
PYTHON REPETITION

Course Website:

https://www.cs.uoregon.edu/15U/cis122

WELCOME BACK! TIME TO GET

LOOPY…. OR SLIGHTLY MORE

THAN WE HAVE ALREADY 

SQUARE(): REVISITED

WHY LOOPS?

 Sometimes you need to run some lines of code
multiple times. In particular maybe you don't know
ahead of time (i.e. when programming) how many
times the code must run, but you will know during
execution.

 This is exactly what loops are for.

 Think about greeting guests for a party. You don't
know how many people are coming but you need to
greet each of them.

pseudocode:

while there are un-greeted guests:

greet the next guest

LOOPS

 two types of loops, for and while, we'll start by

looking at while loops

syntax:

while conditional:

[Code Block]

code to run after the loop is done

 The code will be executed over and over while the

condition remains true. Once the condition is

false the function will move on

EXAMPLE OF A LOOP

 What will this do?

 What happens if we swap the lines of code.

TIME TO GET COMFORTABLE

 One downside to while loops is that accidental

infinite loops are possible.

 we left off the line that changed x, consequently

the conditional never stops being true and the

loop runs forever.

 ctrl-c to stop the execution (command-c on mac?)

SQUARE: RE-REVISITED

POLY()

 Let’s try and see whether we can write a program

that would generally define how to make a

polygon of n- sides?

POLY()

WELCOME BACK!

INDENTS

 As with functions and if statements indents are

used to group text together, and once again

mistaking what should be indented and what

shouldn't is a VERY common error.

SPOT THE ERROR

def loop_to_ten(x):

 while x < 10:

 x = 0

 print(x)

 x += 1

SPOT THE ERROR

def loop_to_ten(x):

 x = 0

 while x < 10:

 print(x)

 x += 1

 SOME EXAMPLES

 Loops lend themselves to some interesting

problems, lets take a look at some

 COMPOUND INTEREST

 Compound interest can be described thusly:

M(t+1) = M(t) + rM(t)

where M(t) is the money at time t

r is the interest rate (as a decimal)

and M(t+1) is the money after one unit of time (where
the time unit is decided by how often the interest is
compounded (yearly, daily, monthly)

 Lets write a function that takes a starting M, an
amount of time, and a rate and figures out the final
amount of money. We'll assume no withdrawals.

FIBONACCI SEQUENCE

 let's make a function to print out all the

Fibonacci numbers up to some arbitrary place.

 Fibonacci series:

 f(1) = 1

 f(2) = 1

 f(n) = f(n-2) + f(n-1)

CHECKLIST FOR LOOP WRITING

 Check list for while (indefinite) loops

1. Set up the loop/end condition

2. Initialize the loop variable (outside of the loop)

3. Write the body of the loop

4. Advance the counter variable

5. What to do when the loop is done?

ANY QUESTIONS?

 Then, Here are some of mine for you:

 Write a function to count up to 100 and print out

all the even digits

 Write a function to print out all the numbers

divisible by 3 between 3 and 30

WELCOME BACK

LOOPING OVER SEQUENCES

 Remember that strings are sequences of

characters (strings are not the only sequences in

python however).

 A very common activity is to loop over a sequence

and do something with each item in that

sequence.

 example-

count or print the individual characters in a string

LOOPING OVER SEQUENCES USING WHILE

FOR LOOP

 For loops are specifically designed to run over a

sequence applying the code within the loop once

for each object in the sequence.

 This specialization makes them less flexible but

also a bit safer and easier to use.

LOOPING COMPARISONS FOR LOOPING

OVER STRINGS

FOR LOOP SYNTAX

 Note both code snippets above work exactly the
same. The differences in the names (char/i and
aString/str1) are purely cosmetic. They are
variables standing in for the actual data we will
have later.

ADVANTAGES AND DISADVANTAGES

 Advantages-

Because the for loop operates once for each item in the
sequence it is impossible to accidentally cause an
infinite loop.

The for loop is more compact and sleek when operating
over a sequence than the while because it is specially
built for that task.

 Disadvantages-

The while loop is much more flexible. If you want to get
every other item from a sequence you can do it with a
for loop but it's probably just as easy to use a while loop
(actually you can do this specific thing with a slice very
easily).

CONTINUE AND BREAK STATEMENTS

 continue and break are keywords that allow us to

control the loop.

 The continue statement allows us to continue

running the loop while ignoring the rest of the

code within the loop for that particular iteration.

 break on the other hand allows us stop the

execution of a loop midway and continue with the

rest of the code.

CHECK STRINGS FOR NUMBERS

 Lets write a function to check each character of a

string and if the character is a digit (i.e. number)

it prints out that digit. It also keeps track of the

number of digits found and prints that number at

the end.

 Don't try to build it all at once, do one piece at a

time. Let's start by building a function that

prints out each letter in a string in turn.

 Here slicing really shines.

WELCOME BACK

LOOPS W/O SEQUENCES

 If you just want a loop to run a certain number of

times there's a way to do that with a for loop.

 All of our examples yesterday involved

manipulating a sequence as part of the loop, but

maybe we just want the sequence to serve as a

counter of sorts.

RANGE()

 the built-in range() function gives us a sequence
of numbers from 0 up to the argument value
passed to range.

 range(5) for instance gives us a sequence that
runs from 0 to 4.

 range() can also be called with 1, 2 or 3
arguments.

 range(1,5) gives us a sequence from 1 to 4.

 range(0, 5, 2) gives us a sequence from 0 to 4 by twos
(i.e. 0, 2, 4)

 Range(starting value, ending value, interval)

DEFAULT VALUES

 range() can take 1, 2 or 3 inputs.

COUNT_TO()

 let's write a function that counts (prints) the

numbers up to some argument we give the

function.

 Let's write it both as a while loop and a for loop.

NESTED LOOPS

 Aka loopception!

As I was going to St. Ives,

I met a man with seven wives,

Each wife had seven sacks,

Each sack had seven cats,

Each cat had seven kits:

Kits, cats, sacks, and wives,

How many were there going to St. Ives?

 Of course the poem above is a trick question but let's
say we wanted to calculate the number of kits, cats,
sacks, and wives. We could use algebra, but let's
make the computer do the work for us.

PSEUDO-CODE

Okay let's write the function

LOOPING WITHOUT LOOPS

 You remember me mentioning something about
recursion?

 Recursion is a way of looping without actually using
loops. We aren't going to have time to really learn
recursion but I want you to get a taste of it.

RECURSION BASICS

 Connection to Mathematical induction.

 The essence of recursion is to have a base case, below
the base case is when n==0, and if you aren't at the
base case the function calls itself on an input that is
closer to the base case.

QUESTION TIME

 We did the counting, now how about

implementing our even-odd printer using a for

loop with a sequence.

 Can we use range() with other sequences?

 Implement a function to ask the user for an input

and print that input until the person enters

‘quit’.

