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Overview

• Community Finding in Dynamic Networks 

• Proposed Framework & Algorithm 

• Evaluation: Benchmark Graphs 

• Evaluation: Mobile Call Graphs 

• Conclusions & Future Work
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https://github.com/derekgreene/dynamic-community

Implementation & Documentation:

https://github.com/derekgreene/dynamic-community
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Dynamic Network Analysis

• Want to analyse how communities in a dynamic network 
form and evolve over time. 

• We perform this analysis in an "offline" manner by 
examining successive snapshots of the network.
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Community Evolution

• We can characterise dynamic communities in terms of key 
life-cycle events (Palla et al, '07; Berger-Wolf et al, '07)
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Contraction  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Framework: Key Concepts
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• Time step: Snapshot of the network at a single point in time. 

• Step communities: Groups of nodes found by a static 
community finding algorithm on individual time step graphs. 

• Dynamic communities: A chain of related step communities 
observed over one or more time steps.

t = 1 t = 2 t = 3

C11 C21 C31

➡ Use timeline structures to represent dynamic 
communities constructed from step communities.
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Framework: Examples
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the individual time steps. This approach was applied to both
mobile subscriber networks and bibliographic co-authorship
graphs. A similar life-cycle model was proposed in [4], where
the dynamic community finding approach was formulated as
a graph colouring problem. Since the problem is NP-hard, the
authors employed a heuristic technique that involves greedily
matching pairs of node sets between time steps, in descending
order of similarity. This technique was shown to perform well
on a number of small well-known social network datasets.

Asur et al. [5] described a community event identification
strategy which used a matching-based approach, which was
implemented in the form of bit operations computed on
time step community membership matrices. This strategy was
applied to both bibliographic networks and clinic trial data in
the context of pharmaceuticals. Unlike other authors, in [5] a
significant emphasis was also placed on the life cycle of nodes
themselves. However this type of analysis may not always be
practical or relevant for larger datasets where network high-
level summarisation is the primary objective, rather than ego-
centric analysis.

B. Other Related Areas
Set matching heuristics have also been applied to other

problems that resemble the dynamic community finding task.
In data integration tasks, such techniques have been used in
“late integration” approaches to aggregate previously gener-
ated clusterings produced independently on each view of the
same network [6]. More generally, the problem of ensem-
ble clustering is concerned with combining a diverse set of
clusterings to produce a consensus solution that summarises
the information provided by the constituent clusterings [7].
However, the unique temporal aspect of the data in dynamic
community detection distinguishes the problem from these
other two tasks, where the sequence of groupings to be
aggregated is not important.

III. METHODS

A. Model for Dynamic Community Analysis
In this section, we provide a generalisation of previously

proposed models for dynamic community finding, focused
around the life cycle of communities. This model is used to
frame and motivate the method described in Section III-B.

Firstly, we represent a dynamic network as a set of time
step graphs {g1, . . . , gl}, providing snapshots of the nodes
and edges in the overall network at successive intervals. The
problem then becomes the identification of a set of k0 dynamic
communities D = {D1, . . . , Dk0} that are present in the
network across one or more time steps. We refer to step
communities that are identified at individual time steps, which
represent specific observations of dynamic communities at a
given point in time. Unlike the approach described in [2], these
need not necessarily comprise of cliques – the observations
can be taken from any disjoint or overlapping grouping that
provides assignments for some or all of the nodes in the overall
network. We denote the set of kt step communities identified
at time t as Ct = {Ct1, . . . , Ctkt}.
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Fig. 1. Example of three dynamic communities tracked over three time steps,
featuring continuation, birth, and death community life-cycle events.

Each dynamic community Di can be represented by a time-
line of its constituent step communities, ordered by time, with
at most one step community for each step t. The diagram in
Figure 1 shows a simple case involving three step clusterings
containing three dynamic communities. The timelines for these
three dynamic communities are straight-forward:

• D1: {C11, C21, C31}
• D2: {C22, C32}
• D3: {C12, C23}

A more complex example is shown in Figure 2. Note that while
there appear to be three distinct branches at time t = 3, there
are in fact four dynamic communities with four corresponding
timelines:

• D1: {C11, C21, C31}
• D2: {C12, C21, C31}
• D3: {C13, C22, C32}
• D4: {C13, C23, C33}
The most recent observation in a timeline is referred to as

the front of the dynamic community – the front for Di is
denoted Fi. The fronts for the three dynamic communities are
highlighted in Figure 1. Note that the dynamic community D3

does not have a corresponding observation at time t = 3 – its
front is the step community C23 from time t = 2.

In the dynamic community finding literature there can be
seen a broad consensus (e.g. [2], [4], [5]) on the fundamental
events that can be used to characterise the evolution of
dynamic communities. Given the notation above, we can
formulate these key events in terms of a set of rules covering
step and dynamic communities:

• Birth: The emergence of a step community Ctj observed
at time t for which there is no corresponding dynamic
community in D. A new dynamic community Di con-
taining Ctj is created and added to D. An example in
Figure 1 is the community D2 born in the second time
step.

• Death: The dissolution of a dynamic community Di

occurs when it has not been observed (i.e. there has
been no corresponding step community) for at least d
consecutive time steps. Di is subsequently removed from
the set D. An example in Figure 1 is D3, assuming that
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step and dynamic communities:

• Birth: The emergence of a step community Ctj observed
at time t for which there is no corresponding dynamic
community in D. A new dynamic community Di con-
taining Ctj is created and added to D. An example in
Figure 1 is the community D2 born in the second time
step.

• Death: The dissolution of a dynamic community Di

occurs when it has not been observed (i.e. there has
been no corresponding step community) for at least d
consecutive time steps. Di is subsequently removed from
the set D. An example in Figure 1 is D3, assuming that

the individual time steps. This approach was applied to both
mobile subscriber networks and bibliographic co-authorship
graphs. A similar life-cycle model was proposed in [4], where
the dynamic community finding approach was formulated as
a graph colouring problem. Since the problem is NP-hard, the
authors employed a heuristic technique that involves greedily
matching pairs of node sets between time steps, in descending
order of similarity. This technique was shown to perform well
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applied to both bibliographic networks and clinic trial data in
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B. Other Related Areas
Set matching heuristics have also been applied to other

problems that resemble the dynamic community finding task.
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“late integration” approaches to aggregate previously gener-
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same network [6]. More generally, the problem of ensem-
ble clustering is concerned with combining a diverse set of
clusterings to produce a consensus solution that summarises
the information provided by the constituent clusterings [7].
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III. METHODS

A. Model for Dynamic Community Analysis
In this section, we provide a generalisation of previously

proposed models for dynamic community finding, focused
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frame and motivate the method described in Section III-B.
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need not necessarily comprise of cliques – the observations
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network. We denote the set of kt step communities identified
at time t as Ct = {Ct1, . . . , Ctkt}.

t = 1 t = 2 t = 3

C11

C12

C21

C22

C23

C31

C32 F2

F1

F3

D1

D3

D2

Fig. 1. Example of three dynamic communities tracked over three time steps,
featuring continuation, birth, and death community life-cycle events.

Each dynamic community Di can be represented by a time-
line of its constituent step communities, ordered by time, with
at most one step community for each step t. The diagram in
Figure 1 shows a simple case involving three step clusterings
containing three dynamic communities. The timelines for these
three dynamic communities are straight-forward:

• D1: {C11, C21, C31}
• D2: {C22, C32}
• D3: {C12, C23}

A more complex example is shown in Figure 2. Note that while
there appear to be three distinct branches at time t = 3, there
are in fact four dynamic communities with four corresponding
timelines:

• D1: {C11, C21, C31}
• D2: {C12, C21, C31}
• D3: {C13, C22, C32}
• D4: {C13, C23, C33}
The most recent observation in a timeline is referred to as

the front of the dynamic community – the front for Di is
denoted Fi. The fronts for the three dynamic communities are
highlighted in Figure 1. Note that the dynamic community D3

does not have a corresponding observation at time t = 3 – its
front is the step community C23 from time t = 2.

In the dynamic community finding literature there can be
seen a broad consensus (e.g. [2], [4], [5]) on the fundamental
events that can be used to characterise the evolution of
dynamic communities. Given the notation above, we can
formulate these key events in terms of a set of rules covering
step and dynamic communities:

• Birth: The emergence of a step community Ctj observed
at time t for which there is no corresponding dynamic
community in D. A new dynamic community Di con-
taining Ctj is created and added to D. An example in
Figure 1 is the community D2 born in the second time
step.

• Death: The dissolution of a dynamic community Di

occurs when it has not been observed (i.e. there has
been no corresponding step community) for at least d
consecutive time steps. Di is subsequently removed from
the set D. An example in Figure 1 is D3, assuming that
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Framework: Tracking Communities
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|C \ Fi|
|C [ Fi|

> ✓

t = 4

?

Current 
Front

Step  
Communities

Matching  
Threshold

‣ How do we define a "match"?  
- Small   : Appropriate for transient communities 
- Large   : Appropriate for stable communities

✓

✓

➡ Many-to-many matching between step communities and 
dynamic community fronts using Jaccard set similarity.

How can we match newly arrived step communities with 
existing dynamic communities?

Q.
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Framework: Life-Cycle Events

• Birth: Step community is observed for which there is no 
matching dynamic community. 

• Death: Dynamic community is not observed for at least d 
time steps. 

• Merge: Two distinct dynamic communities are matched to 
a single step community. 

• Split: Single dynamic community is matched to two step 
communities. 

• Expansion: New community front is significantly larger 
than previous one. 

• Contraction: New community front is significantly smaller 
than previous one.
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Framework: Life-Cycle Events
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Intermittent  
Dynamic  

Communities

Some dynamic 
communities will not 
observed at all time 
steps after birth. 
(Palla et al, '07)
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Algorithm Summary
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1. Initialise Dynamic Communities:  
Apply static community finding algorithm for step graph at t=1 to 
create initial fronts. 

2. Find Step Communities:  
For each time t > 1 apply static community finding algorithm. 

3. Match Step Communities:  
For each step community A found for step t 

- For existing front B: 

- If                           add step community to existing 
dynamic community. 

- If no match then add as new dynamic community. 

4. Update Dynamic Communities:  
Replace fronts, and split/merge/remove dynamic communities as 
necessary.
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Evaluation: Benchmark Graphs

• Adapted benchmark software (Lancichinetti & Fortunato, '09) to 
generate time step graphs with embedded community events.
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How can we verify the accuracy of the proposed algorithm 
without a ground truth?

Q.
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Benchmark Data

• Generated 4 dynamic benchmark datasets. 
• 5 step graphs, unweighted edges. 
• 15k nodes, degree 20-40. 
• Start with ~400 embedded non-overlapping 

communities.

12

• 20% of node memberships switch at each step. 

• Additional community events and behaviours are embedded: 
1. Birth and death 
2. Merging and splitting  
3. Expansion and contraction 
4. Intermittent communities

http://mlg.ucd.ie/dynamic

http://mlg.ucd.ie/dynamic
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Benchmark Experiments

• Generated disjoint communities on each step using Louvain fast 
modularity optimization algorithm (Blondel et al, '08). 

• Compared to community finding on merged static graphs. 

• Measured agreement via Normalized Mutual Information (NMI) 
with ground truth embedded communities.

13

Birth/Death                Merge/Split
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Benchmark Experiments

• Generated disjoint communities on each step using Louvain fast 
modularity optimization algorithm (Blondel et al, '08). 

• Compared to community finding on merged static graphs. 

• Measured agreement via Normalized Mutual Information (NMI) 
with ground truth embedded communities.

14

Intermittent                  Expand/Contract
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Benchmark Scalability

• Processed 1 million node graph in 85 seconds to identify 
70k dynamic communities.  

• Experimental bottleneck was graph generation process.
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Evaluation: Mobile Call Graphs

• Analyzed weekly batch call graphs covering 6 months.  
• Constructed 6 x 4 week time step graphs from union of sets 

of weekly nodes and edges. 
• 3.0-4.2 million nodes, 20-26 million edges per step.

16

Maximum Node Degree Mean Node Degree
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Step Graphs

• On average 86% of nodes present in consecutive time 
monthly step graphs, with 47% of edges preserved.

17
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Step Communities

• Applied MOSES algorithm (McDaid & Hurley, '10) to each 
time step graph to produce overlapping communities.  

• Number of distinct step communities found in each monthly 
graph roughly similar (502k-574k).

18

• Over ~99.9% of step communities have size < 100. 

• Highly similar community size distributions.
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Step Communities

• Comparatively low level of agreement (NMI) between node 
memberships of step communities found in consecutive 
time steps (~10%).

19

Q. Is there sufficient signal across the time steps to perform 
dynamic community finding?



✓ 2 (0.2, 0.5)
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Dynamic Communities

• Applied dynamic community finding to step communities for a 
range of matching threshold values:  

• Process took 7-8 hours for a full 6 month set on single core. 
• Running time could be considerably reduced via parallelization. 
• Dynamic analysis can be performed incrementally.

20

Threshold Total Dynamic 
Communities

Long-Lived Intermittent 

0.2 2,014,651 46.3767669933899%33.8441744997024%

0.3 2,306,976 27.7237387818512%19.8014630407945%

0.4 2,626,672 17.0640643369252% 17.4%

0.5 2,900,921 9.7% 15.7%

Stricter 
Matching

(%) (%)(✓)

281,950 long-lived communities
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Long-Lived Communities
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Number of 
steps in which 
dynamic 
communities 
appear

➡ Even in strictest case, algorithm identifies ~190k dynamic 
communities observed in at least 50% of the time steps.
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Dynamic Community Sizes

• Define overall dynamic community membership as union of 
step community memberships in its timeline.

22

Long-Lived Dynamic Community Size Distributions
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Dynamic Community Sizes

• Define overall dynamic community membership as union of 
step community memberships in its timeline.

23

Long-Lived Dynamic Community Size Distributions

Threshold Size <= 50 Mean Community 
Size

0.2 86.7% 29

0.3 95.2% 16.8

0.4 98.4% 11.2

0.5 99.5% 7.9

Stricter 
Matching

(%)(✓)

➡ Small core groups of users are present in dynamic 
communities across the entire timeline.
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Conclusions

Q.How to interpret the large volume of 
output of dynamic community finding 
process? 

➡We have implemented a "metro map" 
visualization metaphor for illustrating 
dynamic group evolution... 

➡Need a scalable solution for large 
networks.

24

• We have proposed a simple, scalable approach for 
identifying long-lived communities in dynamic networks. 

• Approach is robust to volatile changes in community 
memberships on synthetic and mobile call data. 
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