
1
CIS 422/522

CIS 422/522 © S. Faulk 2

CIS 422/522 
Course Overview

Admin: Projects and Schedule
Grading

Lecture/Disc: What is Software Engineering?

CIS 422/522 © S. Faulk 3

Contact Information

• Instructor contact
Stuart Faulk
faulk@cs.uoregon.edu
346-1350
Deschutes 354
Computer and Information Science
University of Oregon
Eugene, OR  97403

• Office Hours: 12:00-1:00 class days, by 
appointment, or any time my door is open
– I respond most quickly to email



2
CIS 422/522

CIS 422/522 © S. Faulk 4

Instructor Background

• Real World Experience (20+ years)
– R&D U.S. Naval Research Lab 
– R&D Aerospace industry
– Consulting (DoD, Sharp, Sun, etc.)

• Teaching industry professionals (15+ years)
– Oregon Master of Software Engineering 

• Perspective on Software Engineering as an 
applied discipline (i.e., what actually works)

CIS 422/522 © S. Faulk 5

CIS 422 Course Format

• Single Quarter Project Course
– Lectures, reading: theory, principles, and methods
– Projects: learn how to apply SE concepts by doing
– Project Meetings: learn effective teamwork
– Project evaluations: critique and guidance

• Two project iterations
– First for perspective on SE issues, team development
– Second to demonstrate ability to apply lessons learned

• Two exams assess individual understanding 
(midterm, 2nd midterm)



3
CIS 422/522

CIS 422/522 © S. Faulk 6

Emphasis is on Life-Cycle 
Management and Teamwork

• Participate in collaborative design
• Work as a member of a project team, 

assuming various roles
• Create and follow project plans
• Create the full range of work products 

associated with a software product
• Complete project deliverables on time
• Key point: coding is only part of the work

CIS 422/522 © S. Faulk 7

Projects

• 2 projects:  4 weeks, 6 weeks
– Project 1: same basic requirements for everyone

• Simple but extensible application
• Focus on project planning and teamwork 
• Understand what can go wrong

– Project 2: a selection of projects
• Instructor suggested or team choice
• Focus on disciplined development

• Technically simple, but high expectations
– Solid freeware quality application
– Complete documentation: requirements, design, 

test, user guides



4
CIS 422/522

CIS 422/522 © S. Faulk 8

Teams

• Form teams of 5-6 people from surveys
– At least one common programming language
– Cross-section of skills

• Project grades are a combination of group 
grade, individual contributions, and peer 
evaluation
– Overall grade for project
– Evaluation of individual contributions

• Peer evaluation by teammates
• Record of contributions from Developer Log

CIS 422/522 © S. Faulk 9

Grading

• 60% Projects (20+40)
– Includes presentations, intermediate deliverables

• 30% Exams (15+15)
– Test for understanding of lectures & reading
– Require 65/100 average to get C- or better in 

course
• 10% Class Participation: includes but is not 

limited to...
• Attendance at class, team meetings 
• Participation in class discussions, interactive questions
• Appropriate behavior in the classroom (i.e. no cell 

phones, beepers, trolling web)



5
CIS 422/522

CIS 422/522 © S. Faulk 10

Class Website

• Use class website to track class events
• Schedule page most important

– Lecture schedule, link to slides
– Readings due for each lecture
– Project due dates
– Examples of work products

• Home page: announcements
• Project page: project description, constraints
• Project grading: how work will be evaluated

CIS 422/522 © S. Faulk 11

Additional Resources

• Piazza: forum for discussion, questions 
(including anonymous)

• Provide summaries of lectures
• Video lectures: in place of in-class lectures for 

some classes; links provided as needed
• In class response system?



6
CIS 422/522

CIS 422/522 © S. Faulk 12

What is Software Engineering?

CIS 422/522 © S. Faulk 13

The “Software Crisis”

• Have been in “crisis” since the advent of “big” 
software (roughly 1965)

• What we want for software development
– Low risk, predictability (time, cost, functionality, quality)
– Lower costs and proportionate costs
– Faster turnaround

• What we have:
– High risk, high failure rate
– Inconsistent delivered quality
– Unpredictable schedule, cost, effort

• Characterized by lack of control (inability plan the 
work, work the plan)



7
CIS 422/522

CIS 422/522 © S. Faulk 14

Symptoms of the “Crisis”

• One of every four large software project is cancelled
• Average project overshoots schedule by 50%, large 

project often do much worse
• 75% of large systems do not operate as intended

– E.g., Ariane 5, Therac 25, Mars Lander, FAA ATC, 
Universal Credit, Cover Oregon, etc.

– Many fail to deliver a single working
line of code

• Really the “state of practice”

CIS 422/522 © S. Faulk 15

Discussion Context

• Focus on large, complex systems
– Multi-person: many developers, many stakeholders
– Multi-version: intentional and unintentional evolution

• Quantitatively distinct from small developments
– Software complexity grows non-linearly with size
– Communication complexity grows exponentially

• Qualitatively distinct from small developments
– Multi-person implies need for organizational functions 

(management, accounting,), policies, oversight, etc.
– More stakeholders and more kinds of stakeholders

• Rule of thumb: project starts to be “large” 
development team can’t fit around a table.



8
CIS 422/522

CIS 422/522 © S. Faulk 16

Implications

• Small system development is driven by technical issues 
(I.e., programming, technical understanding)

• Large system development is dominated by 
organizational issues 
– Problem understanding, managing complexity, communication, 

coordination, etc.
– Projects fail when these issues are inadequately addressed

• Key Lesson #1: programming ¹ software engineering
– Techniques that work for small systems fail utterly when 

scaled up
– Programming skills alone won’t get you through real 

developments (or even this course)

CIS 422/522 © S. Faulk 17

Programming View

Get Requirements

Test
Program

Write
Program



9
CIS 422/522

CIS 422/522 © S. Faulk 18

DoD Software Life Cycle

CIS 422/522 © S. Faulk 19

Origins of SE

• Term “software engineering” was coined at 1968 NATO 
conference:

“Software engineering is the establishment and use of sound 
engineering principles in order to obtain economically software 
that is reliable and works efficiently on real machines.”

• Response to “software crisis”
• Desire for software development to be more like 

mature engineering disciplines 
– Analytical, predictable, manageable
– But, stated as an aspiration, not the state of practice



10
CIS 422/522

CIS 422/522 © S. Faulk 20

What has changed since ‘68?

• Incorrect to conclude that no progress has been 
made
– Better understanding of issues
– Substantial improvements in programming languages, tools
– Better understanding and control of software processes

• But the problems have also changed
– Improved capabilities often overcome by larger problems, 

greater complexity
– Orders of magnitude more code, faster pace of technology, 

accelerated delivery schedules, etc.

CIS 422/522 © S. Faulk 21

What has not changed?

• Still not an engineering discipline in classic sense
– Lack of applied mathematics and systematic methods to 

develop and assess product properties
– Not taught, licensed, or regulated as an engineering 

discipline (most of USA)
• Worse, practitioners often don’t apply what we know

– Existing SE methods, models often not understood or used 
in industry

– Little attention is given to processes or products other than 
code

– Upshot: quality of products depends on qualities of the 
individuals rather than qualities of engineering practices

• Development continues to be characterized by lack 
of control



11
CIS 422/522

CIS 422/522 © S. Faulk 22

View of SE in this Course

• The purpose of software engineering is to 
gain and maintain intellectual and managerial 
control over the products and processes of 
software development.
– “Intellectual control” means that we are able make 

rational choices based on an understanding of the 
downstream effects of those choices (e.g., on 
system properties).

– Managerial control similarly means we are able to 
make rational choices about development 
resources (budget, schedule, personnel). 

• Memorize this!

CIS 422/522 © S. Faulk 23

Both are necessary for success!

• Intellectual control implies 
– We understand what we are trying to achieve
– Can distinguish good choices from bad
– We can reliably and predictably build to our goals

• Functional behavior
• Software Qualities (reliability, security, usability, etc.)

• Managerial control implies
– We make accurate estimations
– We deliver on schedule and within budget

• Assertion: managerial control is not really possible 
without intellectual control (no matter what the 
Harvard School of Business says)



12
CIS 422/522

CIS 422/522 © S. Faulk 24

Course Approach

• Will learn practical methods for acquiring and 
maintaining control of software projects

• Intellectual control
– Methods for software requirements, architecture, design, test
– Modeling methods and notations
– What to produce, how to make decisions, how to check 

correctness
• Managerial control

– Planning and controlling development
– Process models addressing development
– People management and team organization

• Caveat: we can only simulate the problems of large 
developments

CIS 422/522 © S. Faulk 25

Assignments

• Return consent form
• Forward your emails from xxx@uoregon.edu
• Review class web pages

– Project: Understand basic project requirements
– Read Team Roles consider what you would like to 

do
– Look at Schedule page to understand how to get 

lecture notes, assignments, etc.
• Memorize definition of Software Engineering 

from lecture



13
CIS 422/522

CIS 422/522 © S. Faulk 26

Questions?


