Tracking the Evolution of Communities in Dynamic Social Networks

Derek Greene Dónal Doyle Pádraig Cunningham

ASONAM 2010

Clique: Graph & Network Analysis Cluster School of Computer Science & Informatics University College Dublin, Ireland

NOLOGIES

Overview

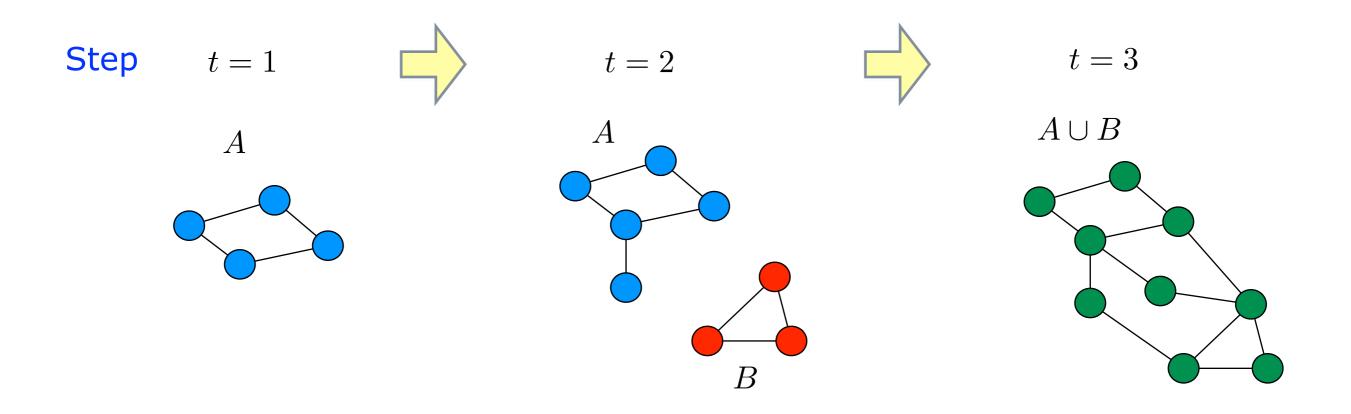
- Community Finding in Dynamic Networks
- Proposed Framework & Algorithm
- Evaluation: Benchmark Graphs
- Evaluation: Mobile Call Graphs
- Conclusions & Future Work

Implementation & Documentation:

https://github.com/derekgreene/dynamic-community

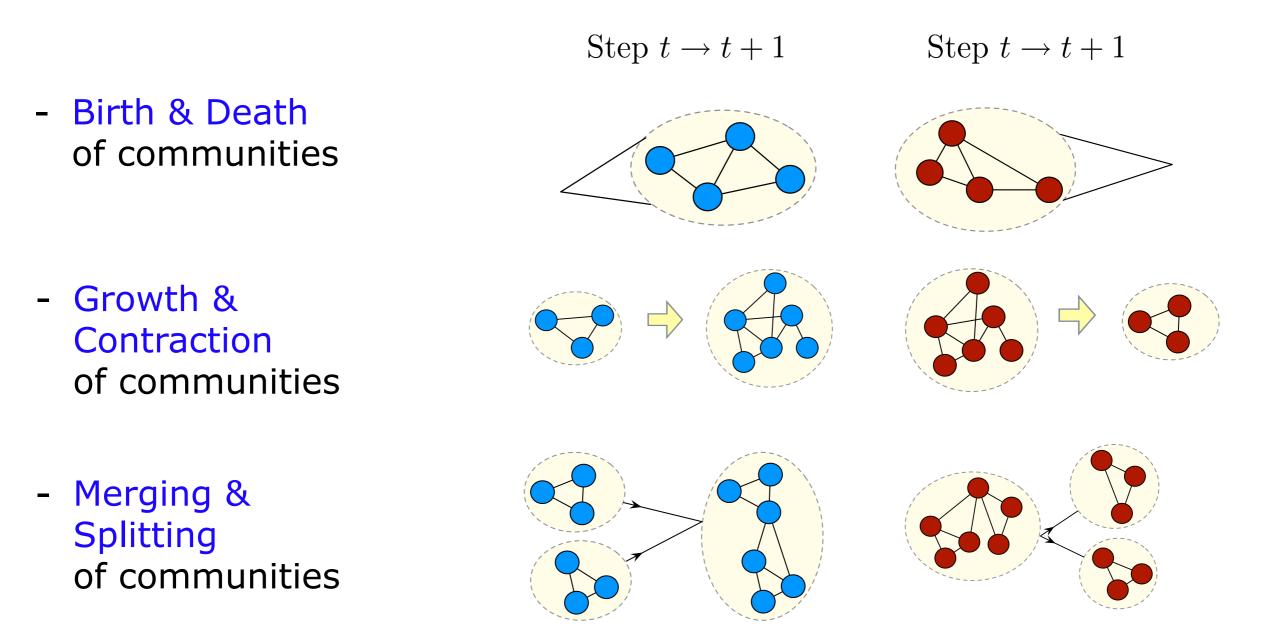
Dynamic Network Analysis

- Want to analyse how communities in a dynamic network form and evolve over time.
- We perform this analysis in an "offline" manner by examining successive snapshots of the network.



Community Evolution

• We can characterise dynamic communities in terms of key life-cycle events (Palla et al, '07; Berger-Wolf et al, '07)



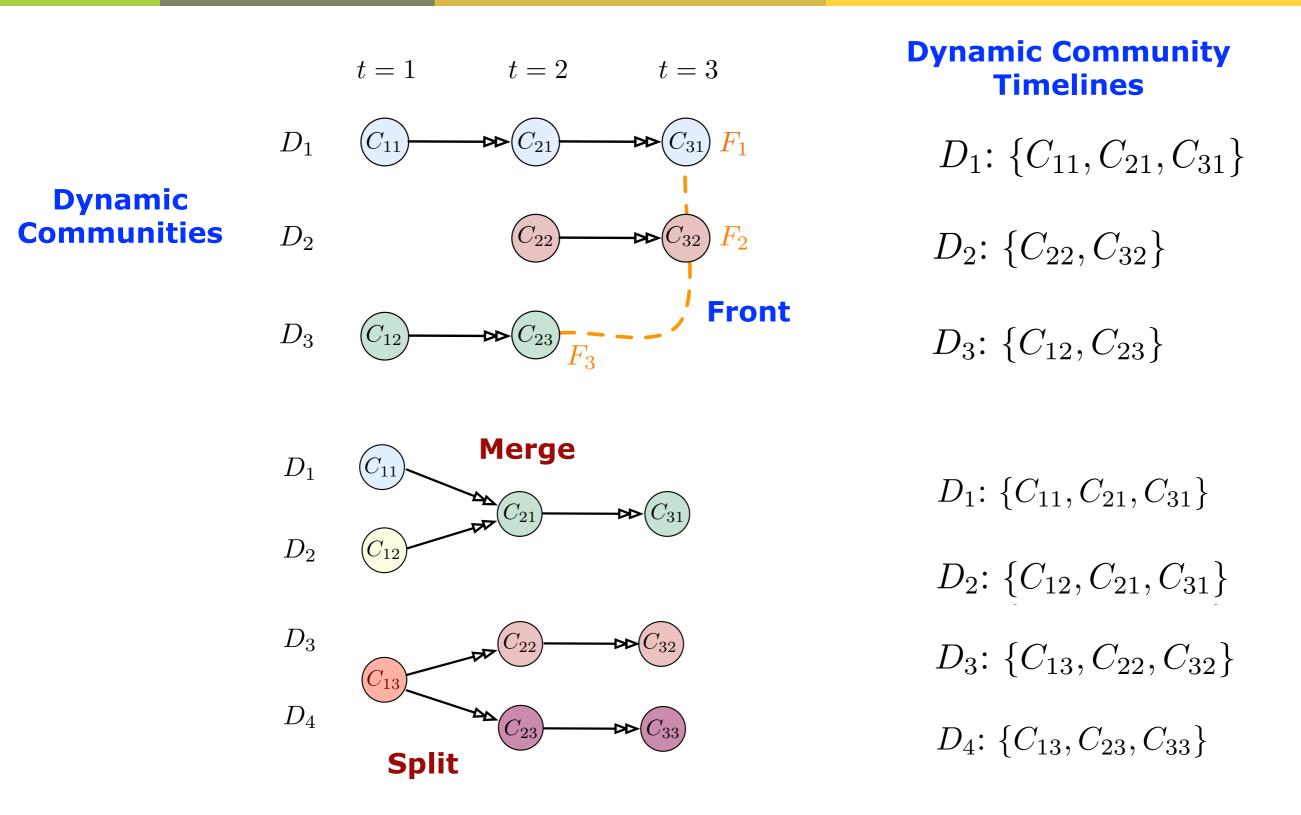
Framework: Key Concepts

- Time step: Snapshot of the network at a single point in time.
- Step communities: Groups of nodes found by a static community finding algorithm on individual time step graphs.
- Dynamic communities: A chain of related step communities observed over one or more time steps.
 - Use timeline structures to represent dynamic communities constructed from step communities.

$$t = 1 \qquad t = 2 \qquad t = 3$$

$$C_{11} \longrightarrow C_{21} \longrightarrow C_{31}$$

Framework: Examples



Γ

Framework: Tracking Communities

Q. How can we match newly arrived step communities with existing dynamic communities?

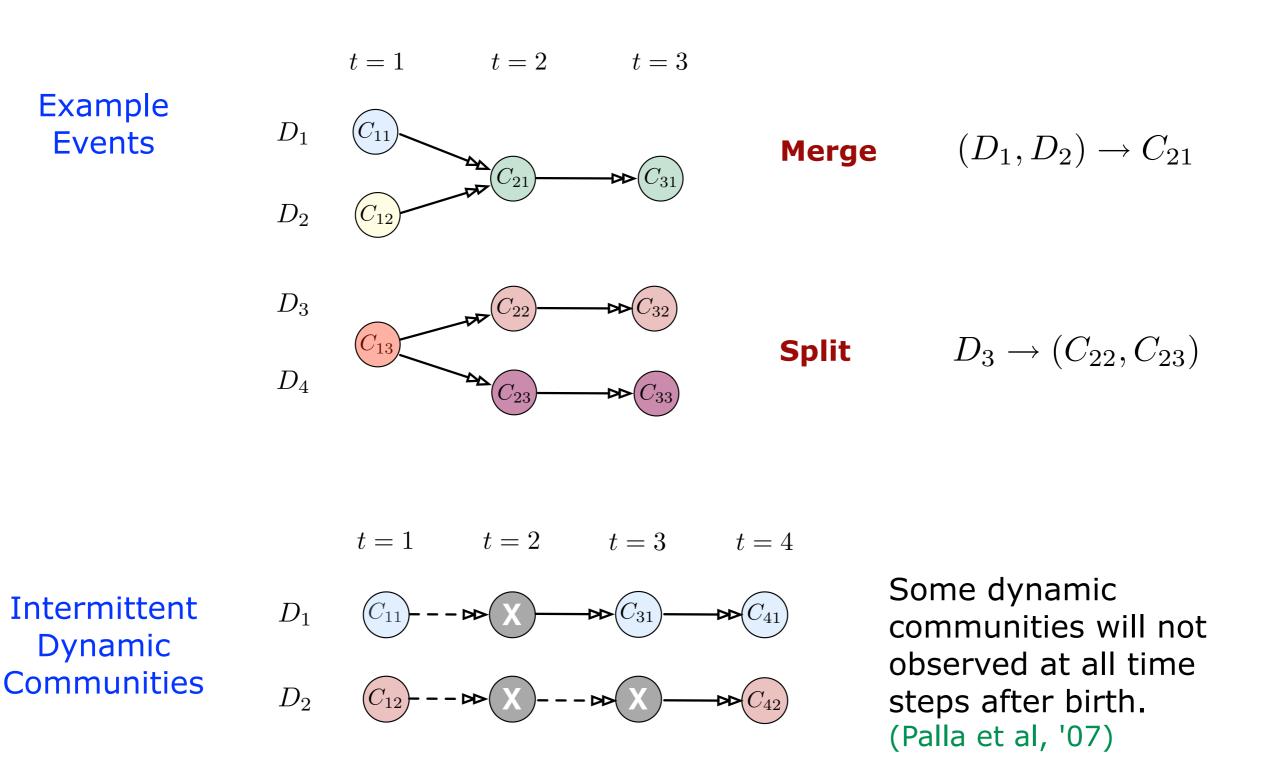
 Many-to-many matching between step communities and dynamic community fronts using Jaccard set similarity.

- How do we define a "match"?
 - Small θ : Appropriate for transient communities
 - Large θ : Appropriate for stable communities

Framework: Life-Cycle Events

- Birth: Step community is observed for which there is no matching dynamic community.
- Death: Dynamic community is not observed for at least *d* time steps.
- Merge: Two distinct dynamic communities are matched to a single step community.
- Split: Single dynamic community is matched to two step communities.
- Expansion: New community front is significantly larger than previous one.
- Contraction: New community front is significantly smaller than previous one.

Framework: Life-Cycle Events



Algorithm Summary

1. Initialise Dynamic Communities:

Apply static community finding algorithm for step graph at t=1 to create initial fronts.

2. Find Step Communities:

For each time t > 1 apply static community finding algorithm.

3. Match Step Communities:

For each step community A found for step t

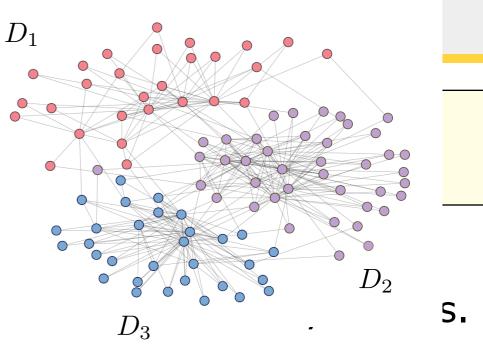
- For existing front B:
 - If $match(A,B) > \theta$ add step community to existing dynamic community.
- If no match then add as new dynamic community.
- 4. Update Dynamic Communities:

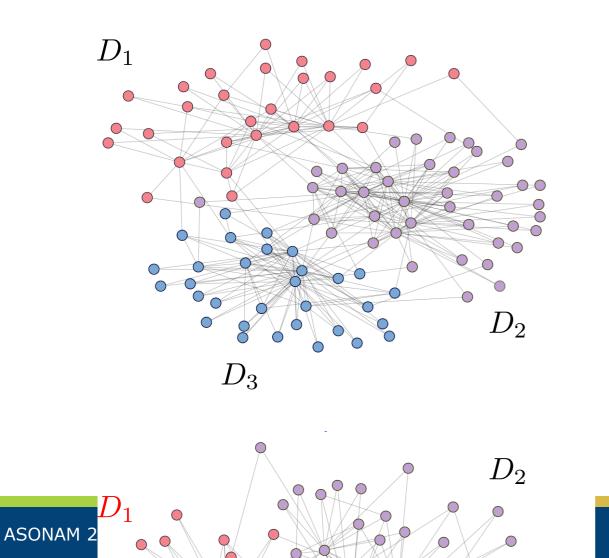
Replace fronts, and split/merge/remove dynamic communities as necessary.

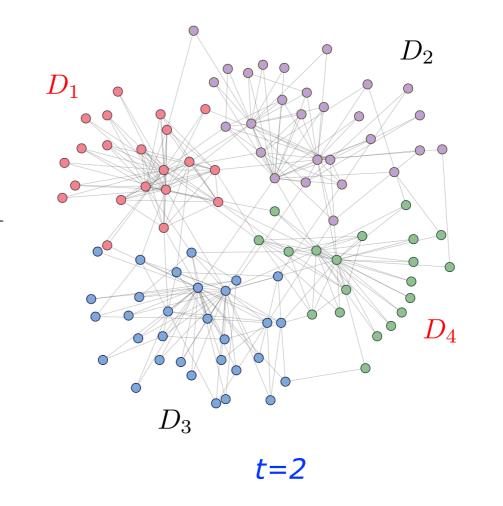
Evaluation: Benchmar'

Q. How can we verify the accuracy of without a ground truth?

• Adapted benchmark software (Lancic generate time step graphs with emt







 ± 1

t

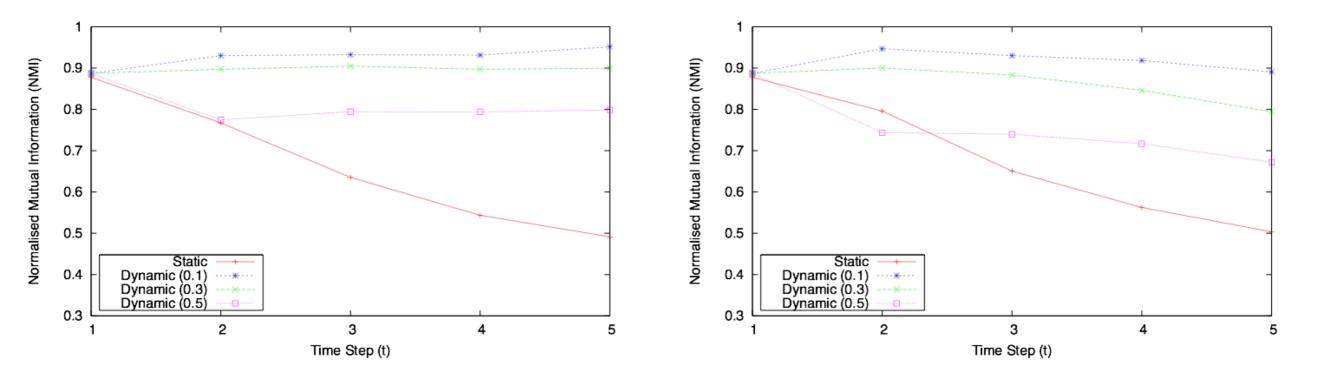
Benchmark Data

- Generated 4 dynamic benchmark datasets.
 - 5 step graphs, unweighted edges.
 - 15k nodes, degree 20-40.
 - Start with ~400 embedded non-overlapping communities.
- 20% of node memberships switch at each step.
- Additional community events and behaviours are embedded:
 - 1. Birth and death
 - 2. Merging and splitting
 - 3. Expansion and contraction
 - 4. Intermittent communities

http://mlg.ucd.ie/dynamic

Benchmark Experiments

- Generated disjoint communities on each step using Louvain fast modularity optimization algorithm (Blondel et al, '08).
- Compared to community finding on merged static graphs.
- Measured agreement via Normalized Mutual Information (NMI) with ground truth embedded communities.

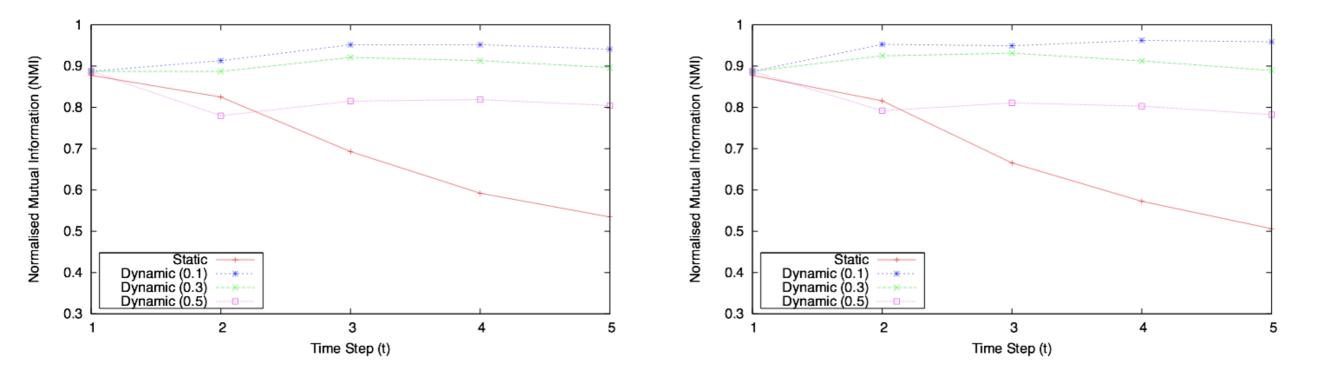


Birth/Death

Merge/Split

Benchmark Experiments

- Generated disjoint communities on each step using Louvain fast modularity optimization algorithm (Blondel et al, '08).
- Compared to community finding on merged static graphs.
- Measured agreement via Normalized Mutual Information (NMI) with ground truth embedded communities.

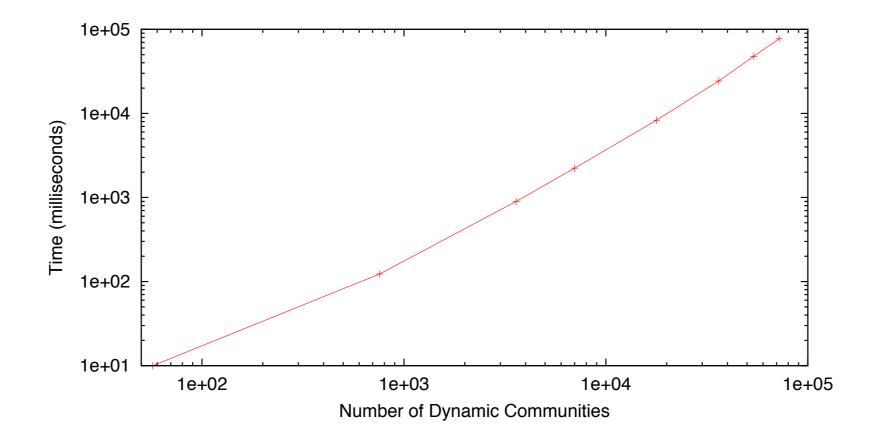


Intermittent

Expand/Contract

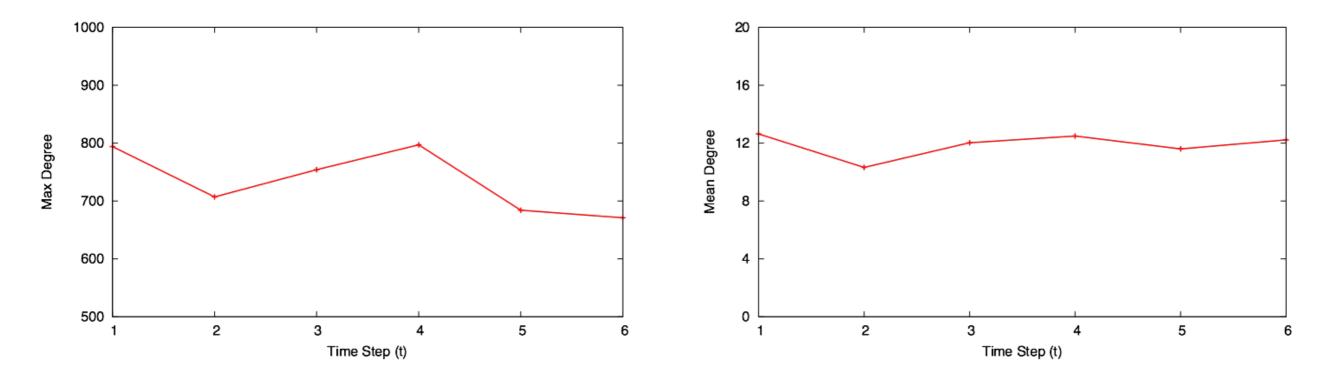
Benchmark Scalability

- Processed 1 million node graph in 85 seconds to identify 70k dynamic communities.
- Experimental bottleneck was graph generation process.



Evaluation: Mobile Call Graphs

- Analyzed weekly batch call graphs covering 6 months.
- Constructed 6 x 4 week time step graphs from union of sets of weekly nodes and edges.
 - 3.0-4.2 million nodes, 20-26 million edges per step.

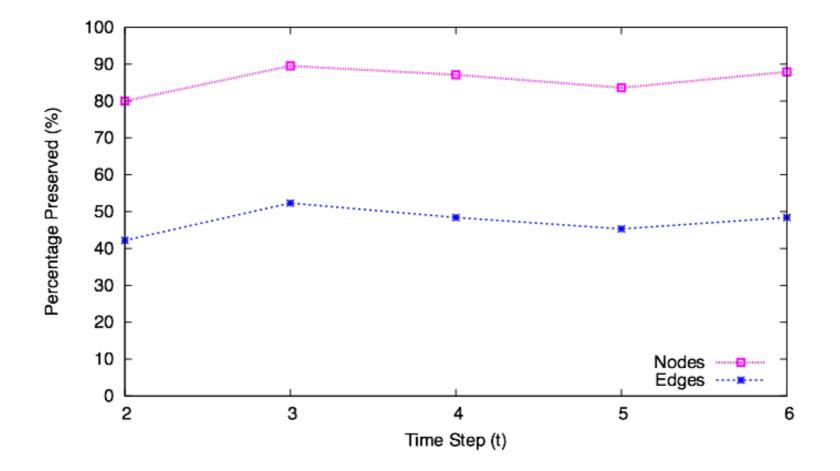


Maximum Node Degree

Mean Node Degree

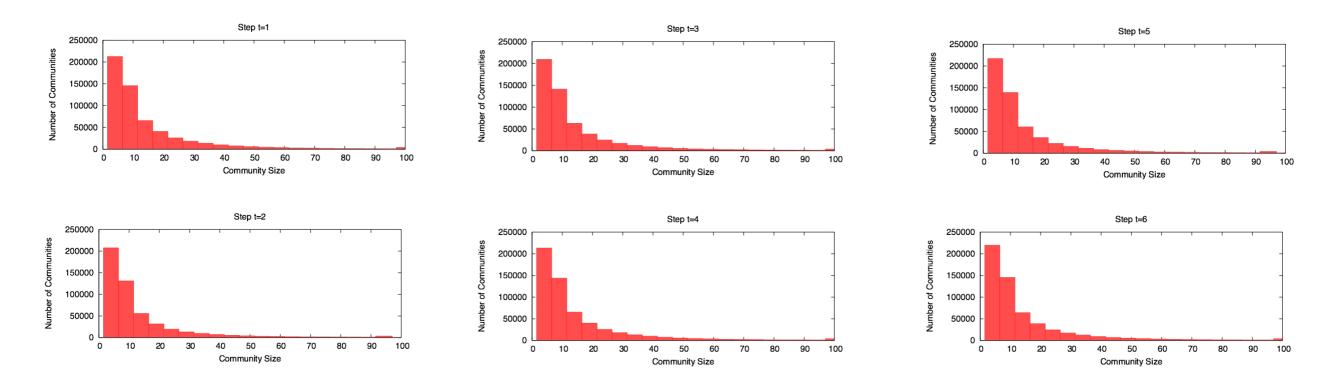
Step Graphs

• On average 86% of nodes present in consecutive time monthly step graphs, with 47% of edges preserved.



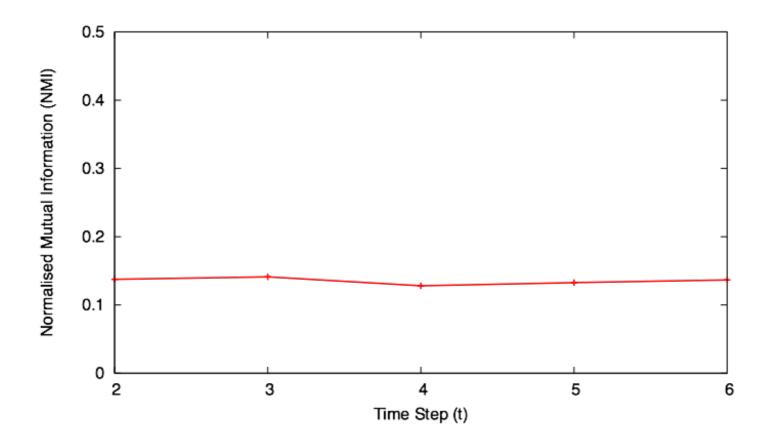
Step Communities

- Applied MOSES algorithm (McDaid & Hurley, '10) to each time step graph to produce overlapping communities.
- Number of distinct *step communities* found in each monthly graph roughly similar (502k-574k).
- Over ~99.9% of step communities have size < 100.
 - Highly similar community size distributions.



Step Communities

 Comparatively low level of agreement (NMI) between node memberships of step communities found in consecutive time steps (~10%).



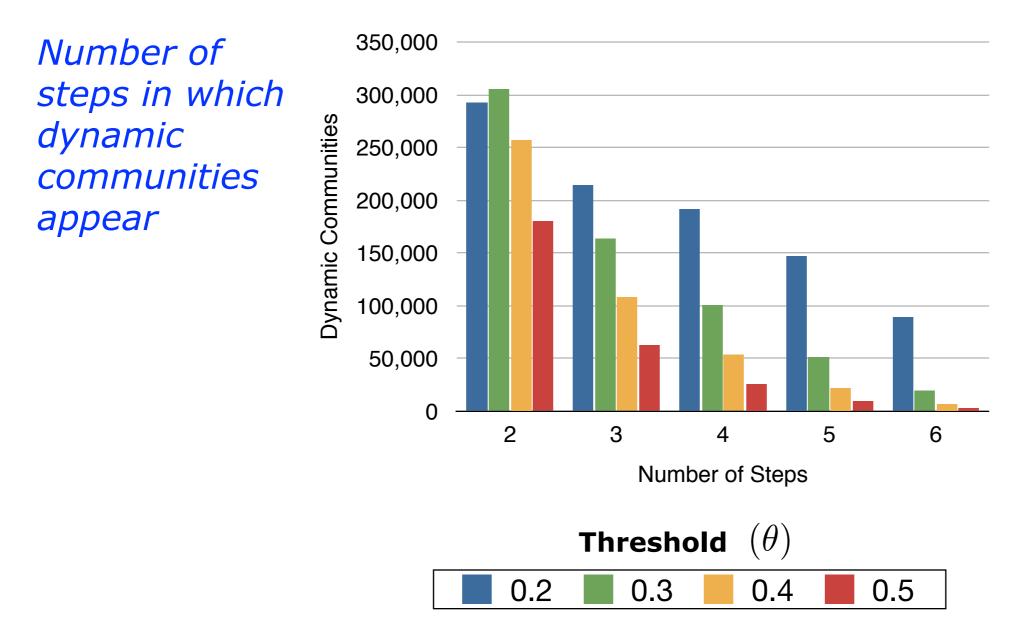
Q. Is there sufficient signal across the time steps to perform dynamic community finding?

Dynamic Communities

- Applied dynamic community finding to step communities for a range of matching threshold values: $\theta \in (0.2, 0.5)$
- Process took 7-8 hours for a full 6 month set on single core.
 - Running time could be considerably reduced via parallelization.
 - Dynamic analysis can be performed incrementally.

	Threshold (θ)	Total Dynamic Communities	Long-Lived (%)	Intermittent (%)
Stricter Matching	0.2	2,014,651	l6.3767669933899%	33.8441744997024%
	0.3	2,306,976	27.7237387818512%	9.8014630407945%
	0.4	2,626,672	.7.0640643369252%	17.4%
	0.5	2,900,921	9.7%	15.7%
•				
	281,950 long-lived communities			

Long-Lived Communities

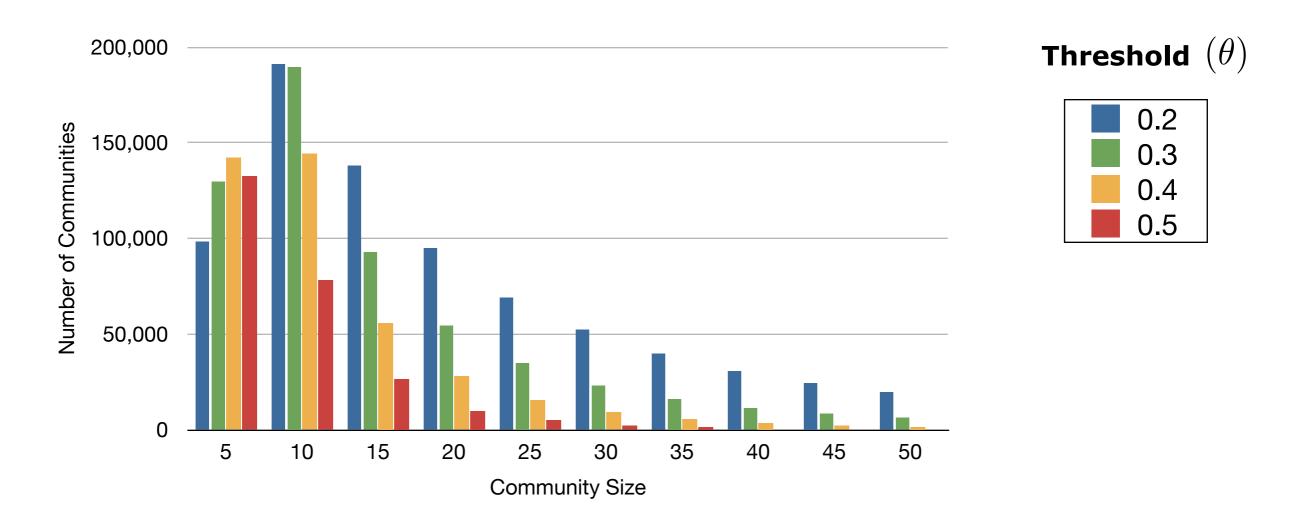


Even in strictest case, algorithm identifies ~190k dynamic communities observed in at least 50% of the time steps.

Dynamic Community Sizes

 Define overall dynamic community membership as <u>union</u> of step community memberships in its timeline.

Long-Lived Dynamic Community Size Distributions



Dynamic Community Sizes

 Define overall dynamic community membership as <u>union</u> of step community memberships in its timeline.

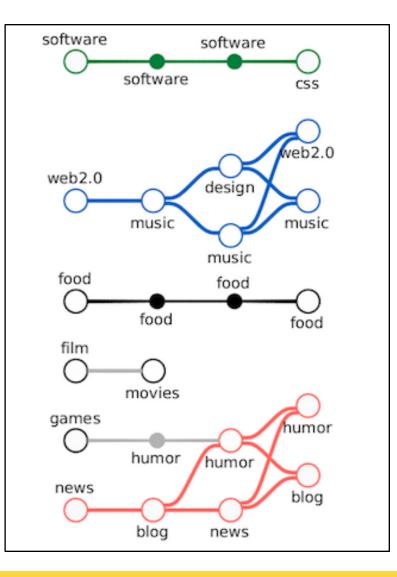
Long-Lived Dynamic Community Size Distributions

	Threshold (θ)	Size <= 50 (%)	Mean Community Size
	0.2	86.7%	29
Stricter	0.3	95.2%	16.8
Matching	0.4	98.4%	11.2
↓	0.5	99.5%	7.9

Small core groups of users are present in dynamic communities across the entire timeline.

Conclusions

- We have proposed a simple, scalable approach for identifying long-lived communities in dynamic networks.
- Approach is robust to volatile changes in community memberships on synthetic and mobile call data.
- Q. How to interpret the large volume of output of dynamic community finding process?
- We have implemented a "metro map" visualization metaphor for illustrating dynamic group evolution...
- Need a scalable solution for large networks.



References

D. Greene, D. Doyle, and P. Cunningham, "Tracking the evolution of communities in dynamic social networks," in *Proc. International Conference on Advances in Social Networks Analysis and Mining (ASONAM'10)*, 2010.

- C.Tantipathananandh,T. Berger-Wolf, and D. Kempe, "A framework for community identification in dynamic social networks". In *Proceedings of KDD* 2007.
- G. Palla, A. Barabasi, and T. Vicsek, "Quantifying social group evolution," *Nature*, vol. 446, no. 7136, 2007.
- A. Lancichinetti and S. Fortunato. "Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities". *eprint arXiv*: 0904.3940, 2009.
- V. Blondel, J. Guillaume, R. Lambiotte, and E. Lefebvre. "Fast unfolding of communities in large networks". *J. Stat. Mech*, 10008, 2008.
- D. Chakrabarti, R. Kumar, and A. Tomkins. "Evolutionary clustering". In *Proceedings of KDD 2006*.
- A. McDaid and N. Hurley. "Detecting highly overlapping communities with Model-based Overlapping Seed Expansion". *ASONAM 2010*