_two(num:

 return num * 2

max(2 3)

def two()

return 2

Syntax error = your code sucks (or a typo)

Good news- easy to catch, easy to fix

Logical Errors

35

def times_two(num):

 return num * 3

 Logic error = your computational thinking sucks (or a

typo)

 May be easy or hard to spot, often frustrating to fix

Runtime Errors

36

“good” runtime error :

def times_two(nam):

 return num * 2

bad runtime error

def divide_ten(num):

 return 10 / num

 Runtime error = you didn’t think of an important case, or you referenced
non existing variables

 Can be nearly impossible to find without very good test cases. Often not
that hard to fix.

For more on errors and exceptions

37

 https://docs.python.org/3.4/library/exceptions.html

https://docs.python.org/3.4/library/exceptions.html
https://docs.python.org/3.4/library/exceptions.html

Question Time!

38

Group Question:

Given the information that simple interest is calculated with

the formula

S.I = Principle Amount x (Rate/100) x Time (in years)

Write a function to calculate Simple interest

