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The development of the Internet in recent years has made it possible and useful to access many different

information systems anywhere in the world to obtain information. While there is much research on the inte-

gration of heterogeneous information systems, most commercial systems stop short of the actual integration

of available data. Data fusion is the process of fusing multiple records representing the same real-world

object into a single, consistent, and clean representation.

This article places data fusion into the greater context of data integration, precisely defines the goals of

data fusion, namely, complete, concise, and consistent data, and highlights the challenges of data fusion,

namely, uncertain and conflicting data values. We give an overview and classification of different ways of

fusing data and present several techniques based on standard and advanced operators of the relational

algebra and SQL. Finally, the article features a comprehensive survey of data integration systems from

academia and industry, showing if and how data fusion is performed in each.
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1. INTRODUCTION

With more and more information sources available via inexpensive network connec-
tions, either over the Internet or in company intranets, the desire to access all these
sources through a consistent interface has been the driving force behind much research
in the field of information integration. During the last three decades many systems that
try to accomplish this goal have been developed, with varying degrees of success. One
of the advantages of information integration systems is that the user of such a system
obtains a complete yet concise overview of all existing data without needing to access
all data sources separately: complete because no object is forgotten in the result; concise
because no object is represented twice and the data presented to the user is without
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1:2 J. Bleiholder and F. Naumann

Fig. 1. A data integration process.

contradiction. The latter is difficult because information about entities is stored in more
than one source.

After major technical problems of connecting different data sources on different ma-
chines are solved, the biggest challenge remains: overcoming semantic heterogeneity,
that is, overcoming the effect of the same information being stored in different ways.
The main problems are the detection of equivalent schema elements in different sources
(schema matching) and the detection of equivalent object descriptions (duplicate detec-
tion) in different sources to integrate data into one single and consistent representation.
However, the problem of actually integrating, or fusing, the data and coping with the
existing data inconsistencies is often ignored.

The problem of contradictory attribute values when integrating data from different
sources is first mentioned by Dayal [1983]. Since then, the problem has often been
ignored, yet a few approaches and techniques have emerged. Many of them try to avoid
the data conflicts by resolving only the uncertainty of missing values, but quite a few
of them use different kinds of resolution techniques to resolve conflicts.

With this survey we introduce the inclined reader to the process of data fusion in the
wider context of information integration. This process is also referred to in the litera-
ture as data merging, data consolidation, entity resolution, or finding representations/
survivors. We also present and compare existing approaches to implement such a data
fusion step as part of an information integration process and enable users to choose the
most suitable among them for the current integration task at hand.

The survey begins in Section 2 with a brief introduction into information integration
and the different tasks that need to be carried out, before describing the process of data
fusion in more detail. Section 3 presents, describes, and classifies relational techniques
for data fusion, before Section 4 gives a detailed overview and classifies integrated
information systems and their data fusion capabilities.

2. DATA FUSION

Integrated (relational) information systems provide users with a unified view of multi-
ple heterogeneous data sources. Querying the underlying data sources, combining the
results, and presenting them to the user is performed by the integration system.

In this article we assume an integration scenario with a three-step data integration
process, as shown in Figure 1 [Naumann et al. 2006]. First, we need to identify corre-
sponding attributes that are used to describe the information items in the source. The
result of this step is a schema mapping, which is used to transform the data present
in the sources into a common representation (renaming, restructuring). Second, the
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different objects that are described in the data sources need to be identified and aligned.
In this way, using duplicate detection techniques, multiple, possibly inconsistent repre-
sentations of the same real-world objects are found. Third, in a last step, the duplicate
representations are combined and fused into a single representation while inconsis-
tencies in the data are resolved. This last step is referred to as data fusion1 and is the
main focus in this article. We briefly discuss the two other steps as prerequisites to data
fusion.

In the remainder of this section we present common solutions to the first two steps
and then go into more detail in the field of data fusion. Apart from completeness and
conciseness in data integration, we regard the different kinds of conflicts that may occur
during integration and different possible semantics that can be used in implementing
the final step of data fusion. We give a motivating example at the end of this section,
which is used throughout the article to show the differences between the techniques
and systems.

The following section is used to present relational techniques for data fusion
(Section 3) and examines to what degree they accomplish it. The next section (Section 4)
surveys various data integration systems and specifically identifies their data fusion
capabilities.

2.1. Data Transformation

Integrated information systems must usually deal with heterogeneous schemata. In
order to present to the user query results in a single unified schema, the schematic
heterogeneities must be bridged. Data from the data sources must be transformed to
conform to the global schema of the integrated information system. Two approaches
are common to bridge heterogeneity and thus specify data transformation: schema
integration and schema mapping. The former approach is driven by the desire to
integrate a known set of data sources. Schema integration regards the individual
schemata and tries to generate a new schema that is complete and correct with re-
spect to the source schemata, that is minimal, and that is understandable. Batini et al.
[1986] give an overview of the difficult problems involved and the techniques to solve
them.

The latter approach, schema mapping, assumes a given target schema; that is, it
is driven by the need to include a set of sources in a given integrated information
system. A set of correspondences between elements of a source schema and elements
of the global schema are generated to specify how data is to be transformed [Popa et al.
2002; Melnik et al. 2005]. A particularly interesting addition to schema mapping are
schema matching techniques, which semi-automatically find correspondences between
two schemata. Rahm and Bernstein have classified these techniques based on what
input information the methods use [Rahm and Bernstein 2001]. There is much ongoing
research in both the areas of schema matching and schema mapping—comprehensive
surveys are yet missing.

The goal of both approaches, schema integration and schema mapping, is the same:
transform data of the sources so that it conforms to a common global schema. Given a
schema mapping, either to an integrated or to a new schema, finding such a complete
and correct transformation is a considerable problem [Fagin et al. 2005]. The data

1There are two other fields in computer science that also use the term (data) fusion. In information retrieval
it means the combination of search results of different search engines into one single ranking, therefore it is
also called rank merging. In networking it means the combination of data from a network of sensors to infer
high-level knowledge, therefore also called sensor fusion. Beyond computer science, in market research, the
term data fusion is used when referring to the process of combining two datasets on different, similar, but
not identical objects that overlap in their descriptions.
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transformation itself, once found, can be performed offline, for instance, as an ETL
process for data warehouses; or online, for instance, in virtually integrated federated
databases. After this step in the data integration process all objects of a certain type
are represented homogeneously.

2.2. Duplicate Detection

The next step of the data integration process is that of duplicate detection (also known
as record linkage, object identification, reference reconciliation, and many others). The
goal of this step is to identify multiple representations of the same real-world object:
the basic input to data fusion.

In principle, duplicate detection is simple: Compare each pair of objects using a simi-
larity measure and apply a threshold. If a pair is more similar than the given threshold
it is declared a duplicate. In reality there are two main difficulties to be solved: effec-
tiveness and efficiency.

Effectiveness is mostly affected by the quality of the similarity measure and the
choice of a similarity threshold. A similarity measure is a function determining the
similarity of two objects. Usually the similarity measure is domain-specific, for in-
stance, designed to find duplicate customer entries. Domain-independent similarity
measures usually rely on string-distance measures, such as the Levenshtein-distance
[Levenshtein 1965]. The similarity threshold determines when two objects are dupli-
cates. A too-low threshold will produce a high recall (all duplicates are found) but a
low precision (many nonduplicate pairs are declared duplicates). A too-high thresh-
old results in high precision, but low recall. Tuning the threshold is difficult and very
domain- and even dataset-specific.

Efficiency is an issue because datasets are often very large, so even calculating and
storing all pairs of objects can become an obstacle. Another obstacle of efficient duplicate
detection is the complexity of the similarity measure itself, for instance, because the
expensive Levenshtein-distance (or edit-distance) is part of the similarity function. The
first obstacle is overcome by an intelligent partitioning of the objects and comparison
of pairs of objects only within a partition. A prominent example of this technique is
the sorted neighborhood method [Hernández and Stolfo 1998]. The second obstacle can
be alleviated somewhat by efficiently computing upper bounds of the similarity and
computing the actual distance only for pairs whose bounds are higher than the upper
bound [Weis and Naumann 2004].

The result of the duplicate detection step is the assignment of an object-ID to each
representation. Two representations with the same object-ID indicate duplicates. Note
that more than two representations can share the same object-ID, thus forming dupli-
cate clusters. It is the goal of data fusion to fuse these multiple representations into a
single one.

2.3. Complete and Concise Data Integration

Data integration has two broad goals: increasing the completeness and increasing the
conciseness of data that is available to users and applications. An increase in complete-
ness is achieved by adding more data sources (more objects, more attributes describing
objects) to the system. An increase in conciseness is achieved by removing redundant
data, by fusing duplicate entries and merging common attributes into one. This distinc-
tion (completeness versus conciseness) is along the lines of related work such as Motro
[1986], Naumann et al. [2004], and Scannapieco et al. [2004].

In analogy to the well-known precision/recall measure from information retrieval,
we can similarly define a measure of conciseness/completeness when regarding unique
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Fig. 2. Visualizing extensional and intensional completeness when integrating two data sources (source S
and T with their respective schemas (A, B, ID) and (B, C, ID)) into one integrated result, using information
from schema matching (common attributes, here identified by same name) and duplicate detection (common
objects, here identified by same values in the ID column).

and additional object representations in the considered universe and the concrete data
set that is being measured (see Figure 3).

Completeness. In analogy to recall, completeness of a dataset, such as a query result
or a source table, measures the amount of data in that set, both in terms of the number
of tuples (extensional, data level) and the number of attributes (intensional, schema
level).

Extensional completeness is the number of unique object representations in a dataset
in relation to the overall number of unique objects in the real world, such as, in all
the sources of an integrated system. It measures the percentage of real-world objects
covered by that dataset. We assume we are able to identify same real-world objects, for
example, by an identifier created during duplicate detection.

extensional completeness = ‖ unique objects in data set ‖
‖ all unique objects in universe ‖ = a

a + c
(1)

The example in Figure 2 shows the combination of two sources. Given the real-world
object identifier in the ID column, there are in total four objects in the real world (four
distinct values in column ID). The combination of the two sources as given in Figure 2
has an extensional completeness of 1 (= 4/4) and is therefore maximal in the example,
whereas both sources S and T are extensionally incomplete (extensional completeness:
3/4). In general, an increase in extensional completeness is achieved by adding more
unique objects.

Intensional completeness is the number of unique attributes in a dataset in relation
to the overall number of unique attributes available. An increase is achieved by in-
tegrating sources that supply additional attributes to the relation; that is, additional
attributes that could not be included in one of the schema mappings between the sources
considered so far. The result in Figure 2 has an intensional completeness of 1 (= 4/4)
because it contains four attributes (S.A, B, ID, T.C) out of all four unique attributes
(S.A, S.B, S.ID, T.B, T.ID, T.C, with mappings S.B ↔ T.B and S.ID ↔ T.ID). Likewise,
sources S and T have an intensional completeness of 3/4.

Conciseness. In analogy to precision, conciseness measures the uniqueness of object
representations in a dataset. In the terms of Figure 3, extensional conciseness is the
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Fig. 3. Measuring completeness and conciseness in analogy to precision and recall, letters a–c denoting the
number of objects in that region, for example, b being the total number of objects in the considered data set,
c being the number of all unique real-world objects, and a being the number of unique real world objects that
are in the considered data set.

number of unique objects in a dataset in relation to the overall number of object repre-
sentations in the dataset.

extensional conciseness = ‖ unique objects in data set ‖
‖ all objects in data set ‖ = a

a + b
(2)

The example result in Figure 2 results in an extensional conciseness of 1(= 4/4), con-
taining four different objects (as given by object-identifier-ID) out of four different object
representations (tuples) in the result.

Similarly, intensional conciseness measures the number of unique attributes of a
dataset in relation to the overall number of attributes. Again, intensional conciseness
follows as 1 (= 4/4), as all four attributes in the result are different.

For these measures to be useful, the definition of objects in the universe and the
considered dataset needs to be the same. Schema-altering operations, such as joins,
may cause problems here. In the description of relational operators and techniques in
Section 3 we will focus on extensional completeness and conciseness.

Four degrees of integration. To further illustrate the notions of completeness and
conciseness when integrating data sources, Figure 4 depicts four different ways of
combining the example tables (sources S and T ) from Figure 2 into one result. The
generalization to more than two sources is trivial but difficult to visualize.

Without schema mapping information and the knowledge of object identifiers, the
best that an integrating system can do is produce a result as seen in Figure 4(a). While
this result has high completeness, it is not concise. Knowledge about common attributes,
given by the schema mapping, allows results of the shape as seen in Figure 4(b). Inci-
dentally, this shape is the result of an outer union operation on the two source relations
(mapping attributes with same names). We call such results intensionally concise: No
real-world property is represented by more than one attribute, the full schema mapping
is used.

Knowledge about common objects (e.g., using a globally consistent ID) such as the
ISBN for books, or using a globally consistent object identifier created by duplicate
detection methods, allows results as seen in Figure 4(c). Here, the only known common
attribute is ID (mapping inferred from ID being object identifier in both sources S and
T ). We will see further on how such a result can be formed using the full outer join
operation on the IDs of the two source relations. We call such results extensionally
concise: No real-world object is represented by more than one tuple.

Finally, Figure 4(d) shows the result after identifying common attributes (using a
schema mapping) and common objects (using an object identifier). The main feature
of this result is that it contains only one tuple per represented real-world object and
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Fig. 4. Four degrees of integration, using to various degrees the information on schema mappings and object
identifiers provided by schema matching and duplicate detection.

each row has only one value per represented attribute. Such a result (intensionally
and extensionally concise) is the ultimate goal of data fusion. As could be noted by the
watchful reader, the result in Figure 4(d) contains only the value x as the value for
attribute B and object with ID = 3, although k could also be a valid value (contained in
source T ). Dealing with these data conflicts in the overlapping region of the two sources
(marked by the checked pattern in the results) is an integral part of data fusion and
will be considered in the next sections.

As we also see further on, most integration techniques and integrated information
systems increase extensional as well as intensional completeness. We can regard this
behavior as the primary feature of most integrating information systems. However,
only a few also consider the problem of conciseness.

2.4. Conflict Classification

Different ways of representing same real-world objects in the sources results in three
types of conflict. First, there are schematic conflicts, such as, different attribute names
or differently structured data sources. Second, there are identity conflicts, as the way
of identifying a real-world object may be different in the data sources. These two kinds
of conflict are resolved during the first two phases of data integration. As a third kind of
conflict, data conflicts remain, which are not resolved until data fusion and are caused
by the remaining multiple representations of same real-world objects. A data conflict
is present if, for the same real-world object (e.g., a student), semantically equivalent
attributes, from one or more sources, do not agree on its attribute value (e.g., source 1
reporting “23” as the student’s age, source 2 reporting “25”). An overview on reasons
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Fig. 5. A classification of strategies to handle inconsistent data [Bleiholder and Naumann 2006].

for dirty data and some more examples can be found in Rahm and Do [2000] and Kim
et al. [2003].

We distinguish two kinds of data conflict: (a) uncertainty about the attribute value,
caused by missing information; and (b) contradictions, caused by different attribute
values.

Uncertainties. An uncertainty is a conflict between a non-null value and one or more
null values that are all used to describe the same property of an object. In our scenario,
this is caused by missing information, for example, null values in the sources, or an
attribute completely missing in one source. The result in Figure 2 shows uncertainties
in attributes S.A, T.C (missing attribute) and B (missing information in source S) for
the object with ID = 2.

The reason for considering uncertainties as a special case of conflict is that they are
generally easier to cope with than contradictions. We deliberately choose to assume
most null values in a data integration scenario being unknown values. But even with
considering null values as being inapplicable or withheld, as are the three most common
semantics of null values (refer to Ullman et al. [2001]), the assessment of the different
techniques and systems remains valid.

Contradictions. A contradiction is a conflict between two or more different non-null
values that are all used to describe the same property of the same object. In our data
integration scenario, this is the case if two or more data sources provide two or more
different values for the same attribute on the same object, sameness as given by the
schema matching and duplicate detection steps before. The example in Figure 2 shows
a contradiction in attribute B of object with ID = 3, between x and k.

2.5. Data Fusion Strategies and Answers

In fusing data from different sources into one consistent representation, we distinguish
between and apply different high-level strategies. In Bleiholder and Naumann [2006]
we describe and classify such strategies; Figure 5 shows the classification, and Table I
briefly summarizes the strategies. The different classes of this classification can be
seen as defining different data fusion semantics. We use these strategies further on in
Sections 3 and 4 to characterize the different techniques and systems.

Data fusion strategies. Conflict-ignoring strategies do not make a decision as to what
to do with conflicting data and sometimes are not even aware of data conflicts. An
example for an ignoring strategy is Pass It On, which presents all values and that
way defers conflict resolution to the user. Applying this strategy to our example (see

ACM Computing Surveys, Vol. 41, No. 1, Article 1, Publication date: December 2008.



Data Fusion 1:9

Table I. Possible Conflict Handling Strategies from Bleiholder and Naumann [2006]
Strategy Classification Short Description

PASS IT ON ignoring escalates conflicts to user or application
CONSIDER ALL POSSIBILITIES ignoring creates all possible value combinations

TAKE THE INFORMATION avoiding, instance based prefers values over null values
NO GOSSIPING avoiding, instance based returns only consistent tuples
TRUST YOUR FRIENDS avoiding, metadata based takes the value of a preferred source

CRY WITH THE WOLVES resolution, instance based, deciding takes the most often occurring value
ROLL THE DICE resolution, instance based, deciding takes a random value
MEET IN THE MIDDLE resolution, instance based, mediating takes an average value
KEEP UP TO DATE resolution, metadata based, deciding takes the most recent value

Figure 2) would result in what we can see there: presenting both values in the overlap
are, for example, x and k for attribute B of object with ID = 3.

Conflict-avoiding strategies acknowledge the existence of possible conflicts in gen-
eral, but do not detect and resolve single existing conflicts. Instead, they handle con-
flicting data by applying a unique decision equally to all data, such as preferring data
from a special source with the Trust Your Friends strategy. In the example (Figure 2)
only data from one source would be included, for example, only ⊥ and x for the two
objects in the overlap when preferring values from S over T .

In contrast to the previous classes, conflict resolution strategies do regard all the
data and metadata before deciding on how to resolve a conflict. They can further be
subdivided into deciding and mediating strategies, depending on whether they choose
a value from all the already present values (deciding) or choose a value that does not
necessarily exist among the conflicting values (mediating). Assuming that timestamp
information is given for all values, applying strategy Keep Up To Date, which takes the
most recent value, could result in taking the values n and x for objects with ID = 2 and
ID = 3 in the example from Figure 2.

Different systems and techniques may use the same high-level strategy, but differ
in the realization, as some strategies can be realized in more than one way. Bleiholder
and Naumann [2006] include more details on fusion strategies and their realization in
an integrated information system.

Data Fusion Answers. The result of a query to an integrated information system is
called an answer. Such an answer could be characterized, among others, as being one
of the following.

—Complete. A complete answer contains all the objects (extensionally complete) and
also all attributes (intensionally complete) that have been present in the sources. A
complete answer is not necessarily concise, as it may contain objects or attributes
more than just once.

—Concise. An answer is concise if all real-world objects (extensionally concise) and all
semantically equivalent attributes (intensionally concise) present are described only
once.

—Consistent. A consistent answer contains all tuples from the sources that are consis-
tent with respect to a specified set of integrity constraints (inclusion or functional
dependencies) [Arenas et al. 1999; Fuxman et al. 2005a]. In this sense, such an an-
swer is not necessarily complete, as all inconsistent object representations are left
out of the result. However, given that one of the integrity constraints is a key con-
straint on some real-world identifier, a consistent answer is extensionally concise for
all included object representations.

—Complete and Consistent. A complete and consistent answer combines the advan-
tages of completeness and conciseness and consists of all real world object descriptions
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Table II. Example Data Source, Representing Students from the First University
(U1) Showing Extensional Completeness of 6/7 and Extensional Conciseness of

6/7 With Regard to the Considered Universe, all Seven Students in the Two
Example Tables

Name Age Status Address Field Library

Peter ⊥ 0 TUB Computer Science P201
Alice 22 1 Berlin Mechanical Engineering A709
Bob ⊥ 1 Boston ⊥ B321
Charly 25 1 ⊥ Psychology ⊥
Paul ⊥ 1 TUB Architecture ⊥
Paul 26 1 Berlin Arch. P233
Frank 23 0 TUB Mech. Engineering F205

Data from data source U1.

Table III. Example Data Source, Representing Students from a Second
University (U2), Showing Extensional Completeness of 5/7 and Extensional

Conciseness of 5/7 With Regard to the Considered Universe, All Seven
Students in the Two Example Tables

Name Age Status Address Field Phone

Alice ⊥ 0 ⊥ ME 030/12345
Bob 27 ⊥ HUB CS 030/54321

Charly 25 1 ⊥ ⊥ ⊥
Alice 21 1 HUB Mech. Eng. 030/98765
Eve 24 1 Berlin CS/EE 030/55544
Eve 24 1 Berlin CS/EE 030/55544

Frank 23 0 TUB Mech. Engineering ⊥
Data from data source U2.

from the sources, additionally fulfilling a key constraint on some real-world ID. Such a
result contains all attributes from the sources and combines semantically equivalent
ones into only one attribute. That way, intensional as well as extensional complete-
and conciseness is given.

The data fusion step in data integration aims at producing a complete and consistent
answer.

2.6. Motivating Example

As motivating example and to compare the different techniques and systems, we want
to introduce a small example from the university domain. Tables II and III show two
tables from universities (abbreviated U1 and U2) that represent data from two data
sources. Both tables contain data about students that are currently enrolled in the
university the data sources are provided by. As these universities are located in the
same town, it is possible to study at more than one university. It is also possible to
combine several fields of study and some are offered at more than one university, so
there is a certain overlap in topics as well as in students.

As we assume the data to be in the relational model, we show the data as tables,
column headers giving the names of the attributes of the two relations. Although dif-
ferent universities organize their data in a different way (heterogeneous sources), we
assume in the examples that schemata already have been matched and semantically
equivalent attributes have the same name in the examples. To more easily understand
the example we further assume that all students are globally and uniquely identifiable
by their first name. This way the role of the attribute NAME is that of a real-world iden-
tifier. Please note that this real-world identifier should not be confused with a database
primary key. In the example we do not assume such a database primary key.
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In general, data stored in data sources may be dirty. Errors and contradictions, miss-
ing values, and especially duplicate representations are commonly found when insert-
ing data, creating entries, or during use, especially when updating data. Therefore,
we assume the presence of (possibly contradicting) intrasource duplicates (e.g., Paul in
U1 or Eve in U2) as well as (possibly contradicting) intersource duplicates (e.g., Bob).
Null values in the examples are marked by the symbol ⊥ and we consider them to be
unknown values in contrast to be not applicable or withheld.

Where completeness and conciseness are measured, we only give numbers for ex-
tensional completeness and extensional conciseness and refer the reader to the corre-
sponding formulas in Section 2.3. The total number of unique students in the example
is 7.

3. RELATIONAL OPERATORS AND TECHNIQUES FOR DATA FUSION

This section introduces standard and advanced relational operators and examines their
abilities in fusing data from different data sources. As we specifically regard relational
techniques for the remainder of this section, data is integrated from source tables (pos-
sibly coming from different data sources) into one integrated table. We first consider
standard operators, such as union and join. Join-based techniques generally combine
tuples from several tables while evaluating some predicates on some of their columns.
Union-based techniques generally build a common schema first and then append the
different tuple sets from the source tables. We then regard more advanced relational
techniques which combine standard operators, invent a new one, or use a different
approach. The descriptions of operators and techniques assume binary operators, op-
erating on two tables only. The extension to more than two tables is straightforward
in all cases; however, associativity is not always given. The example of Section 2.6 is
used to show and compare the results of the different approaches. Where tables show
the measures for extensional completeness and extensional conciseness, the formulas
from Section 2.3 are used.

3.1. Properties and Characteristics of Operators and Techniques

We describe the following operators and techniques using one or more of the following
characteristics.

Value preservation. When combining tables in order to increase extensional com-
pleteness, not necessarily all values from the sources are included in the result (e.g.,
a regular join that only contains tuples from one table, if it has a join partner in the
other table). However, for an operator to be fully value preserving, exactly all values
for all attributes of all described objects need to remain in the result. We denote an
operator that does not lose any such value or creates or duplicates values value pre-
serving. Please note that the sole existence of a value is not sufficient and that we allow
duplicate values. Thus, bag union would be an example of a value preserving operator,
set union and Cartesian product examples for nonvalue-preserving operators. Value
preservation becomes important when applying (duplicate-sensitive) functions after-
wards. Value preservation should not be mistaken with the property of restorability,
meaning that we can invert the operation and infer the values in the sources from the
result (e.g., not possible for union). A simpler case is object preservation: Actual values
of attributes describing objects may get lost, but at least all objects that have been
described in the sources are also included in the result. Objects are thereby identified
by a real-world identifier. Please note that we do not consider information preservation
in terms of intensional completeness (at schema level) [Miller et al. 1993].
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Uniqueness. An operator has the uniqueness preservation property if corresponding
attributes (according to the schema mapping) that contain unique values in the sources
also contain unique values in the result. This is, for example, true for an equality
join on these attributes, but not for a union. Uniqueness-preserving operations are
useful in scenarios where multiple representations of one real-world object only exist
in different data sources (no intrasource duplicates) and the unique attribute is a real-
world identifier. In contrast, an operator that creates a result that contains an attribute
that is unique (regardless if there have been unique attributes in the sources) is said
to have the uniqueness-enforcing property. In order to produce a complete and concise
answer, as is the goal in data fusion, an operator needs to be uniqueness enforcing in
an attribute holding a real-world identifier.

As the first property covers the requirement of completeness, the second is concerned
with conciseness. The ideal data fusion operator, creating complete and consistent an-
swers, should preserve as many values and objects as possible while at the same time
enforcing or preserving uniqueness and resolving conflicts. Ideally, it is part of the
relational algebra or at least should not be too complex when extending it.

3.2. Join Approaches

Join approaches in general increase intensional completeness, as attributes from dif-
ferent sources are seperately included in the result. However, this comes at the cost of
not guaranteeing extensionally completeness, except for the case of a full outer join.
Concerning extensional conciseness, join approaches perform very well, but only if we
can rely on globally unique identifiers (e.g., created by duplicate detection), and no
intrasource duplicates are present.

3.2.1. Standard Joins. An equi-join (�=) combines tuples from two relations if the join
condition consists of equality conditions between columns and if it evaluates to true
[Ullman et al. 2001]. The result also includes all other attributes from the sources in
the result. In an integration scenario, where the goal is to relate tuples which describe
same objects, using an equi-join on some attributes building a real-world identifier (e.g.,
using U1.Name=U2.Name) seems the natural choice. We refer to this as key join (�id=id ).
However, in general when combining two tables by a join, other conditions are possible
as well, as are the use of attributes that do not form a real-world identifier.

The key-join is uniqueness preserving but not necessarily value/object preserving, as
only objects that are present in both tables (according to the join condition) are included
in the result. Using SQL, the two example tables are combined as follows.

SELECT U1.Name, U2.Name, U1.Age, U2.Age, U1.Status, U2.Status,

U1.Address, U2.Address, U1.Field, U2.Field, U1.Library, U2.Phone

FROM U1 JOIN U2 ON U1.Name=U2.Name

The result of a key-join operation on the example tables using the real-world identifier
NAME is shown in Table IV.

The natural join (�) combines two tuples from two relations if all common attributes
(same name) coincide in their attribute values [Ullman et al. 2001]. Attributes that
are not present in all relations are not considered in joining the relations, but are
included in the result. Natural joins are also uniqueness preserving, but not necessarily
value/object preserving. Data conflicts are generally ignored, as objects are either not
included in the results or result in two different result tuples. Integrating the two
example tables via a natural join is done using the following SQL statement.
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Table IV. Result of Different Joins Applied to Tables U1 and U2, using Name as Join Attribute
U1.Name U2.Name U1.Age U2.Age . . . U1.Library U2.Phone

Alice Alice 22 ⊥ . . . A709 030/12345
Alice Alice 22 21 . . . A709 030/98765
Charly Charly 25 24 . . . ⊥ ⊥
Bob Bob ⊥ 27 . . . B321 030/54321
Frank Frank 23 23 . . . F205 ⊥
Peter ⊥ ⊥ ⊥ . . . P201 ⊥
Paul ⊥ ⊥ ⊥ . . . ⊥ ⊥
Paul ⊥ 26 ⊥ . . . P233 ⊥
⊥ Eve ⊥ 24 . . . ⊥ 030/55544
⊥ Eve ⊥ 24 . . . ⊥ 030/55544

Result of �U1.Name=U2.Name and �U1.Name=U2.Name on U1 and U2.
The key-join (extensional completeness: 4/7, extensional conciseness: 4/5) contains only the
first group of tuples (Alice–Frank), whereas the result of the full outer join also covers the
Peter, Paul, and Eve tuples (extensional completeness: 7/7, extensional conciseness: 7/10).
The measured completeness for the key-join follows from four students (Alice, Bob, Charly,
and Frank) being described in the result, out of the total seven students in the scenario.
The measured conciseness follows from the same four unique students being described in a
total of five tuples in the result. Likewise follow the measures for the full outer join.

SELECT U1.Name, U1.Age, U1.Status, U1.Address, U1.Field, U1.Library, U2.Phone

FROM U1 JOIN U2 ON U1.Name=U2.Name AND U1.Age=U2.Age

AND U1.Status=U2.Status AND U1.Address=U2.Address

AND U1.Field=U2.Field

The result of the natural join operation on the two example tables only contains the
Frank tuple.

The full outer join (� ) extends the result of a standard join operation by adding tuples
that are only included in one of the two source relations. The missing attributes present
in only one relation are padded by null values [Ullman et al. 2001]. There exists an outer
join variant that is based on the key-join (� id=id ) instead of the natural join, as well as
left (�id=id ) and right outer join (� id=id ) variants which only include tuples from the
left, right (first, second) relation. The operator is value/object preserving only in its full
variant based on the key-join. Like key- and natural join, it is uniqueness preserving
in all variants. The result of the operation is shown in Table IV, the corresponding SQL
statement is shown here.

SELECT U1.Name, U2.Name, U1.Age, U2.Age, U1.Status, U2.Status,

U1.Address, U2.Address, U1.Field, U2.Field, U1.Library, U2.Phone

FROM U1 FULL OUTER JOIN U2 ON U1.Name=U2.Name

3.2.2. Full Disjunction. As the outer join operator in general is not associative, com-
bining more than two tables by an outer join may result in different result tables,
depending on the order in which the tables are joined. The full disjunction operator
is defined in Galindo-Legaria [1994] as the combination of two or more tables, where
all matching tuples are combined into one single tuple. It could therefore be seen as a
generalization of a full outer join to more than two relations. Full disjunction can gen-
erally not be computed by a combination of outer joins alone [Galindo-Legaria 1994].
Rajaraman and Ullman [1996] cover full disjunctions in more detail and recent work
on the topic provides a fast implementation [Cohen and Sagiv 2005]. Full disjunctions
are uniqueness preserving and value/object preserving, like full outer joins. For the two
example tables, the full disjunction on NAME as key results in the same table as the full
outer join (see Table IV). Generally, full disjunctions are beneficial in situations with
more than two tables where an outer join would have ben used with only two tables.
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3.2.3. Match Join and Conflict Tolerant Queries. The match join has been defined together
with a conflict-tolerant query model in the context of the AURORA project [Yan and
Zsu 1999]. In a first step, corresponding attribute values from all sources are seperately
projected out and combined by union, expanded by their corresponding real-world iden-
tifier. Then, the real-world identifiers are used to rejoin, resulting in one single large
table. The operation to create this table is called match join.

WITH OU AS (

( SELECT Name, Age, Status, Address, Field, Library, NULL as Phone

FROM U1 )

UNION

( SELECT Name, Age, Status, Address, Field, NULL as Library, Phone

FROM U2 )

),

AGE_V (Name, Age) AS ( SELECT DISTINCT Name, Age FROM OU ),

STATUS_V (Name, Status) AS ( SELECT DISTINCT Name, Status FROM OU ),

. . .

PHONE_V (Name, Phone) AS ( SELECT DISTINCT Name, Phone FROM OU ),

SELECT Name, Age, Status, Address, Field, Library, Phone

FROM AGE_V FULL OUTER JOIN STATUS_V . . . FULL OUTER JOIN PHONE_V

ON AGE_V.Name=STATUS_V.Name AND STATUS_V.Name= . . . =PHONE_V.Name

AS MATCH_JOIN_TABLE

In a second step, to increase conciseness, tuples are selected from this table according to
the accompanying conflict-tolerant query model. When selecting tuples, it uses a selec-
tion predicate and observes the evaluation parameter of the operation. This parameter
is either high confidence, random evidence, or possible at all and determines which tu-
ples are kept in the result. If it is set to high-confidence, the selection predicate needs
to be true for all tuples for each real-world identifier. If it is set to possible-at-all, the
selection predicate needs to be true for at least one tuple for each real-world identifier.
Random-evidence verifies the predicate for a random tuple per real-world identifier.

The whole operation can be seen as first creating a set of all possible results (match
join) and then selecting from it as specified by the user, creating a conflict-free result.
This means that in the end there remains only one representation per real-world iden-
tifier, thus the operator is uniqueness enforcing. Conflicts are resolved by applying
resolution functions, such as sum, max, min, any, etc. In contrast to other techniques
considered so far, execution complexity becomes important, as the worst-case complex-
ity is exponential in the unique values per attribute. In the worst case all possible
combinations of attribute values are regarded.

The operator is uniqueness preserving and, depending on the parameterization,
value/object preserving. Uncertainties could be removed, contradictions are resolved.
The selection of tuples in the second step is realized by fine-grained operations, extend-
ing the relational model, which prevents a rewriting of the operator using standard
SQL. An example statement in the proposed syntax is as follow.

SELECT [ANY] Name, Age, Status, Address, Field, Library, Phone

FROM matchjoin(U1,U2)

WHERE Age>22

WITH PossibleAtAll

where matchjoin(U1,U2) is a combination of the two data sources. Table V shows the
result of the match join operator on the example data, selecting only tuples with AGE >
22 under the possible-at-all setting. Please note that, since in the intermediate step the
operator looks at all possible combinations of attribute values, in some cases the result
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Table V. Result of a Match Join/Conflict Tolerant Query on Both Example Tables,
Selecting Only Tuples with Age > 22 Under the Possible at All Setting (Extensional

Completeness: 5/7, Extensional Conciseness: 5/5)
Name Age Status Address Field Library Phone

Bob 27 1 HUB CS B321 030/54321
Charly 25 1 ⊥ Psychology ⊥ ⊥
Eve 24 1 Berlin CS/EE ⊥ 030/55544
Frank 23 0 TUB Mech. Engineering F205 ⊥
Paul 26 1 Berlin Arch. P233 ⊥

Result of applying match join/conflict tolerant query on U1 and U2.

may contain tuples with attribute value combinations that as a whole have not been
present in either of the sources. That way, the operator combines existing facts in a new
way. If the any function is used or the query is evaluated according to random-evidence,
the operation behaves nondeterministically. Otherwise, match join, in combination with
the conflict-tolerant query model, is an expressive operation offering good conflict res-
olution capabilities.

3.2.4. Increasing Conciseness in Join Results. The schema of regular join results nor-
mally does not contain only one attribute for all pairs of semantically equivalent at-
tributes. Therefore these operators are complete but not concise, and all existing, pos-
sibly contradictory, data values from the sources still exist in the result. One way of
resolving these conflicts and increasing intensional conciseness is by combining these
attributes into one with an additional operation.

In combination with join operators, the SQL function COALESCE proves useful:
coalesce(v1, v2, . . . ,vn) gives back the first value vi from v1 to vn that is not a null
value. If all vi are null, a null is returned. When the function is used in combina-
tion with joins, the inputs to COALESCE are usually values from semantically equivalent
attributes from different sources, such as, coalesce(U1. Age, U2. Age). That way, CO-
ALESCE removes uncertainties (if only one age is given and the other is a null value) or
could be used (see Section 3.3.2) to prioritize input tables (here, if both sources give an
age value, prefer U1.Age). COALESCE therefore serves in implementing strategies such
as Take the information or Trust Your Friends (see Section 2.5 for more information on
strategies).

In Lim et al. [1995] a variant of the full disjunction operator is used which merges
the key columns into one column, using COALESCE. This is possible because the key
columns either contain the same or a null value, resulting from the assumption that
no intrasource duplicates exist. They additionally define a generalized attribute deriva-
tion operation (GAD), which uses functions to combine values from several columns
of the output of the full disjunction into a single value. Using the GAD operation it
is possible to combine semantically equivalent attributes into a single attribute and
resolve conflicts, for example, by taking the maximum age (max(U1. Age, U2. Age)) or
by concatenating fields (concat(U1. Field, U2. Field)). GAD translates to the use of
user-defined functions in SQL; however, there is no SQL translation of full disjunction.

SELECT Name, max(U1.Age, U2.Age), vote(U1.Status, U2.Status),

U1.Address as Address, concat(U1.Field,U2.Field) Library, Phone

FROM fulldisjunction(U1,U2)

Thus, conciseness is increased and conflicts are resolved depending on the functions
used. Please keep in mind that there is no SQL rewriting for this statement; however,
it could look like the preceding statement. Still, intrasource duplicates or a poor join
order (if using joins instead of full disjunction) leave duplicate tuples in the result.
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Table VI. Result of Outer Union on the Example Tables U1 and U2 (Extensional
Completeness: 7/7, Extensional Conciseness: 7/13) Does Not Contain the Last Tuple (Eve) as

it is an Exact Duplicate. The Minimum Union on the Example Tables (Extensional
Completeness: 7/7, Extensional Conciseness: 7/11) Does not Contain the Last Three Tuples

(Charly, Frank, and Eve), Charly and Frank being Removed Because of Subsumption
Name Age Status Address Field Library Phone

Alice ⊥ 0 ⊥ ME ⊥ 030/12345
Alice 22 1 Berlin Mechanical Engineering A709 ⊥
Alice 21 1 HUB Mech. Eng. ⊥ 030/98765
Bob ⊥ 1 Boston ⊥ B321 ⊥
Bob 27 ⊥ HUB CS ⊥ 030/54321
Charly 25 1 ⊥ Psychology ⊥ ⊥
Eve 24 1 Berlin CS/EE ⊥ 030/55544
Frank 23 0 TUB Mech. Engineering F205 ⊥
Paul ⊥ 1 TUB Architecture ⊥ ⊥
Paul 26 1 Berlin Arch. P233 ⊥
Peter ⊥ 0 TUB Computer Science P201 ⊥
Charly 25 1 ⊥ ⊥ ⊥ ⊥
Frank 23 0 TUB Mech. Engineering ⊥ ⊥
Eve 24 1 Berlin CS/EE ⊥ 030/55544

Result after applying outer union (�) and minimum union (⊕) on U1 and U2.

3.3. Union Approaches

Union approaches are the natural way of accomplishing extensional completeness, as
the result naturally includes all tuples from both relations. In contrast to join ap-
proaches, union approaches do not perform as well concerning conciseness.

3.3.1. Union, Outer Union, and Minimum Union. The union (∪) operator (with set seman-
tics) combines the tuples of two union-compatible relations and removes exact dupli-
cates, that is, tuples that coincide in all attribute values [Ullman et al. 2001]. Two re-
lations are union compatible if they are defined on the same number of attributes and
if the data types of the attributes match. Union is not defined on nonunion-compatible
relations. As the two example data sources are not unioncompatible (nonmatching data
types), they cannot be integrated using union. Union is not uniqueness preserving as
only exact duplicates are removed, resulting in contradicting tuples, with the same key
value in the source relations appearing multiple times in the result. Uncertainties and
contradictions are ignored; the operator is not value- but object preserving.

Outer union (�) overcomes one restriction of union and combines two nonunion-
compatible relations by first padding attributes that are not in common with null values
and then performing a regular union [Galindo-Legaria 1994]. Like union, outer union
is not value- but object preserving. It is not uniqueness preserving, and conflicts are
ignored. Outer union is not a standard operator but can be rewritten in SQL.

( SELECT Name, Age, Status, Address, Field, Library, NULL as Phone

FROM U1 )

UNION

( SELECT Name, Age, Status, Address, Field, NULL as Library, Phone

FROM U2 )

The result of the outer union on the example relations is shown in Table VI.
The minimum union operator (⊕) is defined by Galindo-Legaria [1994] as the result

of an outer union from which subsumed tuples have been removed. A tuple t1 subsumes
another tuple t2: (1) if they comply with the same schema; (2) if t2 contains more null
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Table VII. Result of Merge on the Example Tables (Extensional Completeness: 7/7,
Extensional Conciseness: 7/12)

Name Age Status Address Field Library Phone

Alice 22 1 Berlin Mechanical Engineering A709 030/12345
Alice 22 1 Berlin Mechanical Engineering A709 030/98765
Alice 22 0 Berlin ME A709 030/12345
Alice 21 1 HUB Mech. Eng. A709 030/98765
Bob 27 1 HUB CS B321 030/54321
Bob 27 1 Boston CS B321 030/54321

Charly 25 1 ⊥ Psychology ⊥ ⊥
Eve 24 1 Berlin CS/EE ⊥ 030/55544

Frank 23 0 TUB Mech. Engineering F205 ⊥
Paul ⊥ 1 TUB Architecture ⊥ ⊥
Paul 26 1 Berlin Arch. P233 ⊥
Peter ⊥ 0 TUB Computer Science P201 ⊥

Result after applying Merge (�) on tables U1 and U2.

values than t1; and (3) if it coincides in all other attribute values with t1. Minimum
union has the same properties as outer union. The operator is uniqueness enforcing
only if all data conflicts are uncertainties as a result of subsumed tuples, but it is not
uniqueness enforcing in the general case. Contradictions are not resolved. Using the
techniques from Rao et al. [2004] the minimum union operator can be expressed in
SQL. For lack of space we omit the rather complicated rewriting and only show the
result in Table VI.

3.3.2. Merge, Prioritized Merge. Based on the match join operator, Greco et al. [2001]
define the merge operator (�). This operator can be described as the union of two outer
joins and can be rewritten in SQL.

( SELECT U1.Name, coalesce(U1.Age, U2.Age) AS Age,

COALESCE(U1.Status, U2.Status) AS Status,

COALESCE(U1.Address, U2.Address) as Address,

COALESCE(U1.Field, U2.Field) as Field,

U1.Library, U2.Phone

FROM U1 LEFT OUTER JOIN U2 ON U1.Name = U2.Name )

UNION

( SELECT U2.Name, COALESCE(U2.Age, U1.Age) AS Age,

COALESCE(U2.Status, U1.Status) AS Status,

COALESCE(U2.Address, U1.Address) as Address,

COALESCE(U2.Field, U1.Field) as Field,

U1.Library, U2.Phone

FROM U1 RIGHT OUTER JOIN U2 ON U1.Name = U2.Name )

Applying the merge operator on the example relations results in the relation shown
in Table VII. The merge operator shows the use of the COALESCE function to remove
uncertainties, as could be seen when looking at the two Bob tuples: the missing AGE,
FIELD, and STATUS values are replaced by the corresponding value from the other tuple.
Unfortunately, this does not work for corresponding tuples in the same relation, (refer
to the Paul tuples), although an additional benefit from this behavior is the removal of
intersource subsumed tuples, as is the case with the Frank tuples. However, contradic-
tions are not resolved. There exists a variant, namely prioritized merge (�), that is used
to prioritize among the sources and give preference values from one source. Merge is
well suited in scenarios where many null values could be complemented, such as when
data sources are sparsely filled or only slightly overlap in their schemata.
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3.3.3. Increasing Conciseness in Union Results. As semantically equivalent attributes
have already been matched, different representations reside in different rows of a union
result. Therefore, the obvious way of removing possible data conflicts is by grouping
representations of a single real-world object together and aggregating the values of the
attributes.

The grouping part of this operation is uniqueness enforcing in the grouping at-
tribute(s). In general, the result is, after grouping, similar to the union result, ex-
tensionally complete, and also does not require any “shaping,” as is the case for join
results.

Increasing conciseness in this way requires one or more attributes that serve as ID to
identify same real-world objects. The aggregation part of this operation then takes the
tuples of one group and merges them into one resulting tuple. This is done by applying
aggregation functions to the attribute values, as illustrrated in this small example.

SELECT Name, max(Age), vote(Status), most_recent(Address), concat(Field),

coalesce(Library), coalesce(Phone)

FROM union(U1,U2)

GROUP BY Name

The aggregation functions (max, min, sum, count, etc.) of the SQL standard allow only
for limited possibilities in resolving conflicts. Therefore, the technique used by FraQL
[Sattler et al. 2000, 2004; Schallehn and Sattler 2003] resolves uncertainties and con-
tradictions by applying nonstandard user-defined aggregation functions to the attribute
values in each group. They define four additional 2-parameter aggregation functions,
each aggregating one column depending on the values of another column. In general, an
arbitrarily complex, user-defined function could be used here in order to combine the
values, remove uncertainties, and resolve conflicts. Unfortunately, such user-defined
aggregation functions are supported by database management systems only in a very
limited way, if at all. Therefore, the AXL framework [Wang and Zaniolo 2000] sup-
ports the user with the possibility to enable user-defined aggregation based on SQL in
standard object-relational DBMSs for use in data integration.

User-defined aggregation is similar to the approach taken by the data-cleansing sys-
tem Ajax [Galhardas et al. 2000a]; see Section 4.3.5 for more details.

3.4. Other Techniques

The following techniques are neither join, nor union-based, many incorporating addi-
tional information, extending the relational model or existing relational operators, or
combining operators in order to fuse data.

3.4.1. Considering All Possibilities. Another possible way of dealing with uncertain data
is to explicitly represent uncertainty in relations and use it to answer queries. The
approaches described in Lim et al. [1994] and DeMichiel [1989] add an additional col-
umn to each table, its value helping to decide whether a tuple should be included in
the query answer. Whereas DeMichiel [1989] marks a tuple with a discrete value (the
value is one of yes, no, or maybe), the approach in Lim et al. [1994] uses probabilities
(the value is ∈ [0 . . . 1]). The operators of the relational algebra are extended to cope
with this additional data and to use it. In the end, all tuples are presented to the user,
together with the additional information as to whether it belongs to the result. The
two main problems are that uncertainty is modeled at tuple level only and that it is
generally difficult to determine the probabilities and where to take them from.

In Lim et al. [1997] relations are extended by an additional attribute, holding in-
formation on the data source the tuple is coming from. The relational operators are
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extended to use this information and therefore this approach is an integrated imple-
mentation of a Trust Your Friend strategy (see Section 2.5).

Another way of representing multiple values and their attached probabilities is in
allowing multiple-valued attribute types in a relation [Tseng et al. 1993]. In Tsai and
Chen [2000], the authors present the partial natural outer join, which extends the full
disjunction operation by allowing multiple values in an attribute together with their
probability of being the correct value. Such a result is as complete as a regular full
disjunction, but more concise. However, it is not as concise as the result in Lim et al.
[1995] because conflicts are not resolved by a GAD operation. Instead, all values are
preserved, with an attached probability of being the correct value.

In an OLAP scenario Burdick et al. [2005] use probability distribution functions to
model both uncertainty on the value, as well as imprecision according to a dimension
hierarchy. However, in contrast to the other approaches that include probabilities in the
computation of results, in the end only one value is presented to the user; therefore the
approach is uniqueness enforcing. The value given to the user is the one with highest
probability of all the possible values. However, the approach does not allow any user
interaction beyond giving the probabilities and it especially does not allow to influence
the conflict resolution.

All these approaches implement the Consider All Possibilities strategy, using the
additional information to allow the user to choose consciously among all possibilities
or presenting the most probable value.

3.4.2. Considering Only Consistent Possibilities. A new line of research was initiated by
work started in Arenas et al. [1999], which introduced the idea of returning only con-
sistent information (not containing conflicts, given some constraints) from a database
to a user when issuing a query. An easy example would be the consistent answer of
SELECT * FROM U2 under the constraint that the NAME column be unique: the tuples for
Bob, Charly, and Frank.

Consistent query answering has developed into a large subfield of its own and can
therefore only roughly addressed in this survey. The notion of a consistent answer is
based on the idea of a repair, a new, consistent database created by only inserting or
deleting tuples into/from an inconsistent database. Inconsistency is given by constraints
on the data (e.g., functional or inclusion dependencies) that are not fulfilled. A possible
repair for the aforementioned query could be created by deleting the first Alice and
Eve tuple, respectively. In the relational world, a consistent answer to a query is the
set of tuples that are contained in the answer to the query in all possible repairs. (In
contrast, a possible answer would be a set of tuples contained in any possible repair.)

The overall goal in this line of research is to answer a query by giving a consistent
answer. This generally requires the computation of all possible repairs and therefore
has high computational costs. In contrast, most other techniques mentioned so far are
fast and scalable, as only one specific solution is computed, or the requirements on
constraints that need to be fulfilled are lowered. Research in this area usually limits
the class of queries that are considered so as to be able to deal with tractable cases.
It remains an open issue to find and describe more tractable and scalable classes of
queries for consistent query answering.

Work in this line of research includes systems for answering queries in the relational
world, such as, ConQuer (see Section 4.4.5) or HIPPO (see Section 4.4.4), the use of pref-
erence relationships among tuples, such as, Staworko et al. [2006], including aggregate
constraints [Flesca et al. 2005; Bertossi et al. 2005], and using update operations instead
of insert/delete operations as means to compute repairs [Wijsen 2003]. Recent work also
includes modeling the computation of consistent answers as an optimization problem
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and solving it heuristically [Bohannon et al. 2005]. Finally, Bertossi and Chomicki
[2003] survey the field, giving an overview and additional literature.

3.5. Summary

Among the relational techniques, union approaches are in principle well suited for data
fusion, as all information from the source tables are retained and extensional as well
as intensional completeness are easily reached. Only unnecessary information (i.e.,
duplicate tuples or subsumed tuples) is deleted, increasing conciseness. As attributes
describing the same semantic concept can be mapped, intensional conciseness is also
reached in an intuitive manner. However, in most cases, too many tuples and therefore
too much information is kept, requiring an additional step towards a more satisfying
level of conciseness. This finally results in one single tuple per real-world object. The
intuitive way of increasing conciseness together with the union approach is to apply
grouping and aggregation.

On the other hand, join approaches generally retain information on same real-world
objects in different columns (not in different rows). Columns with equal semantic at-
tributes do not automatically coincide as in the union approaches. They need to be
combined explicitly. Moreover, completeness comes more or less without cost, but con-
ciseness needs to be achieved by an additional processing of the join result. If there
are no intrasource duplicates in the tables, a simple combination of two rows using a
user-defined function is sufficient. However, if there are intrasource duplicates, again,
grouping and aggregation or some advanced join operator is needed.

In general, achieving the goal of completeness is the easy part in data fusion and
is generally performed well by all approaches. The difficult part is achieving a concise
result. Therefore, it makes sense to consider data fusion as a composition of two distinct
operations: one that achieves the goal of completeness and one that achieves the goal of
conciseness. The aforementioned techniques cannot be composed in arbitrary fashion,
but only in the combinations mentioned in Sections 3.2.4 and 3.3.3. However, under the
assumption that there are no intrasource duplicates and only considering two sources
(binary operators), the following two combinations of operators are equivalent: (1) a full
outer key- join of two tables followed by a GAD operation where semantically quivalent
columns are combined by a function; and (2) an outer union (mapping semantically
equivalent columns) of the same tables, followed by a grouping by the real-world ID
and aggregating the remaining columns using the same functions that were used in
the GAD operator. Similar but more general equivalences between these four operators
and others, such as full disjunction, are still subject to research.

The other approaches mentioned in Section 3.4 do not fulfill the requirement of com-
pleteness (only consistent answers) or conciseness (all possible answers) to fit perfectly.

Data fusion is a highly domain-dependent task. Thus, one approach may work ex-
tremely well in one domain and fail in another. The life sciences, for example, comprise
a domain where we deal with much contradictory information on same objects (e.g.,
genes, proteins). The consistent query answering approach would not work very well,
as it would often produce an empty answer. Here it would be more beneficial to merge
contradictory information into one consistent representation. On the other hand, in
domains with a high percentage of exact data (e.g., financial data in companies), con-
sistent query answering is more appropriate because it easily identifies or removes the
few remaining errors in the data.

Concerning the different types of data conflicts, almost all approaches do not have
any major problem in dealing with null values and therefore in resolving uncertain-
ties. As sometimes (e.g., all approaches based on outer union) additional null values
are introduced, techniques such as removing subsumed tuples or using the COALESCE
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function are needed. Resolving inconsistencies could not be accomplished without ap-
plying functions. In the presence of both intrasource and intersource duplicates only,
grouping and aggregation allows for assuring that a real-world object is only described
by exactly one tuple. Join and union approaches alone are not able to guarantee this.

Using a modern relational DBMS, all approaches using standard relational opera-
tors are scalable. Problems with scalability only occur in systems that do not include
an advanced query optimizer, as they are usually not able to cope with complicated
rewritings (e.g., outer union or merge) or with user-defined functions or aggregation
functions.

When deciding on what technique to use, we can distinguish three basic cases de-
pending on the functional abilities of the system that is used, the nature of the data
concerning duplicates, and the requirements on the result. These are as follows.

(1) Using only the functionality offered by SQL (SQL99, basic operations, and merge),
we can fuse data but are only able to cope with uncertainties.

(2) If the use of user-defined functions is possible, a join approach in combination with
UDFs is furthermore able to resolve inconsistencies, as long as no intrasource du-
plicates are present.

(3) Using grouping together with user-defined aggregation functions, enables us to also
cope with intrasource duplicates and with inconsistencies.

Together with use of state-of-the-art relational DBMSs, which offer functionality as
well as scalability, carrying out data fusion operations is possible.

4. INFORMATION SYSTEMS FOR DATA FUSION

In contrast to the previous section which covered relational techniques, in this section
we present an overview of different information systems, out of the literature, that inte-
grate data from different sources. We specifically observe their abilities to fuse data and
handle conflicts. A few of these systems have already been mentioned because they have
been used to demonstrate one of the relational techniques. However, we also include
systems that use other data models or have only limited or no data fusion capabilities.
Therefore, this is a sound but not necessarily complete list of data fusion/integration
systems.

We first categorize data fusion systems into four classes and explain the different
criteria we use to describe them. Second, we report on the single systems, categorized
by their data fusion abilities.

4.1. Classification of Information Systems for Data Fusion

The following categorization of data fusion systems considers their data fusion capabil-
ities. As stated in Section 2.5, we can distinguish different fusion strategies. As systems
can implement one or more of these strategies, we present the systems classified by the
most powerful strategy they are able to use. Existing systems can be categorized into
the following four groups.

(1) The most advanced systems concerning data fusion are able to perform conflict
resolution (Section 4.3).

(2) The next class of systems acknowledges data conflicts and handles them by conflict
avoidance (Section 4.4).

(3) The most simple way of handling conflicts is conflict ignorance (Section 4.5).

(4) Finally, we consider all remaining systems that do not handle conflicts when inte-
grating data from different sources (Section 4.6).
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Table VIII. Main Architecture of Integration Systems and the Data Models Used in the
Mediator/Sources (as well as the systems integration model)

Internal Data
System Architecture Model (Mediator) Source Data Model Integration Model

Multibase MDBMS Daplex Daplex GaV
Hermes MW REL/OO REL, OO, ... GaV
Fusionplex MW REL REL, OO, ... GLaV
HumMer MW REL REL, OO, ... GaV
Ajax APP REL REL n/a

TSIMMIS MW OEM OEM, REL, ... GaV
SIMS/Ariadne MW/MAS Loom (OO) REL, OO, SEMI, ... LaV
Infomix MW SEMI REL, XML, ... GaV
Hippo APP REL REL n/a
ConQuer APP REL REL n/a
Rainbow APP REL REL n/a

Pegasus DBMS OO OO, REL, ... GaV
Nimble MW XML XML unknown
Carnot MAS Cyc REL, SEMI, ... LaV
InfoSleuth MAS Cyc REL, SEMI, ... LaV
Potter’s Wheel APP REL REL n/a

Table IX. Query-Processing Abilities of Integration Systems and Categorization into
Materialized/Virtual Integration System

System Materialization Manipulation Access Method

Multibase no read-only Daplex
Hermes no read-only free text, logic based, graphical language
Fusionplex no read-only ext. SQL
HumMer no read-only ext. SQL
Ajax yes read-write own language

TSIMMIS no read-only MSL
SIMS/Ariadne no read-only Loom query language
Infomix no read-only SQL/Datalog
Hippo no read-only SQL
ConQuer no read-only SQL
Rainbow no read-only SQL

Pegasus no read-write HOSQL
Nimble unknown unknown unknown
Carnot no read-only SQL
InfoSleuth no read-only SQL
Potter’s Wheel yes read-write GUI

The characterization is reflected in the subdivision of Tables VIII to XII describing
the systems details. Systems of the fourth group are not included in the tables.

There does not exist a correlation between the architecture of the system and its fu-
sion capabilities. However, database systems had first been used to integrate informa-
tion starting in the late seventies, early eighties. They were followed by systems imple-
menting the mediator-wrapper paradigm, as published in Wiederhold [1992]. With the
boom of the multiagent system idea in the field of artificial intelligence this paradigm
was also used in information integration, only recently replaced by peer-to-peer system
architectures. Despite this evolution of system architectures, there have always been
specifically designed stand-alone systems to handle data conflicts.

4.2. Properties of Information Systems for Data Fusion

The following list of criteria is used to describe the integration systems in this section.
Specifically we give the questions that we want to answer with this criteria.
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Table X. General Conflict-Handling Properties of Systems (conflict types and data
conflict awareness)

System Conflict Types Data Conflict Awareness

Multibase schematic, data yes, [Dayal 1983]
Hermes schematic, data yes, [Subrahmanian et al. 1995]
Fusionplex schematic, object, data yes, [Motro and Anokhin 2006]
HumMer schematic, object, data yes, [Bleiholder and Naumann 2006]
Ajax schematic, object, data yes

TSIMMIS schematic, data yes, [Papakonstantinou et al. 1996]
SIMS/Ariadne schematic, data yes, partly, [Ambite et al. 2001]
Infomix schematic, data yes, [Leone et al. 2005]
Hippo schematic, object, data yes
ConQuer schematic, object, data yes
Rainbow schematic, object, data yes

Pegasus schematic, data no
Nimble unknown unknown
Carnot schematic no
InfoSleuth schematic no
Potter’s Wheel schematic no

Table XI. Solutions to Schema Matching/Mapping and Duplicate Detection in Integration Systems
System Schema Matching/Schema Mapping Duplicate Detection

Multibase hand crafted assumes global id
Hermes hand crafted assumes global id
Fusionplex hand crafted, learned in Autoplex assumes global id
HumMer semi-automatically global id generated by duplicate detection
Ajax hand crafted global id generated by similarity measure

TSIMMIS wrapper generation assumes global id
SIMS/Ariadne wrapper generation mapping table
Infomix hand crafted assumes global id
Hippo hand crafted assumes global id
ConQuer hand crafted assumes global id
Rainbow hand crafted assumes global id

Pegasus hand crafted assumes given mapping table
Nimble unknown mapping table, generated
Carnot hand crafted assumes global id
InfoSleuth hand crafted assumes global id
Potter’s Wheel n/a n/a

—Architecture. What type of architecture does the system implement? Is it a database
management system (DBMS), a multidatabase management system (MDBMS), a
mediator-wrapper system (MW), a multi-agent system (MAS), or is it a stand-alone
application (APP), possibly on top of a DBMS? We can infer the coupling (tight or
loose) between systems components from the type of architecture. An MDBMS is a
database system with tightly coupled components, storing data in different DBMSs
and using a special language to explicitely and directly access the distributed data.
On the other hand, a mediator-wrapper system consists of two types of loosely cou-
pled components. A mediator component is queried by the user using a standard
language to transparently access the data. Data is stored in distributed sources, and
made available through wrappers which translate queries and data between mediator
and sources. A multi-agent system is the most loosely coupled system architecture
and consists of a collection of agents interacting with each other. That way, it dis-
solves the strict hierarchical separation of mediator and wrappers. It could be seen
as predecessor of peer data management systems (PDMSs). For more information on
integrated information systems architecture, see Wiederhold [1992], Domenig and
Dittrich [1999], and Sheth and Larson [1990].
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Table XII. Data Fusion Capabilities, Possible Strategies and How Fusion is Specified in Integration Systems
System Fusion Possible Fusion Strategy Fusion Specification

Multibase resolution Trust your friends, Meet in the
middle

manually, in query

Hermes resolution Keep up to date, Trust your
friends, . . .

manually, in mediator

Fusionplex resolution Keep up to date manually, in query
HumMer resolution Keep up to date, Trust your

friends, Meet in the middle,
. . .

manually, in query

Ajax resolution various manually, in workflow
definition

TSIMMIS avoidance Trust your friends manually, rules in
mediator

SIMS/Ariadne avoidance Trust your friends automatically
Infomix avoidance No Gossiping automatically
Hippo avoidance No Gossiping automatically
ConQuer avoidance No Gossiping automatically
Rainbow avoidance No Gossiping automatically

Pegasus ignorance Pass it on manually
Nimble ignorance Pass it on manually
Carnot ignorance Pass it on automatically
InfoSleuth unknown Pass it on unknown
Potter’s Wheel ignorance Pass it on manually, transformation

—Mediator Data Model/Internal Data Model. What data model does the system use
in the mediator? If it is not a mediator-wrapper system, what data model is used
internally? Is it based on the relational world (REL), on some object-oriented model
(OO), or does it use some semistructured (SEMI) model, such as OEM, XML, or
DAPLEX, a functional data model [Shipman 1981], or some other model?

—Source Data Model. What data model(s) is/are allowed for use in the data sources
(REL, OO, . . . )?

—Integration Model. Which integration model (GaV, LaV, GLaV) does the system use?
The GaV (Global-as-View) integration model expresses a global schema (used in the
mediator or internally) as views of local schemata (used in the data sources), whereas
LaV (Local-as-View) connects local and global schemata the other way around. It ex-
presses local schemata as views on the global schema. By allowing both possibilities to
connect global and local schemata, GLaV (Global-Local-as-View) tries to combine the
benefits of both models: the better scalability of LaV and the simpler query execution
of GaV.

—Materialization. Does the system materialize data of the sources in the main system,
or is it a virtual integration system that only provides access to the sources?

—Manipulation. Is the system able to manipulate data in the sources, or does it allow
only read access?

—Access Method. How could the system be accessed or queried (query language, brows-
ing, canned queries, etc.)?

—Conflict Types. What types of conflict are considered in the integration process used
by the system? What types of conflict could possibly be handled? Schematic- object-,
and data-level conflicts?

—Data Conflict Awareness. Is the system aware of actual data conflicts? Could they
possibly be handled (semi-) automatically?

—Schema Matching/Mapping. What are the schema matching/mapping abilities of the
system? How are mappings created to solve schematic conflicts?
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—Duplicate Detection. How does the system detect and/or handle duplicate objects?
Does it allow duplicates, does it assume a global ID?

—Fusion Class. Is the fusion of same real-world objects possible and what classes of
strategy are available (ignorance, resolution, avoidance)?

—Fusion Strategies. Which concrete fusion strategies could possibly be used in the sys-
tem or are implemented in the system? For a list of possible strategies, see Section 2.5.

—Specification of Fusion. How is fusion specified: in an automatic, semi-automatic, or
manual manner?

The following tables (Table VIII to Table XII) list and overview 16 different integration
systems and their properties. Each table orders the systems according to the classifi-
cation from Section 4.1 into three groups: conflict-resolving systems (Hermes through
Ajax), conflict-avoiding systems (TSIMMIS through Rainbow), and conflict-ignoring
systems (Pegasus through Potter’s Wheel). The many systems of the fourth class are
not listed in the tables.

Table VIII lists the architecture of the systems, together with the data models used
in the mediator (internally, respectively) and in the sources, as well as the integration
model that is used in connecting global and local schemata. Table IX contains informa-
tion on how data could be accessed and if data manipulation is possible. It also classifies
the systems into materialized/virtual integration systems. Both tables together give a
first overview on the systems and their integration fundamentals.

Table X considers conflict handling, especially the types of conflict the system is aware
of and if the system is aware of data conflicts in particular. If possible, the research
paper describing the system’s conflict handling is cited therein. The system capabili-
ties concerning schema matching/mapping and duplicate detection are summarized in
Table XI. Finally, Table XII reports on the specific data fusion capabilities: what strate-
gies are employed by the systems and how can fusion be specified.

All systems exist at least as a research prototype, although only two are currently
downloadable or can be used over the Web: The research system Trio (not in the tables;
see Section 4.6.1 for a description) and the conflict-ignoring system Potter’s Wheel (see
Section 4.5.5). In the remainder of the section we describe some systems in more detail
and briefly cover others, emphasizing those systems with better data fusion capabilities.

4.3. Conflict-Resolving Systems

All systems in this group allow for full resolution of conflicting data, using a variety of
strategies and following different implementation paradigms. The result of a query to
these systems is in most cases a complete and concise answer.

4.3.1. Multibase. Multibase is one of the first multidatabase systems that mentions
and considers the integration of data from different sources [Dayal 1983; Dayal and
Hwang 1984; Landers and Rosenberg 1982]. Data in the sources is described using the
DAPLEX data model [Shipman 1981], allowing also for the definition of global views
on this local data.

Multibase is a fully functional database system that takes a global query in
DAPLEX,2 modifies it in terms of the local schema, and sends it to the local sites
so that it can be executed there. Global and local query optimization is done by pushing
selections down to the local sources.

2DAPLEX is used interchangeably to denote the query language and the underlying data model [Shipman
1981].
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Data describing the same types of entities in different sources is integrated in the
global view using the principle of generalization. A global class always generalizes
several local classes. Dayal [1983] is among the first to identify the problem of having
data conflicts in the global view when integrating data from the local sources using
generalization. The work also describes how to combine instances from the sources if
they are not disjoint and how to cope with conflicting data.

The solution implemented in Multibase is the use of an outer join operation, fol-
lowed by an aggregation where conflicting values are fused by using basic aggrega-
tion functions such as min, max, sum, count, average, or choose. As already stated
in Section 3.2.1, Multibase cannot resolve conflicts between intrasource duplicates be-
cause of the use of outer joins.

4.3.2. Hermes. The Hermes system (HEterogeneous Reasoning and MEdiator Sys-
tem) does not only integrate data sources but also reasoning facilities [Subrahmanian
et al. 1995; Adali et al. 1996]. Different sources and reasoning facilities can be com-
bined by a mediator to enable uniform access for an end user. The mediator is specified
by an expert in a declarative way and serves to detect and handle several types of
schematic conflicts as well as data conflicts. By resolving schematic conflicts, same con-
cepts with different names in different sources could be mapped to a common global
concept, following the GaV approach.

The mediator is specified using a variant of an annotated logic, annotations being the
time that the concept, object, or value was entered into the system and its reliability.
Each content of the database is true with that specified reliability at the given time.

The system includes tools that help the expert in incorporating new domains (during
the integration phase of domain integration), such as other data models or other types
of sources, and then to combine such sources into a mediator specification (during
semantic integration) which can then be used to access data.

Conflicts on schema- and data level are recognized and partly solved, for example,
using reliability and timestamp information. This way it is possible to implement a
Trust Your Friends or a Keep Up To Date strategy within the system. The ability to
also choose particular values (e.g., the maximum or minimum value) also allows other
strategies.

The end user can access the system using a variety of query languages (e.g., free
text, logic based, or using a graphical query language). The query is processed and exe-
cuted by the mediator, query optimization being concerned with accessing the different
sources that are being integrated in a cost-based way [Adali et al. 1996].

4.3.3. Fusionplex. The “plex” family of systems (see Motro et al. [2004] for an overview)
consists of the three system: Multiplex [Motro 1999], Fusionplex [Motro et al. 2004;
Motro and Anokhin 2006], and Autoplex [Berlin and Motro 2006]. Multiplex is a vir-
tual multidatabase system that is capable of integrating information from different
heterogeneous sources and serves as the basis for the other two systems. Fusionplex
adds inconsistency recognition and reconciliation facilities based on provided quality
information of the data source contents as additional feature attributes. Autoplex adds
support for automatically adding new data sources, based on source discovery using
machine learning techniques. The systems use the relational model internally, but are
able to import data from other data models as well, as long as the sources are able to
export data in a tabular manner.

In all systems, the schemata of the integrated data sources are considered to be
different and overlapping, but they do not contain errors, which means that a map-
ping from the integrated sources to the global schema can be found (GLaV approach).
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However, the content of the data sources is considered to contain errors, which means
that duplicate objects, as well as different and contradicting object representations,
may exist.

Fusionplex allows the user to resolve extensional inconsistencies at tuple level. The
system groups tuples representing the same object according to a global key. It then uses
quality metadata (timestamp, cost, accuracy, availability, clearance, etc.), represented
in additional feature columns, to choose only high-quality tuples to be used in the fusion
process. User preferences in the importance of the features, are taken into account.
Next, fusion functions (min, max, avg, any, . . . ) are applied attribute-wise per object to
come up with one value per attribute and object, the final object representation. Last,
feature values are computed for the final representation.

In Autoplex rules are learned per data source, which select-project-join queries rep-
resent a good contribution to the global database. The system is then able to classify a
new and unknown database on the basis of how good the contribution is, what it can add
to the system as a whole and come up with a select-project-join query that incorporates
the source into the global schema.

4.3.4. HumMer. The Humboldt-Merger (abbreviated HumMer) system is an inte-
grated information system and allows the semi-automatic virtual integration of several
remote and heterogeneous data sources [Bilke et al. 2005; Naumann et al. 2006]. All
three steps of data integration (schema matching, duplicate detection and data fusion)
are supported and automated as far as possible.

The system is used via a wizard-like interface which requests user input if needed, but
uses default settings whenever possible to semi-automatically define a schema mapping
between the sources that are to be integrated. This is done to semi-automatically detect
duplicate object representations and fuse them into one clean representation. At each
step, the user can influence the process. He can alter the proposed mapping, he can
additionally classify possible duplicates as real or no duplicates, and he can define how
data conflicts are to be resolved when fusing the object representations in the end.
The system handles relational data, but is able to access a variety of data sources.
HumMer can also be used in a query-driven way, where a fusion query is formulated
using an extension to SQL and schema mapping and where duplicate detection is done
beforehand using default settings.

The system considers the whole range of conflict types (schematic, identity, and data
conflicts). Schematic conflicts are solved using a duplicate-based schema-matching ap-
proach [Bilke and Naumann 2005], whereas identity conflicts are solved using the
DogmatiX approach [Weis and Naumann 2005] applied to relational data. The result
of the duplicate detection step consists of duplicate clusters, where all duplicate ob-
ject representations of a real-world object are assigned to the same group. Data fu-
sion is accomplished by using this grouping, removing subsumed tuples, and then ap-
plying standard and advanced user-defined aggregation functions, such as min, vote,
most abstract concept, to each group [Bleiholder and Naumann 2005]. Here, addi-
tional information (such as a taxonomy for the most abstract concept function) can
be used, as well as functions that relate different columns (choose depending value),
or we can use all values from a column when determining the fused value (e.g., using
statistics or histograms). The data fusion operation is implemented as a database oper-
ator, which enables the use of algebraic and cost-based optimization techniques within
the system.

4.3.5. Ajax. The data cleansing process in the Ajax system [Galhardas et al. 2000a,
2000b, 2001] is defined as a workflow on a logical layer using a declarative language.
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Besides relational operators (select, project, join) it uses specialized operators for
data transformation (e.g., format or unit conversion) and two more advanced oper-
ators for matching and merging. Duplicate detection (matching) is done by grouping
object representations assigning keys, whereas the merging operator resolves existing
data conflicts by aggregation. Once a cleansing process is defined on the logical layer, it
is translated into Java programs on the physical layer, allowing for the use of different
implementations of a logical operator. An exception handling mechanism allows users
to influence the specified workflow during execution.

The system accounts for data conflicts and provides a basic mechanism for their
resolution. However, conflicts are not classified and the merging operation is only briefly
covered. The main focus of the AJAX system is on the matching step and an efficient
and effective way of detecting duplicates while at the same time being able to specify,
translate, and execute a complex data cleansing workflow.

4.4. Conflict-Avoiding Systems

The systems in this group allow for handling conflicting data by conflict avoidance. The
result of these systems is, at the least, a concise answer.

4.4.1. TSIMMIS. The TSIMMIS (The Stanford IBM Manager of Multiple Information
Sources) system uses wrappers to extract data from sources and convert it into its own
data model OEM (Object Exchange Model) [Hammer et al. 1997; Garcia-Molina et al.
1997]. OEM is a semistructured data model, where data is represented as a quadruple
(object ID, label, type, value) and there is no defined schema as in the relational model.

A wrapper converts data in the sources into the central data model. Wrappers are
specified using a special language, WSL (Wrapper Specification Language), either by
an expert or automatically by machine learning methods. The mediator combines data
from the wrappers, and is specified using a similar language, MSL (Mediator Specifi-
cation Language).

An end user queries the system using MSL. It is based on OQL and uses an object-
oriented approach. Query processing follows the GaV model, with the mediator carrying
out the necessary query unfolding and the wrappers converting and sending subqueries
to sources. The result is converted back and shown to the user according to the mediator
specification.

To identify objects, the system uses a skolem function to assign a unique global
identifier to real-world objects. The existence of representations of same objects in
different sources (intersource duplicates) is recognized, as are the possible data conflicts
between them. However, in the presence of conflicting data, the system does not allow
for resolution of the conflicts in the mediator, but avoids them using a simple Trust
Your Friends strategy by only allowing to specify a preferred source during mediator
specification [Papakonstantinou et al. 1996]. The value from that preferred source is
then used in the final representation.

Some basic optimization issues in the distributed environment of the TSIMMIS sys-
tem are considered, especially the execution of queries enhancing objects with informa-
tion from other sources. To answer such “fusion”3 queries, the system uses semijoins
on distributed sources [Yerneni et al. 1998].

4.4.2. SIMS and Ariadne. The SIMS system (Services and Information Management for
decision Systems) is a mediator-wrapper system and serves as implementation platform

3Interestingly, “fusion” is used here in the same sense as it is used in market research; see footnote in
Section 2.
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for integration projects from different domains [Ambite et al. 2001; Knoblock 1995;
Arens et al. 1996]. SIMS manages a global schema together with various local schemata
and a mapping between them expressed in Loom, a knowledge representation language
often used in AI projects. Whereas initial versions of SIMS followed a GaV approach to
integration, later versions [Ambite et al. 2001] combine LaV source descriptions with
a mechanism to compile GaV mappings out of them.

Queries are processed in a three-step process: First, all relevant sources are selected
and the query, expressed in terms of the global schema, is reformulated to be executed
at the local sources. Second, the system generates a detailed query execution plan.
During the third step the query is reformulated into a semantically equivalent plan of
lower execution cost.

The main focus of this project is query planning in an AI setting. However, incom-
pleteness and inconsistency in and between sources is recognized as a problem in such
a data integration setting. Handling these problems is deferred to future work.

Ariadne extends the SIMS system to a WWW environment [Knoblock et al. 1998;
Ambite et al. 1998, 2001]. It consists of wrappers for Web sources and a central mediator
which is responsible for query processing. The main concerns are how to apply AI-
fashion query planning to a large-scale environment such as the Web using adequate
source descriptions.

The domain model and query language are the same as in SIMS, whereas Ariadne
additionally includes binding patterns in the source descriptions. These are needed, as
Web sources may have input constraints.

Query planning is broken down into two phases. During the first phase, the system
selects an appropriate set of sources to query, and during the second phase an initial
plan is subsequently improved by plan rewritings.

Wrappers for Web sources are constructed by automatically learning an extraction
grammar from examples given by a user where the required information could be found
on the Web page.

Ariadne recognizes the problem of same real-world entities having multiple represen-
tations in different sources, although the problem of intrasource duplicates is ignored.
It uses manually constructed mapping tables to connect object IDs in different sources.
How conflicts in other attributes are handled is not described, although for object IDs
a Trust Your Friends strategy is used, in that values for object IDs are taken from
a designated source. As future work, there is mention of developing semi-automatic
learning techniques for creating the mapping tables.

4.4.3. Infomix. A mediator-wrapper system following the Consistent Query Answer-
ing approach (CQA) is the Infomix system [Eiter et al. 2003; Lembo et al. 2002; Leone
et al. 2005] (see Section 3.4.2 for more information on CQA). In contrast to all other
systems following this approach, very general queries could be answered because of the
approach taken here, namely evaluating logic programs. However, the inherent com-
plexity in evaluating logic programs constrains the use to only small databases. The
system uses GaV mappings to map from a global schema to sources. It uses a subset of
XML Schema and is therefore capable of incorporating not only relational data but also
XML data, HTML data or data from other data models. The LixTo wrapper generation
technique is used to add new sources. Optimization techniques are used to render the
search for repairs feasible, in that it tries to do early selections in the sources. It uses
logic programs to specify all repairs of the underlying inconsistent data sources and
from thereon the consistent answer to a query. The problem of duplicate detection is
not mentioned explicitly, but as data fusion is handled by only including consistent
answers in the result, Infomix is aware of both problems and even offers a solution for
the latter.
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4.4.4. HIPPO. The HIPPO system also follows the Consistent Query Answering
(CQA) paradigm [Chomicki et al. 2004a; Chomicki et al. 2004b]. Efficiently return-
ing consistent answers heavily depends on the possibility to efficiently compute re-
pairs, respectively to avoid having to compute all repairs. HIPPO solves this problem
by using a special data structure: the conflict hypergraph. HIPPO can be used with
select-join-union-difference queries and a special class of dependencies. The system is
implemented on top of a relational DBMS, at the same time holding the conflict hyper-
graphs in main memory. Candidates are computed by the database system, whereas
the final consistent answer is computed with the help of the data structure. However,
main memory restricts the size of the conflict hypergraph and therefore the size of the
databases that could be queried efficiently. Integration and duplicate detection capabil-
ities depend on the underlying DBMS, although the system as a whole offers a solution
to the data fusion problem by returning only consistent answers, thus implementing a
No Gossiping strategy.

4.4.5. ConQuer. The ConQuer system, in contrast, uses a rewriting technique to com-
pute consistent answers [Fuxman et al. 2005a, 2005b]. Given a set of key constraints
the system rewrites an SQL query into an equivalent one that only returns consistent
answers. In contrast to other consistent query answering systems, the rewriting works
with any underlying relational DBMS and does not need any additional processing. As
in all other CQA systems, duplicate detection is reduced to assuming a global key and
data conflicts are avoided by only returning consistent answers (No Gossiping).

4.4.6. Rainbow. Another line of research in consistent query answering is followed
by the Rainbow system [Caroprese and Zumpano 2006; Caroprese et al. 2006], which
is a framework for implementing different possible ways of answering queries to in-
consistent integrated databases in the presence of integrity constraints. A relational
integration operation, such as prioritized merge (see Section 3.3.2) or the match join
(see Section 3.2.3), is combined with a second step of returning consistent answers: The
approach taken here is to introduce preference relations among different repairs and
choose answers in preferred repairs.

4.5. Conflict-Ignoring Systems

The systems in the third group handle conflicting data by conflict ignorance. The result
of these systems often is a complete answer.

4.5.1. Pegasus. The Pegasus system was developed in HP Labs as a multi-
database system, allowing a user to access different heterogeneous distributed data
sources [Ahmed et al. 1991; Kent et al. 1992]. It serves as reference for many of the
systems developed thereafter.

The system uses an object-oriented data model to represent data and offers a suitable
query language, HOSQL, to access the data that either resides at the main site or is
distributed among other sites. There, other data models could be used, enabling the
system to access relational data as well as object-oriented data or data stored using
another data model. Data access is not read only, but also considers updating the data
by further distributing updates to the foreign sites.

For each foreign database there exists a mapping between the tables there and the
view representing it at the main site. Query processing is done GaV style, translat-
ing the queries posed in HOSQL to Pegasus into queries to the foreign databases, and
then sending and executing them there in the respective data model and query lan-
guage. This is accomplished by the Pegasus agent, which resides on the local site and
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represents Pegasus there. Global query optimization is done and tries to reduce inter-
site communication costs. Furthermore, it tries to reduce the number of queries sent to
the distributed databases.

Imported schemata and schemata residing at the main site can be integrated into one
schema using mappings as well. As an object-oriented model is used, generalization is
used as in Multibase to combine two equivalent imported classes into one single global
class. Here, the problem of eventually having duplicate representations of one and the
same object of that class, and thus conflicts in different object representations, is recog-
nized but not solved. The mechanism to deal with duplicate object representations in
different sources is described in Kent et al. [1992] and consists of mapping object iden-
tifiers in different sources describing the same object to a global one. This is done using
mapping tables or mapping functions. In general Pegasus assumes no extensional and
intensional overlap (conflict ignorance). However, if there are duplicate objects, then
they only exist in the view of the administrator of the system. The end user using the
system should only see one representation of the object. In that way, the administrator
is responsible for resolving conflicts by hand. There is no support by the system.

4.5.2. Nimble. Nimble is a commercial integration system [Draper et al. 2001a, 2001b;
Halevy et al. 2005]. It is used by several large companies to clean and integrate different
heterogeneous data sources. It is also one of the first integration systems that uses XML
as data model.

As it is a commercial system, not many details on the techniques are published.
However, the existence of duplicates is recognized and the system tries to find them
by mining for columns in different tables that could be joined. The assumption is that
there are pairs of values in these columns that identify same real-world objects in each
table. Such a join index is built semi-automatically by using data mining techniques
and exceptions are handled by an expert user, finally resulting in a mapping table.
There is no specific information on how conflicts are handled in the system, but hints
that some join-style integration mechanism (as detailed in Section 3.2) is implemented
together with manual conflict resolution.

The system supports data lineage and some limited capabilities for defining cleansing
processes in the Ajax style (see Section 4.3.5 for details on the Ajax system).

4.5.3. Carnot. The Carnot system [Collet et al. 1991; Singh et al. 1997] is a multi-
agent integration system. It consists of independent software agents that are not nec-
essarily run at the same location but can be arbitrarily distributed. Each agent has
its own area of expertise, some mapping source content into the global data model and
schema (wrappers), others transforming or combining data (modeling a mediator). As
global data model, Carnot uses the Cyc knowledge base [Lenat et al. 1990], an effort to
model real-world knowledge and make it available to information systems by building
a complex and complete ontology of real-world concepts. Queries to the system can be
issued using SQL against one of the existing local schemata. Agents are responsible for
mapping these queries to concepts from the Cyc ontology and from thereon to the data
sources themselves. From a database perspective the system could be seen as a dis-
tributed, object-oriented database with a global schema that is built using very small
components.

The mapping of sources into a global schema enables the integration of structured as
well as unstructured data. Due to its modular structure, queries could be issued against
local schemata or the global schema, with automatic translations between them. These
translations use the source mappings and are able to overcome mismatched domains
by value transformations (e.g., from dollar to euro).
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Mappings are handcrafted by experts and when combining results, duplicates are
not detected and data conflicts are ignored. Duplicate results coming from different
sources are put together into one single result (Pass It On).

4.5.4. InfoSleuth. The InfoSleuth project [Bayardo, Jr. et al. 1997; Nodine et al. 1999]
is the successor of the Carnot project and extends it to a more dynamic WWW scenario.
Specifically, this scenario is where resources are added and removed over time, where
it is unclear what sources are available at query time, and in short where we have
truly autonomous data sources. The essential architecture of InfoSleuth does not differ
much from Carnot; here as well are different specialized components (agents) that take
care of the different tasks that need to be performed when integrating information.
Queries are issued by an user agent and are distributed to the currently available
resources that are able to deliver an answer. They are executed there and the results
are combined to form the final result shown to the user. Combining the individual
results is done by a specialized agent (mediator) using an integration plan. Although
the use of statistical functions in an integration plan may lead to assume that some data
fusion functionality is used, the problem of duplicate objects and possibly conflicting
values is neither explicitly recognized nor solved.

4.5.5. Potter’s Wheel. Potter’s Wheel is a data cleansing system that operates on one
source only [Raman et al. 1999; Raman and Hellerstein 2001]. The main focus is on the
interactive definition of cleansing operations by a user. The system is freely available
and consists of a GUI to the relational data the user wants to clean. He only sees a
sample of the entire data, as the system aims at providing real-time cleansing facilities.
Other data models, such as XML, are not supported.

A discrepancy detection process runs in the background and shows to the user data
values, or whole columns that supposedly are dirty, for example, that contain outliers.
The system does not only detect numerical outliers, but also string values that are for-
matted in a different way than the other values in that column. Using the discrepancies
detected by the system as hints, a user can define transformations on the data. That
way, values in columns can be reformatted, changed, copied to another column, or split
and divided into two columns. Complex selections combining two columns into one and
a folding operation are also available. Complex combinations of transformations could
be saved, reloaded, and executed not only on the sample, but also on the whole dataset.
The translation of transformations into SQL or XQuery statements is mentioned as an
extension to the system, to use already existing query optimization facilities.

The idea of duplicate representations of same real-world objects does not exist as
concept in the system. Therefore there is no explicit possibility to detect such dupli-
cate representations and combine them into only one representation. In our three-step
integration process, a system like Potter’s Wheel could be used before the duplicate
detection step, in order to increase the quality of the data to be able to more easily
detect duplicates.

4.6. Other Systems

The following systems do not consider duplicate detection or data fusion techniques in
detail, but nevertheless should be mentioned in order to give a more complete overview
of integrating information systems and to illustrate the relatively small percentage of
systems handling conflicting data.

Many of the research systems are described in more detail in surveys such as Sheth
and Larson [1990] or Domenig and Dittrich [1999]. However, the main focus of these
other surveys is on distinguishing and classifying distributed information systems
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mainly by their architecture and other characteristics, but not according to their data
fusion capabilities.

4.6.1. Research Systems. The Trio project aims at developing a new DBMS for storing
inexact information and revives some of the older research done in the area of prob-
abilistic databases [Widom 2005; Sarma et al. 2006; Agrawal et al. 2006; Benjelloun
et al. 2006]. The project tackles data conflicts by explicitly including information on
accuracy and lineage into its data model and thereby into the data itself. As with all
other probabilistic databases (see Parsons [1996] for a survey on probabilistic and other
techniques to handle and model imperfect information), the approach taken here is to
keep all data in the database, annotate it with quality metadata and lineage, and pro-
vide a powerful query language. That way they do not have a built-in notion of duplicate
objects and defer conflict handling to the user.

The Information Manifold system is the first system to mention and implement what
is later coined the Local-as-View approach (LaV) to data integration [Levy et al. 1996a;
Levy et al. 1996b]. A specialized query planner is used for query answering. It uses
coverage and overlap information on the sources, as well as their capabilities (what
selections are possible, full relational capabilities, what inputs are possible, etc.) to
determine in which order to access and query what sources. Information Manifold as-
sumes that objects are globally uniquely identified by object IDs, using correspondence
functions to map object identifiers from one source to another source if not. There is no
further discussion on duplicate detection methods and the need for data fusion is not
mentioned.

The Garlic project was initiated to manage large amounts of multimedia data [Cody
et al. 1995; Josifovski et al. 2002]. All data is stored at different distributed sources
and is virtually integrated in a mediator. The main focus in the Garlic project is on
distributed storing of large amounts of data and query planning in this setting. Thus,
the characteristic integration problems of identifying same real-world objects and how
to handle conflicts are not considered deeply, and not even recognized. Garlic was sub-
sequently used for biological data [Haas et al. 2000] and was the basis for IBM’s DB2
DiscoveryLink, which is now part of the commercial DB2 database system.

The Disco (Distributed Information Search Component) system [Tomasic et al. 1997,
1998] focuses on and solves three problems when querying heterogeneous data sources:
(1) the problem of how to cope with data sources that do not support the full language of
the mediator; (2) the problem of cost based wrapper optimization; and (3) the problem
of what wrapper to use, given that not all wrappers have equal costs. The problem
of duplicate detection is mentioned, as well as the need for data fusion, although no
solutions are given.

Among the oldest mediator-wrapper systems are Papyrus [Connors et al. 1991] and
Nomenclatur [Ordille and Miller 1993]. In the midst of the nineties, there were many
research groups dealing with the topic, building systems such as DIOM [Liu and Pu
1995], Rufus [Shoens et al. 1993], or KOMET [Calmet et al. 1997; Calmet and Kullmann
1999]. A local-as-view approach is used in Infomaster [Genesereth et al. 1997] and
Occam [Kwok and Weld 1996], which comes from the AI community like SIMS or the
Internet Softbot. Examples for systems from the late nineties are Singapore [Dittrich
and Domenig 1999], Magic [Reck and König-Ries 1997], and Observer [Mena et al.
1996]. Lore [McHugh et al. 1997] and Tukwila [Ives et al. 1999] are examples for
systems who focus on semistructured data.

Other research database management systems dealing with data integration were
developed mostly in the eighties. Research on data integration during that time mostly
dealt with issues in resolving syntactic heterogeneity. In the beginning of the eighties,
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research revolved around nonfederated or tightly coupled systems such as SIRIUS-
DELTA [Litwin et al. 1982], DDTS [Dwyer and Larson 1987], Mermaid [Brill et al.
1984; Templeton et al. 1987], or UNIBASE [Brzezinski et al. 1984]. In the late eighties
the focus switched to research on more loosely coupled systems, like MRDSM [Litwin
1985; Litwin and Abdellatif 1987], OMNIBASE [Rusinkiewicz et al. 1989], CALIDA
[Rajinikanth et al. 1990; Jakobson et al. 1988], or DQS [Belcastro et al. 1988]. None of
these systems specifically considers or solves the problem of duplicate detection or data
fusion, despite their ability to integrate several heterogeneous, remote data sources.

4.6.2. Commercial DBMSs, Data Warehouse Systems, and ETL Systems. Commercially
available database management systems from vendors such as IBM, Oracle, or Mi-
crosoft, to name just a few, can usually be used to integrate data from different sources.
They offer the full functionality to use the relational techniques mentioned in Section 3,
sometimes extending them with vendor-specific support for user-defined functions, ag-
gregations, or procedures. In addition, some vendors support the connection of other,
remote, data sources to be included in standard query processing and basic notions of
a distributed database. Connecting other sources is mostly done via a GaV mapping,
allowing for easier query processing and use of the built-in optimizer. Practically all
commercially available DBMSs support the XML data model, in varying ways, next
to the relational model. A few even come shipped with specialized tools as add-on-to
detect duplicates or design ETL workflows for data cleansing (see, e.g., Chaudhuri et al.
[2005]). Here, various fuzzy duplicate detection methods are either already provided or
could be plugged in easily. The subsequent data fusion phase, however, is frequently ne-
glected. In all other DBMSs, duplicate detection is implemented using key constraints.

Typical ETL tools, such as IBM’s Information Server (IIS) or Microsoft’s SQL Server
Integration Services (SSIS), provide some rule-based functionality to specify data fusion
semantics. Usually the rules allow only to remove uncertainties, but do not resolve
data conflicts. Such functionality is typically offered using the keywords “survivor” and
“consolidation”.

4.6.3. Peer Data Management Systems. Recently, peer data management systems
(PDMSs) have become a popular architecture for data integration. Therein, autonomous
peers host a schema and possibly some data. Peers are interconnected via schema map-
pings in a network fashion. Queries can be posed against any peer schema and are trans-
lated along mapping paths so that all participating peers contribute to the final result.

Due to the recency of this architecture, not many PDMSs have tackled the problem of
data fusion. Merely a few explicitly recognize inconsistent tuples and remove them from
the query result. The system Orchestra maintains conflicting data by allowing multiple
viewpoints, each from the view of a specific source [Ives et al. 2005]. Thus conflicts
are not resolved, but recognized and hidden. Orchestra also reconciles contradictory
updates, relying on the principle of least surprise, that is, choosing the most recent
update as the resolved value.

Similarly, the proposed logical extension of the Hyper system is able to recognize
and hide local inconsistencies from the global perspective of the integrating system by
isolating locally inconsistent peers [Calvanese et al. 2005]. Global inconsistency, that
is, conflicts that arise only when integrating data from different peers, is achieved by
isolating the minimum amount of data to reach consistency.

4.7. Summary

Research in information integration started with the relatively easy problems of over-
coming technical heterogeneity before moving on to the more interesting problems of
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structural and schematic heterogeneity. Over time, as more and more of the relevant
issues in these fields had been solved, research started tackling semantic heterogeneity
and dealing with dirty data. Besides that trend, efficient query processing in integrated
information systems had at all times be an issue.

Out of all the research information integration systems that have been built so far,
only some are actually able to handle conflicting data. Most integration systems only
cope with schematic conflicts, as this has been the field with the longest research his-
tory. Some also consider identity conflicts: the existence of duplicate records in different
sources. However, only a few of them recognize and deal with all possible varieties of
intra- and intersource data conflicts. These systems take data conflict handling seri-
ously and often return a complete and/or concise answer. They can be divided into two
groups: The first group recognizes and handles, but does not resolve, conflicting data
(conflict avoiding systems). They implement a simple strategy to handle data conflicts,
for example, by preferring data from one specific source. The second group detects data
conflicts and uses (nearly all) existing information to come up with a good conflict res-
olution in the end.

Specification of data fusion is different from system to system, at various levels of
complexity, increasing complexity resulting in more possibilities to specify data fusion.
As the research focus changed from schematic over identity to data conflicts, the sys-
tems’ architecture also changed. In the beginning, research in this field mainly dealt
with DBMSs, multi-DBMSs, or distributed DBMSs, before systems architectures be-
came much more loosely coupled with the advent of mediator-wrapper systems, or lately
PDMSs.

In comparison to research systems, commercially available information systems have
only limited data fusion capabilities, if at all. The problem of duplicate records has
received relatively large attention in companies and therefore there exist, in addition to
standard DBMSs, many specialized software products that are able to detect duplicates
in data. However, how to fuse duplicate records into one representation in the end often
is also an open issue there, and most products use a survivor strategy by choosing one
of the existing representations and additionally replace null values with data values
from other representations.

5. CONCLUSION AND SUMMARY

In this survey we introduced the problem of data fusion in the larger context of data
integration, where data fusion is the last step in a data integration process, schemata
have been matched, and duplicate records have been identified. Merging these dupli-
cate records into a single representation and at the same time resolving existing data
conflicts is still out of the focus of mainstream research in the field of information in-
tegration systems. However, the problem has been addressed by several researchers in
the past decades.

In the second part of this survey, we gave an overview and compared common re-
lational techniques for data fusion. We showed how they cope with data conflicts and
mention the characteristics of the results that they produce. In the third part, we pre-
sented and commented on a list of information integration systems that are capable
of fusing data in various ways. We classified the systems according to their abilities of
handling conflicts.

Conflict handling can easily be described by the strategy the systems use to handle
conflicts. Many of the possible strategies mentioned in the first part have been success-
fully implemented and tested in a system or research prototype, or can be implemented
using relational operators. The sheer amount of existing information integration
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systems does not allow to conclude that data fusion is easily accomplished because
only a few of the systems actually tackle the problem.

With this survey we intend to introduce the interested reader to the existing pos-
sibilities to accomplish data fusion as part of an information integration process and
help to choose among them.
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