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ABSTRACT
An intrinsic part of information extraction is the creation and ma-
nipulation of relations extracted from text. In this paper, we de-
velop a foundational framework where the central construct is what
we call a spanner. A spanner maps an input string into relations
over the spans (intervals specified by bounding indices) of the string.
The focus of this paper is on the representation of spanners. Con-
ceptually, there are two kinds of such representations. Spanners
defined in a primitive representation extract relations directly from
the input string; those defined in an algebra apply algebraic op-
erations to the primitively represented spanners. This framework
is driven by SystemT, an IBM commercial product for text analy-
sis, where the primitive representation is that of regular expressions
with capture variables.

We define additional types of primitive spanner representations
by means of two kinds of automata that assign spans to variables.
We prove that the first kind has the same expressive power as reg-
ular expressions with capture variables; the second kind expresses
precisely the algebra of the regular spanners—the closure of the
first kind under standard relational operators. The core spanners
extend the regular ones by string-equality selection (an extension
used in SystemT). We give some fundamental results on the expres-
siveness of regular and core spanners. As an example, we prove that
regular spanners are closed under difference (and complement), but
core spanners are not. Finally, we establish connections with re-
lated notions in the literature.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design—Data models;
H.2.4 [Database Management]: Systems—Textual databases, Re-
lational databases, Rule-based databases; I.5.4 [Pattern Recogni-
tion]: Applications—Text processing; F.4.3 [Mathematical Logic
and Formal Languages]: Formal Languages—Algebraic language
theory, Classes defined by grammars or automata, Operations on
languages; [ [F]: .1.1]Computation by Abstract DevicesModels of
Computation[Automata, Relations between models]
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1. INTRODUCTION
Automatically extracting structured information from text is a

task that has been pursued for decades. As a discipline, Information
Extraction (IE) had its start with the DARPA Message Understand-
ing Conference in 1987 [27]. While early work in the area focused
largely on military applications, recent changes have made infor-
mation extraction increasingly important to an increasingly broad
audience. Trends such as the rise of social media have produced
huge amounts of text data, while analytics platforms like Hadoop
have at the same time made the analysis of this data more accessible
to a broad range of users. Since most analytics over text involves
the extraction of information items (at least as a first step), IE is
nowadays an important part of data analysis in the enterprise.

Broadly speaking, there are two main schools of thought on the
realization of IE: the statistical (machine-learning) methodology
and the rule-based approach. The first started with simple models
such as AutoSlog [41], CRYSTAL [42] and SRV [22], then pro-
gressed to approaches based on probabilistic graph models [32, 33,
36]. Within the rule-based approach, most of the solutions (e.g.,
GATE/JAPE [18]) build upon cascaded finite-state transducers [3].
Most systems in both categories were built for academic settings,
where most users are highly-trained computational linguists, where
workloads cover only a small number of very well-defined tasks
and data sets, and where extraction throughput is far less important
than the accuracy of results.

When IBM researchers, driven by the increasing importance of
text data in the enterprise, attempted to use these existing tools to
solve customers’ analytics problems, they encountered a number
of practical challenges. Users needed to have an intuitive under-
standing of machine learning or the ability to build and understand
complex and highly interdependent rules. Determining why an ex-
tractor produced a given incorrect result was extremely difficult,
which made impractical the reuse of extractors across different data
sets and applications. Moreover, high CPU and memory require-
ments made extractors cost-prohibitive in deployment over large-
scale data sets.

In 2005, researchers at the IBM Almaden Research Center began
the design and development of a new system, specifically geared for
practical information extraction in the enterprise. This effort led to
SystemT, a rule-based IE system with an SQL-like declarative lan-



guage named AQL (Annotation Query Language) [15, 31, 40]. The
declarative nature of AQL enables new kinds of tools for extractor
development [35], and a cost-based optimizer for performance [40].
In 2010, SystemT was released as a commercial IBM product.1 An
intensive study by Chiticariu et al. [15] shows the value of SystemT,
in particular the high extent to which it overcomes the difficulties
mentioned earlier.

Conceptually, AQL can be viewed as built upon two main oper-
ations that were supported already in the original research proto-
type of SystemT [40]. The first operation (expressed as “extract”
statements) is the extraction of relations from the underlying text
through simple mechanisms. The most commonly used of these
mechanisms is that of regular expressions with capture variables.
An important special case of that mechanism is the extraction of
dictionary (gazetteer) matches that are distinguished from general
regular expressions by their syntax and underlying implementation.
The second operation (expressed as “select” statements) is the ma-
nipulation of the relations (from the first operation) through alge-
braic operators. There are three types of algebraic operators: stan-
dard relational operators (e.g., union, projection, join), text-centric
operators (e.g., string equality and containment), and conflict res-
olution (mainly, resolving cases of overlapping spans when those
are undesired). In the actual (productized) AQL syntax, these op-
erators are expressed as clauses of a Select-From-Where flavor.2

In time, SystemT evolved to support additional facilities, like part-
of-speech tagging, shallow parsing of XML tags, sorting and addi-
tional aggregate functions.

In this paper, we embark on an investigation of the principles
underlying AQL. Our ultimate goal is to establish a formal model
that is robust enough to capture the principal capabilities of sys-
tems featuring AQL’s principles, and yet, that is abstract enough to
yield useful insights, and solutions with provable guarantees. To-
wards that, we develop here a framework that captures the core
functionality of SystemT, and establish some fundamental results
on expressiveness and on the relationship with existing literature.
We believe that this work will be the basis of further investigation
of tools for text analytics. We further believe that this work and
its followups will shed light on the interplay between the textual
and the relational querying models (in contrast to their traditional
separation as distinct steps). In the remainder of this section, we
give a more technical and detailed description of our framework
and results.

A span of a string s (where s represents the text) represents the
range of a substring of s, and is given by two indices that specify
where the range begins and ends within s. For example, if s is
ACM_PODS_2013, then the span [5, 9〉 refers to the part of s from
the fifth to the eighth symbols inclusive, spanning the substring
PODS. In this paper we introduce spanners, the central concept in
our framework. Intuitively, a spanner extracts from a string s a
relation over the spans of s. It is formally defined as follows. An
s-tuple is associated with a finite domain V of span variables, and
assigns a span of s to each variable in V . A span relation (over s)
is a set of s-tuples, all over the same domain V of span variables.
That set is naturally viewed as a relation, with the span variables
playing the roles of the attribute names and the spans themselves
used as attribute values. A spanner is a function that maps each
string s into a span relation over s.

For illustration, consider Figure 1, that is used for our running
example in this paper. The figure shows two strings s and t, and

1SystemT is included in IBM InfoSphere BigInsights.
http://www.ibm.com/software/data/infosphere/biginsights/.
2See http://publib.boulder.ibm.com/infocenter/bigins/v2r0/ for the
complete reference of the AQL syntax.

considers two spanners P1 and P2. The tables in the figure show
the four span relations obtained by applying P1 and P2 to s and t.
For instance, the top row in the table of P1(s) shows the s-tuple
that assigns the spans [1, 4〉, [5, 8〉 and [1, 8〉 to the variables x, y
and z, respectively.

This paper focuses on the representation of spanners. Conceptu-
ally, we distinguish between two types of spanner representations.
The first type is that of a primitive representation, which is a mech-
anism that extracts the relation directly from the input string s. An
example is a regular expression with span variables embedded as
capture variables, as in AQL; here, we call such an expression a
regex formula. The second type of a spanner representation is that
of an algebra, which is the closure of primitive representations (of
some specific class) under some algebraic operators.

Aside from regex formulas, we define two additional primitive
spanner representations that are based on two corresponding types
of automata. An automaton of each type is an ordinary nondeter-
ministic finite automaton (NFA), except that it is associated with
a finite set V of variables, and along a run on a string it can de-
cide to open (i.e., begin the assigned span for) or close (i.e., end
the assigned span for) a variable. In an accepting run, each variable
in V must be opened and closed exactly once. The difference be-
tween the two types is in the data structures that maintain the vari-
ables. In a variable-stack automaton (vstk-automaton for short),
that data structure is a stack, and hence, the closed variable is al-
ways the most recently opened one. In a variable-set automaton
(vset-automaton for short), that data structure is a set, and the au-
tomaton specifies the specific (previously opened) variable to close.

We begin by showing that regex formulas, vstk-automata and
vset-automata are tightly related to each other. In particular, regex
formulas and vstk-automata have the same expressive power. The
vset-automata can express spanners that are not expressible by vstk-
automata, since a spanner representable by the latter is necessarily
hierarchical—the spans of every output s-tuple are nested like bal-
anced parentheses. We prove that the spanners expressible by regex
formulas are precisely the hierarchical spanners representable by
vset-automata. Moreover, we prove that the expressive power of
vset-automata is precisely that of the algebra that closes regex for-
mulas under union, projection and natural join on spans. Finally,
we prove that these algebraic operators do not increase the expres-
sive power of vset-automata. We call the spanners expressible by
vset-automata regular spanners. The name arises from the fact that,
in the Boolean case, the languages recognizable by vset-automata
are the regular ones.

An algebraic operator of AQL that was not mentioned in the
previous paragraph is string-equality selection, which selects the
s-tuples such that the spans for two specified variables x and y
correspond to equal substrings of s (although x and y need not be
the same span). The core spanners, which we view as capturing the
core of AQL, are the ones expressible by regex formulas along with
the operators union, projection, natural join on spans, and string-
equality selection. In this language, one can also simulate selection
operators for other common string relationships such as contain-
ment, prefix and suffix. Standard inexpressiveness results for regu-
lar expressions easily imply that core spanners are more expressive
than regular spanners. We prove a key lemma for core spanners, the
“core-simplification lemma,” which states that every core spanner
can be represented as a single vset-automaton, followed by string
selections and then by a projection. This lemma is a crucial ingre-
dient for our later proofs of inexpressiveness results.

Focusing on regular and core spanners, we also look at the abil-
ity to simulate selection operators based on string relations (rela-
tions whose entries are strings, not spans). More formally, for a



String s
A a a _ A b b _ a a _ B a a _ B b b _ b _ A b a a _ A b b

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

P1(s)

x y z

µ1 [1, 4〉 [5, 8〉 [1, 8〉
µ2 [12, 15〉 [16, 19〉 [12, 19〉
µ3 [22, 26〉 [27, 30〉 [22, 30〉

P2(s)

x1 x2

µ4 [1, 4〉 [22, 26〉

String t
A a a _ A b b _ A b b

1 2 3 4 5 6 7 8 9 10 11

P1(t)

x y z

µ5 [1, 4〉 [5, 8〉 [1, 8〉
µ6 [5, 8〉 [9, 12〉 [5, 12〉

P2(t)

x1 x2

µ7 [1, 4〉 [5, 8〉

Figure 1: Running example: strings s and t, and the string
relations obtained by applying two spanners P1 and P2

string relation R, the corresponding selection operator selects all
the s-tuples such that the substrings corresponding to a specified se-
quence of variables (of the same arity as R) is in R. We say that R
is selectable by a class of spanners (e.g., the regular or core) if that
class is closed under the selection operator for R. Like Barceló et
al. [5], we look at three classes of string relations: the recognizable
relations [8,20], which are contained in the regular relations [7,20],
which are contained in the rational relations [8, 39]. We show that
every recognizable relation is selectable by the core spanners. We
also show the existence of a regular (hence rational) relation that is
not selectable by the core spanners, and the existence of a relation
that is selectable by the core spanners but is not rational (hence not
regular). As for regular spanners, it turns out that their selectable
string relations are precisely the recognizable ones.

In Section 5 we investigate the incorporation of the difference op-
erator in our setting. We prove that core spanners are not closed un-
der difference. By analogy to the relational model, this may sound
straightforward because all the other operators are monotonic. But
this argument is invalid here, because regex formulas have the abil-
ity to simulate non-monotonic functionality. As evidence, it turns
out that regular spanners are closed under difference. Moreover, as
further evidence, some relations of a non-monotonic flavor are se-
lectable by the core spanners, like inequality, non-prefix and non-
suffix. In contrast, we prove with the core-simplification lemma
that non-substring is not selectable by the core spanners; with that,
non-closure under difference is a simple corollary.

Due to space limitations, this paper does not include proofs;
those will appear in the full version of this paper.

Related Work
There is a large body of work on designing query languages for
string databases (i.e., databases in which the atomic data values
are strings) [7, 9, 25, 26]. There are two important differences of
these works with ours. First and foremost, the atomic data val-
ues within relations in a string database are strings, whereas the
atomic data values within span relations are spans. This distinc-
tion is important because it yields a different semantics for natu-
ral join: in a string database two tuples will join if they contain
the same string in the shared attributes, whereas in span relations
two tuples will join if they contain the same span. As we show
in Section 5, it is exactly the capability of testing for equality on

strings that causes loss of closure under difference. A second im-
portant difference is that query languages for string databases not
only support pattern-matching for the purpose of extracting rele-
vant information from strings, but also support powerful operations
for the purpose of transforming strings. Typically, these transfor-
mation operations even make the query language Turing-complete
in the class of string-to-string functions that can be expressed. In
contrast, we focus on pattern matching that has low complexity.

A database query language that is closely related to regular span-
ners is the language of Conjunctive Regular Path Queries (CRPQs
for short) [10, 11, 16, 19, 21]. We analyze in depth the relationship
between CRPQs and our spanners in Section 6.

There is also a large body of work in extending finite state au-
tomata (or regular expressions) with mechanisms such as variables
or registers. For example, Grumbach et al. [28] study variable
automata. These are simple extensions to finite state automata
in which the finite alphabet consists not only of letters, but also
of variables that range over an infinite additional alphabet in or-
der to be able to accept strings formed over an infinite alphabet.
In contrast, the automata we consider accept only strings over a
finite alphabet, and assign to each variable a span. Neven and
Schwentick [38] study the expressive power of query automata
on strings and trees. These automata define mappings from input
strings or trees to sets (i.e., unary relations) of positions in the input.
Spanners, in contrast, define mappings from input strings to rela-
tions of arbitrary arity over the spans of the input. Barceló et al. [6]
study the extension of regular expressions with variables. In this
extension, a variable can be substituted for a single alphabet letter
only. In contrast, our variables bind to spans. A different extension
of regular expressions with variables is given by the so called ex-
tended regular expressions [1, 12, 14, 23, 24]. Here, variables can
not only bind to a substring during matching, but can also be used
to repeat a previously matched substring. We analyze in depth the
relationship between extended regular expressions and spanners in
Section 6.

Classic rule-based information extraction systems build upon the
Common Pattern Specification Language [3] (or CPSL for short),
where information extraction rules are specified based on cascaded
finite-state transducers. The idea behind these transducers is sim-
ilar to the notion of attribute grammars [29, 30]: rules are used to
parse (parts of) the input, and each rule can be assigned an action
defining the values of attributes to be associated to the matched part
of the input. (These attributes are considered to be the “extracted
information”.) While Neven and Van den Bussche [37] have in-
vestigated the expressive power of attribute grammars in querying
derivation trees generated by a fixed context-free grammar, we are
not aware of any formal investigation of the expressive power of the
cascaded finite-state string transducers employed by CPSL. This is
probably due to the fact that CPSL does not have a formal seman-
tics. Instead, it explicitly leaves important details to the discretion
of the implementation system designer. In addition, CPSL provides
many extensions to standard finite state transducers, most notably
a complex disambiguation policy and the ability to write rule ac-
tions in a Turing complete language through calls to arbitrary user-
defined functions. For these reasons, we do not directly compare
our framework against CPSL.

Finally, there is a body of research rooted in Allen’s seminal pa-
per on interval algebra [2]. In particular, while spans can be viewed
as intervals, and spanners can hence be viewed as defining relations
over intervals, Allen’s interval algebra focuses on reasoning over
relationships between intervals, but is not concerned with strings
or string matching.



2. SPANNERS
At its core, our focus system (SystemT) implements a textual

query language (AQL) that translates the input string into a col-
lection of relations; in turn, those relations are manipulated in a
relational-database manner [15]. The values in those relations are
spans of the input string. Here we model the creation of those rela-
tions by the notion of a spanner, which we formally define in this
section. In the following section we discuss the representation of
spanners, as well as extensions by relational operators. We begin
with some preliminary concepts and terminology.

2.1 String Basics

Strings and spans. We fix a finite alphabet Σ of symbols. We
denote by Σ∗ the set of all finite strings over Σ, and by Σ+ the set
of all finite strings of length at least one over Σ. A language over
Σ is a subset of Σ∗. Let s = σ1 · · ·σn ∈ Σ∗ be a string. The
length n of s is denoted by |s|. A span identifies a substring of s
by specifying its bounding indices. Formally, a span of s has the
form [i, j〉, where 1 ≤ i ≤ j ≤ n + 1. If [i, j〉 is a span of s,
then s[i,j〉 denotes the substring σi · · ·σj−1. Note that s[i,i〉 is the
empty string, and that s[1,n+1〉 is s. We note that the more standard
notation would be [i, j), but we use [i, j〉 to distinguish spans from
intervals. For example, [1, 1) and [2, 2) are both the empty interval,
hence equal, but in the case of spans we have [i, j〉 = [i′, j′〉 if and
only if i = i′ and j = j′ (and in particular, [1, 1〉 6= [2, 2〉). We
denote by Spans(s) the set of all the spans of s. Two spans [i, j〉
and [i′, j′〉 of s overlap if i ≤ i′ < j or i′ ≤ i < j′, and are disjoint
otherwise. Finally, [i, j〉 contains [i′, j′〉 if i ≤ i′ ≤ j′ ≤ j.

EXAMPLE 2.1. In a running example that we will use through-
out the paper, we fix the alphabet Σ = {A, a, B, b, _} where we
think of _ as representing a space between words. Figure 1 shows
two strings s and t in Σ∗. Later we discuss the tables in this fig-
ure. To clarify the meaning of the spans we mention, we write the
index under each character of the strings. The span [22, 26〉 is a
span of s (but not of t, since 22 > |t| + 1 = 12) and we have
s[22,26〉 = Abaa. Also, s[1,4〉 and t[1,4〉 are both Aaa.

Regular expressions. Regular expressions over Σ are defined by
the language

γ := ∅ | ε | σ | γ ∨ γ | γ · γ | γ∗

where ∅ is the empty set, ε is the empty string, and σ ∈ Σ. Note that
“∨” is the disjunction operator, “·” is the concatenation operator,
and “∗” is the Kleene-star operator. We use γ+ as an abbreviation
of γ · γ∗, and γ? as an abbreviation for γ ∨ ε. The language recog-
nized by a regular expression γ (i.e., the set of strings s ∈ Σ∗ that
γ matches) is denoted by L(γ). A language L over Σ is regular if
L = L(γ) for some regular expression γ.

String relations. An n-ary string relation is a (possibly infinite)
subset of (Σ∗)n. We will refer to the following well-known classes
of string relations: recognizable relations, regular relations (some-
times also called synchronized relations), and rational relations (see
Barceló et al. [5] for concise definitions of these classes, as well as
a discussion on the relationships between these classes). We denote
by REC the class of all recognizable string relations, and by RECk
the class of all recognizable relations of arity k. Similarly, we de-
note by REG (REGk) the class of all (k-ary) regular relations, and
by RAT (RATk) the class of all (k-ary) rational relations. It is
known that REC1 = REG1 = RAT1 (they all give the regular
languages), and that RECk ( REGk ( RATk for all k > 1.

Span relations. We fix an infinite set SVars of span variables,
which may be assigned spans. The sets Σ∗ and SVars are disjoint.
For a finite set V ⊆ SVars of variables and a string s ∈ Σ∗, a
(V, s)-tuple is a mapping µ : V → Spans(s) that assigns a span
of s to each variable in V . If V is clear from the context, or V
is irrelevant, we may write just “s-tuple” instead of “(V, s)-tuple.’
A set of (V, s)-tuples is called a (V, s)-relation. A (V, s)-relation
is also called a span relation (over s). Note that a span relation is
always finite, since there are only finitely many (V, s)-tuples (given
that V and s are both finite).

2.2 Spanners
A spanner is an operator that transforms a given string into a

span relation over that string. More formally, a spanner P is a
function that is associated with a finite set V of variables, and that
maps every string s to a (V, s)-relation P (s). We denote the set V
by SVars(P ). We say that a spanner P is n-ary if |SVars(P )| = n.

EXAMPLE 2.2. In our running example (started in Example 2.1)
we use two spanners: a ternary spanner P1 and a binary spanner
P2. Later we will specify what exactly each spanner extracts from
a given string. For now, the span relations (tables) in Figure 1 show
the results of applying the two spanners to the strings s and t (also
in the figure).

Following are some special types of spanners that we use through-
out this paper.

Boolean Spanners. A spanner P is Boolean if SVars(P ) = ∅. In
that case, P (s) = true denotes that P (s) consists of the empty s-
tuple, and P (s) = false denotes that P (s) = ∅. If P is Boolean,
then we say that P recognizes the language of strings that evaluate
to true.

Hierarchical spanners. Let P be a spanner. Let s ∈ Σ∗ be a
string, and let µ ∈ P (s) be an s-tuple. We say that µ is hierarchical
if for all variables x, y ∈ SVars(P ) one of the following holds: (1)
the span µ(x) contains µ(y), (2) the span µ(y) contains µ(x), or
(3) the spans µ(x) and µ(y) are disjoint. As an example, the reader
can verify that all the tuples in Figure 1 are hierarchical. We say that
P is hierarchical if µ is hierarchical for all s ∈ Σ∗ and µ ∈ P (s).
We denote by HS the class of all hierarchical spanners.

Universal spanners. Let P be a spanner. We say that P is total
on s if P (s) consists of all the s-tuples over SVars(P ). (Note that
over a finite set of variables, there are only finitely many s-tuples.)
We say that P is hierarchically total on s if P (s) consists of (ex-
actly) all the hierarchical s-tuples. Let Y ⊆ SVars be a finite set
of variables. The universal spanner over Y , denoted ΥY , is the
unique spanner P such that SVars(P ) = Y and P is total on ev-
ery s ∈ Σ∗. The universal hierarchical spanner over Y , denoted
ΥH
Y , is the unique spanner P such that SVars(P ) = Y and P is

hierarchically total on every s ∈ Σ∗.

3. SPANNER REPRESENTATION
In our system of focus (SystemT), querying an input string s en-

tails two steps (conceptually) [15]. In the first step, span relations
over s are extracted by standard string-oriented tools like regular
expressions with capture variables or dictionary matchers. In the
second step, the final result is obtained by applying algebraic oper-
ators to the relations of the first step. We model these two steps by
two corresponding types of representations for spanners. The first
type is that of primitive spanner representations. The second type
extends the first type by including operators of a relational algebra.



3.1 Primitive Spanner Representations
We introduce here three types of primitive spanner representa-

tions. The first is that of regular-expression formulas that extend
regular expressions by including variables. The second and third
are special automata that we call variable-stack and variable-set
automata.

3.1.1 Regex Formulas
A regular-expression formula, or regex formula for short, is a

regular expression with capture variables. The syntax of such for-
mulas is almost the same as that of regular expressions:

γ := ∅ | ε | σ | γ ∨ γ | γ · γ | γ∗ | x{γ} (1)

The added alternative is x{γ}, where x ∈ SVars. We denote by
SVars(γ) the set of variables that occur in γ. Before we formally
define the spanner represented by a regex formula, we give an ex-
ample.

EXAMPLE 3.1. We continue with our running example. Con-
sider the formula γ1 that is defined by

(Σ∗ · _)∗ · z
{
x{γ1stCap} · _ · y{γ1stCap}

}
· (_ · Σ∗)∗ (2)

where γ1stCap is the regular expression (A ∨ B) · (a ∨ b)∗. After we
define the spanner represented by a regex formula, it will turn out
that γ1 has the result of P1 in Figure 1 on the strings s and t. Note
that SVars(γ1) = {x, y, z}.

We now formally define the spanner that a regex formula rep-
resents. This definition is based on the notion of a parse tree. In
general, a tree is associated with an alphabet Λ of labels, and is re-
cursively defined as follows: if t1, . . . , tn are trees (where n ≥ 0)
and λ ∈ Λ, then λ(t1 · · · tn) is a tree.

Let Λ be the alphabet Σ ∪ SVars ∪ {ε,∨, ·, ∗}. Let γ be a regex
formula, and let s be a string. We use the following inductive defi-
nition. A tree t over the alphabet Λ is a γ-parse for s if one of the
following holds.
• γ = ε, s = ε, and t = ε().
• γ = σ ∈ Σ, s = σ, and t = σ().
• γ = γ1 ∨ γ2, and t = ∨(t′) where t′ is either a γ1-parse or

a γ2-parse for s.
• γ = γ1 · γ2, and t = ·(t1t2) where ti is a γi-parse for si

(i = 1, 2) for some strings s1 and s2 such that s = s1s2.
• γ = δ∗ and there are strings s1, . . . , sn such that s = s1 · · · sn,
t = ∗(t1 · · · tn), and each ti is a δ-parse for si (i = 1, . . . , n).
• γ = x{δ} and t = x(tδ) where tδ is δ-parse for s.

EXAMPLE 3.2. We continue with our running example. Fig-
ure 2(a) shows a γ1-parse for t for the regex formula γ1 of Exam-
ple 3.1 and the string t of Figure 1. As we did with Figure 1, we
write the index under each character.

Note that there is no parse tree for the regex formula ∅. Clearly, a
string s matches the regex formula γ, when variables are ignored, if
and only if there exists a γ-parse for s. In principle, a γ-parse t for
s should determine one assignment for SVars(γ), as we later de-
fine. But for that, we need t to have exactly one occurrence of each
variable in SVars(γ). So we restrict our regex formulas to those
that guarantee such a behavior of t, a property we call functional.

DEFINITION 3.3. A regex formula γ is functional if for every
string s ∈ Σ∗ and γ-parse t for s, each variable in SVars(γ) has
precisely one occurrence in t.
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Figure 2: (a) A γ1-parse for t for the regex formula γ1
of (2) (Example 3.1) and the string t of Figure 1 (b) A vstk-
automaton A with JAK = ΥH

Y (top) and a vset-automaton B
with JBK = ΥY (bottom) for Y = {y1, . . . , ym}

Note that a regex formula can be functional even though it con-
tains multiple occurrences of a variable. An example is the regex
formula γ given by x{a}∨x{b}, which has two occurrences of the
variable x, although each γ-parse has only one occurrence of x.

EXAMPLE 3.4. Consider again the regex formula γ1 of Exam-
ple 3.1. Recall that SVars(γ1) = {x, y, z}. Observe that in the
γ1-parse of Figure 2(a), each variable in SVars(γ1) has indeed ex-
actly one occurrence. In fact, it can be easily verified that this is the
case for every γ1-parse. Consequently, γ1 is functional.

Although Definition 3.3 is non-constructive, functionality is a
property that can be tested in polynomial time.

PROPOSITION 3.5. Whether a given formula γ is functional can
be tested in polynomial time.

In the remainder of this paper we implicitly assume that every
involved regex formula is functional.

Let γ be a regex formula, and let p be a γ-parse for a string s. If
v is a node of p, then the subtree that is rooted at v naturally maps
to a span pv of s. By µp we denote the assignment that maps each
variable x to the span µp(x) = pv , where v is the unique node of t
that is labeled by x. Note that v indeed exists, and is indeed unique,
since we assume that γ is functional.

EXAMPLE 3.6. Let p be the γ1-parse of t depicted in Figure 2(a),
where γ1 is defined in Example 3.1 and t is shown in Figure 1. The
subtree of p rooted at the node labeled x is shaded grey. We have
µp(x) = [1, 4〉, µp(y) = [5, 8〉, and µp(z) = [1, 8〉. Hence, µp is
the t-tuple µ5 of Figure 1.

The spanner JγK that is represented by the regex formula γ is the
one where SVars(JγK) is the set SVars(γ), and where JγK(s) is the
span relation {µp | p is a γ-parse for s}.

EXAMPLE 3.7. Consider again the regex formula γ1 of Exam-
ple 3.1, the strings s and t of Figure 1, and the spanner P1 men-
tioned in that figure. The reader can verify that Jγ1K(s) = P1(s)
and that Jγ1K(t) = P1(t).
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Figure 3: A vstk-automaton A with JAK = Jγ1K for the regex
formula γ1 of (2) (Example 3.1)

3.1.2 Variable-Stack Automata
In this section, we define an automaton representation of a span-

ner. We call this automaton a variable-stack automaton, or just
vstk-automaton for short. Later we will show that vstk-automata
capture precisely the expressive power of regex formulas (that is,
the two classes of spanner representation can express the same set
of spanners).

Formally, a vstk-automaton is a tuple (Q, q0, qf , δ), where: Q is
a finite set of states, q0 ∈ Q is an initial state, qf ∈ Q is an accept-
ing state, and δ is a finite transition relation consisting of triples,
each having one of the forms (q, σ, q′), (q, ε, q′), (q, x`, q′) or
(q,a, q′), where q, q′ ∈ Q, σ ∈ Σ, x ∈ SVars, and a is a special
pop symbol.

EXAMPLE 3.8. Figure 3 is a representation of a vstk-automaton
A. Each circle represents a state, the double circle represents an ac-
ceping state, and a label a on an edge from q to q′ represents the
transition (q, a, q′). Conventionally, as a shorthand notation we
write the sequence a1, . . . , ak of labels on the edge from q to q′ in-
stead of the k edges (q, a1, q

′), . . . , (q, ak, q
′). Moreover, if Σ =

{σ1, . . . , σm} then we write the label Σ instead of σ1, . . . , σm.
Later we will link the vstk-automaton A to our running exam-
ple.

Let A be a vstk-automaton. We denote by SVars(A) the set of
variables that occur in the transitions of A. A configuration of a
vstk-automaton A is a tuple c = (q, ~v, Y, i), where q ∈ Q is the
current state, ~v is a finite sequence of variables called the current
variable stack, Y ⊆ SVars(A) is the set of available variables,
and i is an index in {1, . . . , n + 1} (pointing to the next character
to be read from s).

Let s = σ1 · · ·σn be a string and let A be a vstk-automaton.
A run ρ of A on s is a sequence c0, . . . , cm of configurations,
such that c0 = (q0, ε, SVars(A), 1), and for all j = 0, . . . ,m − 1
one of the following holds for cj = (qj , ~vj , Yj , ij) and cj+1 =
(qj+1, ~vj+1, Yj+1, ij+1):

1. ~vj+1 = ~vj , Yj+1 = Yj , and either (a) ij+1 = ij + 1 and
(qj , sij , qj+1) ∈ δ (ordinary transition), or (b) ij+1 = ij
and (qj , ε, qj+1) ∈ δ (epsilon transition).

2. ij+1 = ij , and for some x ∈ SVars(A), either (a) ~vj+1 =
~vj · x, x ∈ Yj , Yj+1 = Yj \ {x} and (qj , x`, qj+1) ∈ δ
(variable push), or (b) ~vj = ~vj+1 · x, Yj+1 = Yj and (qj ,a
, qj+1) ∈ δ (variable pop).

An easy observation is that every configuration (q, ~v, Y, i) in a run
is such that ~v and Y do not share any common variable.

The run ρ = c0, . . . , cm is accepting if cm = (qf , ε, ∅, n + 1).
We let ARuns(A, s) denote the set of all accepting runs of A on s.

If ρ ∈ ARuns(A, s), then for each x ∈ SVars(A) the run ρ has
a unique configuration cb = (qb, ~vb, Yb, ib) where x occurs in the
current version of ~v (i.e., ~vb) for the first time; and later than that ρ
has a unique configuration ce = (qe, ~ve, Ye, ie) where x is occurs
in the current version of ~v (i.e., ~ve) for the last time; the span [ib, ie〉
is denoted by ρ(x). By µρ we denote the s-tuple that maps each
variable x ∈ SVars(A) to the span ρ(x). The spanner JAK that is
represented byA is the one where SVars(JAK) is the set SVars(A),
and where JAK(s) is the span relation {µρ | ρ ∈ ARuns(A, s)}.

EXAMPLE 3.9. Consider the vstk-automatonA of Figure 3, de-
scribed in Example 3.8. Observe that SVars(A) = {x, y, z}. Note
that in a run ρ, when reaching the final transition (q,a, q′) (the left-
most occurrence of a in the bottom row), there is only one variable
that is open, namely z. Hence, that transition can take place at most
once. Moreover, if ρ is accepting then ρ must take that transition
exactly once, since otherwise z would not be closed.

Continuing with our running example, now consider again the
regex-formula γ1 of (2), introduced in Example 3.1. The reader
can verify that A and γ1 define the same spanner, that is, Jγ1K =
JAK.

EXAMPLE 3.10. The top part of Figure 2(b) depicts a single-
state vstk-automaton A where we have SVars(A) = Y , with Y =
{y1, . . . , ym}. The reader can verify that JAK is the universal hier-
archical spanner ΥH

Y . In particular, this example shows that the uni-
versal hierarchical spanners are expressible by vstk-automata.

3.1.3 Variable-Set Automata
A variable-set automaton (or vset-automaton) is defined to be a

tuple (Q, q0, qf , δ) like a vstk-automaton, except δ does not have
triples (q,a, q′); instead, δ has triples (q,ax, q′) where x ∈ SVars.
We denote by SVars(A) the set of variables that occur in the tran-
sitions of A.

The difference between the two types of automata is also in the
definition of a configuration and a run. In a vset-automaton, a set of
variables is used rather than a stack. More precisely, a configuration
of a vset-automaton A is a tuple c = (q, V, Y, i), where q ∈ Q is
the current state, V ⊆ SVars(A) is the active variable set, Y ⊆
SVars(A) is the set of available variables, and i is an index in
{1, . . . , n+ 1}.

For a string s = s1, . . . , sn, a run ρ of A on s is a sequence
c0, . . . , cm of configurations, where c0 = (q0, ∅, SVars(A), 1),
and for j = 0, . . . ,m − 1 one of the following holds for cj =
(qj , Vj , Yj , ij) and cj+1 = (qj+1, Vj+1, Yj+1, ij+1):

1. Vj+1 = Vj , Yj+1 = Yj , and either (a) ij+1 = ij + 1 and
(qj , sij , qj+1) ∈ δ (ordinary transition), or (b) ij+1 = ij
and (qj , ε, qj+1) ∈ δ (epsilon transition).

2. ij+1 = ij and for some x ∈ SVars(A), either (a) x ∈ Yj ,
Vj+1 = Vj∪{x}, Yj+1 = Yj \{x}, and (qj , x`, qj+1) ∈ δ,
(variable insert), or (b) x ∈ Vj , Vj+1 = Vj \{x}, Yj+1 = Yj
and (qj ,ax, qj+1) ∈ δ (variable remove).

Note that in a run, each configuration (q, V, Y, i) is such that V
and Y are disjoint. The run ρ = c0, . . . , cm is accepting if cm =
(qf , ∅, ∅, n+ 1). The definitions of ARuns(A, s) and JAK are sim-
ilar to those for a vstk-automaton (except that we replace the stack
~v with the set V ).

EXAMPLE 3.11. Consider again Figure 2(b). The bottom part
depicts a single-state vset-automatonB with SVars(B) = Y , where
Y = {y1, . . . , ym}. The reader can verify that JBK = ΥY . In par-
ticular, this example shows that the universal spanners are express-
ible by vset-automata. This example also shows that vset-automata



can express spanners that regex formulas and vstk-automata can-
not. In particular, an easy observation is that the spanner defined
by a regex formula, or a vstk-automaton, is necessarily hierarchical.
But JBK is certainly not hierarchical.

3.1.4 Primitive Spanner Representations
We have defined three types of spanner representations. By RGX

we denote the class of (functional) regex formulas, by VAstk we de-
note the class of vstk-automata, and by VAset we denote the class of
vset-automata. We will refer to these three as our primitive span-
ner representations (to contrast with algebraic extensions of these
representations).

If SR is any class spanner representations, like the primitive
classes RGX, VAstk or VAset, then JSRK represents the set of all the
spanners representable by SR; that is, JSRK = {JrK | r ∈ SR}.
For example, JRGXK is the set of all the spanners JγK, where γ is a
regex formula.

As mentioned in Example 3.11, every spanner defined by a regex
formula or vstk-automaton is hierarchical. In our terminology it is
stated as JRGXK ⊆ HS and JVAstkK ⊆ HS. In Example 3.11
we also mentioned that JVAsetK 6⊆ HS. Later, we will show that
JRGXK = JVAstkK. In fact, we will show that the class of span-
ners definable by a vstk-automaton is precisely the class of hierar-
chical spanners definable by a vset-automaton, or in our notation,
JVAstkK = JVAsetK ∩HS.

3.2 Spanner Algebras
Consider a class SR of spanner representations (e.g., one of our

primitive representations). We extend SR with algebraic operator
symbols to form a spanner algebra. More formally, each operator
symbol corresponds to a spanner operator, which is a function that
takes as input a fixed-length sequence of spanners (usually one or
two, depending on whether the operator is unary or binary), and
outputs a single spanner. We now define the spanner operators we
focus on in this paper. Let P , P1 and P2 be spanners, and let s be
a string.

• Union. The union P1 ∪ P2 is defined when P1 and P2 are
union compatible, that is, SVars(P1) = SVars(P2). In that
case, SVars(P1 ∪ P2) = SVars(P1) and (P1 ∪ P2)(s) =
P1(s) ∪ P2(s).

• Projection. If Y ⊆ SVars(P ), then πY P is the spanner
with SVars(πY P ) = Y , where πY P (s) is obtained from
P (s) by restricting the domain of each s-tuple to Y .

• Natural join. The spanner P1 1 P2 is defined as follows.
We have SVars(P1 1 P2) = SVars(P1) ∪ SVars(P2), and
(P1 1 P2)(s) consists of all s-tuples µ that agree with some
µ1 ∈ P1(s) and µ2 ∈ P2(s); note that the existence of µ
implies that µ1 and µ2 agree on the common variables of P1

and P2, that is, µ1(x) = µ2(x) for all x ∈ SVars(P1) ∩
SVars(P2).

• String selection. Let R be a k-ary string relation. The
string-selection operator ςR is parameterized by k variables
x1, . . . , xk in SVars(P ), and may then be written as ςRx1,...,xk .
If P ′ is ςRx1,...,xk P , then the span relation P ′(s) is taken
to be the restriction of P (s) to those s-tuples µ such that
(sµ(x1), . . . , sµ(xk)) ∈ R.

Regarding the natural join, observe that here pairs of tuples are
joined based on having equal spans in shared variables. This is dis-
tinct from the natural join in query languages for string databases [7,

9, 25, 26], where tuples are joined if they have the equal substrings
in shared attributes. Also observe that in the special case where
P1 and P2 are union compatible, the spanner P1 1P2 produces the
intersection P1(s)∩P2(s) for the given string s; in that case, we de-
note P11P2 also as P1∩P2. As another special case, if SVars(P1)
and SVars(P2) are disjoint, then P1 1 P2 produces the Cartesian
product of P1(s) and P2(s); in that case, we denote P1 1 P2 also
as P1 × P2.

In this work we focus mainly on one particular string-selection
operator, namely the binary ς=. As defined above, ς=x,y P (s) re-
stricts P (s) to those s-tuples µ with sµ(x) = sµ(y). Later, we also
consider other string selections (featuring other binary string rela-
tions). We do not include the difference operator yet, but rather
dedicate to it a separate discussion in Section 5.

For clarity of presentation, we will abuse notation by using the
operator symbol itself to represent the spanner operator. As an ex-
ample, if γ1 and γ2 are regex formulas, then the expression γ11γ2
is well formed, and it represents the spanner Jγ1K 1 Jγ2K. Simi-
larly, if A1 and A2 are vstk-automata then A1 ∪A2 is well formed
assuming union compatibility, that is, SVars(A1) = SVars(A2).
Similarly, ifA is a vset-automaton then πYA is well formed assum-
ing Y ⊆ SVars(A), and similarly ς=x,y A is well formed assuming
x, y ∈ SVars(A).

EXAMPLE 3.12. We continue with our running example. Let
γ12 be the regex formula that captures all spans x1 and x2 such
that x1 ends before x2 begins; that is:

γ12(x1, x2)
def
= Σ∗ · x1{Σ∗} · Σ∗ · x2{Σ∗} · Σ∗

The following algebraic expression is denoted as γ2.

πx1,x2

(
ς=y1,y2

(
γ1(x1, y1, z1)1

γ1(x2, y2, z2) 1 γ12(x1, x2)
))
,

where we use γ1(xi, yi, zi) as the regex-formula that is obtained
from γ1 of (2) (Example 3.1) by replacing x, y and z with xi, yi
and zi, respectively. Observe that γ2 selects all the spans x1 and
x2 that occur in tuples of γ1, such that the corresponding y1 and
y2 span the same substrings (though y1 and y2 themselves are not
required to be equal as spans), and moreover, x1 ends before x2
begins. Consider the strings s and t in Figure 1. The reader can
verify that Jγ2K has the output of P2 (also shown in the figure) for
these two strings.

A spanner algebra is a finite set of spanner operators. If SR is
a class of spanner representations and O is a spanner algebra, then
SRO denotes the class of all the spanner representations defined by
applying (compositions of) the operators inO to the representations
in SR. In other words, SO is the closure of SR under O (when O
is taken as a set of operator symbols); consequently, JSROK is the
closure of JSRK under O (when O is now taken as a set of span-
ner operators). For example, one of the algebras we later explore
is VA

{∪,π,1,ς=}
set . As another example, the expression γ2 of Exam-

ple 3.12 is in RGX{π,1,ς
=}.

4. REGULAR AND CORE SPANNERS
In this section we define the classes of regular and core spanners,

and study their relative expressive power.

4.1 Regular Spanners
We call a spanner hierarchical regular if it is definable by a vstk-

automaton. We call a spanner regular if it is definable by a vset-



automaton. In this section, we explore expressiveness aspects of
hierarchical regular and regular spanners.

Observe that vstk-automata, vset-automata and NFAs are basi-
cally the same objects in the Boolean case. In particular, a language
L ⊆ Σ∗ is recognized by some Boolean hierarchical regular span-
ner if and only if L is recognized by some Boolean regular spanner
if and only if L is regular. Hence, the results of this section are of
interest only in the non-Boolean case.

Key constructs that we later utilize for establishing our results
here are those of a transition graph and the special case of a path
union, both introduced in the next section.

4.1.1 Transition Graphs and Path Unions
We define two types of transition graphs, which function simi-

larly to vstk-automata and vset-automata, respectively, except that
in a single transition a whole substring (matching a specified regu-
lar expression) can be read, and moreover, every transition to a non-
accepting state involves a single operation of opening or closing a
variable. Those graphs are similar to the extended automata ob-
tained by the known state-removal technique, that is used to convert
an automaton into a regular expression [34]. Recall that throughout
this paper we fix the alphabet Σ for the input string language.

A variable-stack transition graph, or vstk-graph for short, is a
tuple G = (Q, q0, qf , δ) defined similarly to a vstk-automaton, ex-
cept that now δ consists of edges of three forms: (q, γ, x`, q′),
(q, γ,a, q′) and (q, γ, qf ); here, q, q′ ∈ Q, γ is a regular expres-
sion over Σ, and x ∈ SVars. We require the accepting state qf to
have only incoming transitions. As usual, SVars(G) denotes the
set of variables that occur in G. A configuration c = (q, ~v, Y, i) is
defined exactly as in the case of a vstk-automaton, but the definition
of a run changes: a run ρ ofG on a string s is a sequence c0, . . . , cm
of configurations, such that for all j = 0, . . . ,m − 1, the configu-
rations cj = (qj , ~vj , Yj , ij) and cj+1 = (qj+1, ~vj+1, Yj+1, ij+1)
satisfy the following. First, ij ≤ ij+1. Second, δ contains a tuple
(q, γ, x`, q′) or a tuple (q, γ,a, q′), such that q = qj , the string
s[ij ,ij+1〉 is in L(γ), and q′ = qj+1; moreover, in the case of x`
we have x ∈ Yj , ~vj+1 = ~vj · x and Yj+1 = Yj \ {x}; and in the
case of a we have ~vj = ~vj+1 · x and Yj+1 = Yj . The definition
of an accepting configuration is similar to that for vstk-automata.
Moreover, the definitions of ARuns(G, s) and JGK are similar to
those of ARuns(A, s) and JAK in the case of a vstk-automaton A.

A vstk-graphG = (Q, q0, qf , δ) is a vstk-path if we can writeQ
as {q0, q1, . . . , qk = qf} where δ contains exactly k edges: from
q0 to q1, from q1 to q2, and so on, until qk. A vstk-path is consistent
if the variables open and close in a balanced manner (which we de-
fine in the natural way like grammatical parentheses). We say that
G is a vstk-path union if G is the union of consistent vstk-paths,
such that: (1) every two vstk-paths have the same set of variables,
namely SVars(G), and (2) every two vstk-paths share precisely the
states q0 and qf , as illustrated in Figure 4 (where we omit the open-
ing and closing of variables).

Similarly to the vstk case, we define a vset-graph to be a varia-
tion of a vset-automaton. In particular, ARuns(G, s) and JGK are
now defined when G is a vset-graph. Also similarly we define a
vset-path, a consistent vset-path (where parenthetical balance is not
required, but every variable needs to be opened and later closed ex-
actly once), and a vset-path union.

We use PUstk and PUset to denote the class of vstk-path unions
and the class of vset-path unions, respectively.

4.1.2 Relative Expressive Power
We can now give some results on the (relative) expressive power

of the regular spanners. A key lemma is the following.

γ2
k−1

...

γ1
1 . . .

. . .

γ1
k−1 γ1

k

γlk

γ2
1 . . . γ2

k

γl1

...

γ2
2

...
γl2 γlk−1

...

γ1
2

q0 qf

Figure 4: An illustration of a vstk-path union or a vset-path
union

LEMMA 4.1. The following hold.

1. Every hierarchical regular spanner is definable by a vstk-
path union and vice versa; that is, JVAstkK = JPUstkK.

2. Every regular spanner is definable by a vset-path union and
vice versa; that is, JVAsetK = JPUsetK.

In the proof of Lemma 4.1, translating a vstk-path union into
a vstk-automaton (resp., a vset-path union into a vset-automaton)
is fairly straightforward. The translation of a vstk-automaton to
a vstk-path union entails two main steps. (And similar steps are
taken in the vset case.) First, the vstk-automaton is converted into
a vstk-graph by an adaptation of the well known state-removal pro-
cedure [34] for translating an automaton into a regular expression.
Second, the vstk-graph is converted into a vstk-path union through
the observation that only a finite number of paths in the vstk-graph
are of relevance.

Our first theorem states that the spanners definable by regex for-
mulas are precisely the hierarchical regular ones.

THEOREM 4.2. A spanner is hierarchical regular if and only if
it is definable by a regex formula; that is, JVAstkK = JRGXK.

The proof is as follows. We convert a regex formula into a
vstk-automaton by an adaptation of the standard construction by
Thompson (see, e.g., [34]), namely, incremental construction of an
automaton from a regular expression through a bottom-up traver-
sal of the parse of a regular expression. The other direction is an
immediate consequence of Lemma 4.1, since the conversion of a
vstk-path union into a regex formula is straightforward.

The next theorem states that the hierarchical regular spanners are
precisely the spanners that are both regular and hierarchical. Again,
the proof uses Lemma 4.1.

THEOREM 4.3. A spanner is hierarchical regular if and only if
it is both regular and hierarchical; that is, JVAstkK = JVAsetK∩HS.

The following theorem states that the union, projection and natural-
join operators do not increase the expressive power of vset-automata.

THEOREM 4.4. The class of regular spanners is closed under
union, projection and natural join; that is, JVA

{∪,π,1}
set K = JVAsetK.

Our proof of Theorem 4.4 is by separately considering each of
the operators union, projection, and natural join, and showing clo-
sure of VAset thereunder. While the first two closures are easy
to prove, showing closure under natural join involves subtleties.
The expected approach is similar to intersecting two NFAs: a vset-
automaton for A1 1 A2 runs on A1 and A2 in parallel; when a
variable x is common to both automata, the two parallel runs must
open and close x together (as x must be the same span in both
runs in taking the join). This approach, however, fails, for a sub-
tle reason. As an example, A1 and A2 of Figure 5 are such that



JA1K = JA2K = JA1 1 A2K. However, our construction for A1

and A2 will result in the empty spanner, since A1 requires x to
open before y (with an epsilon transition in between), and A2 re-
quires x to open after y. We solve this problem by converting A1

and A2 into a normalized form where common tuples necessarily
correspond to “similar” runs (and again we are using Lemma 4.1
for that).

Finally, the next theorem implies that to express all regular span-
ners, it suffices to enrich the vstk-automata with union, projection
and join. Our proof shows how to simulate a given vset-automaton
by composing vstk-automata using the three operators.

THEOREM 4.5. JVA
{∪,π,1}
stk K = JVA

{∪,π,1}
set K = JVAsetK.

4.1.3 Simulation of String Relations
Let R be a k-ary string relation, and let C be a class of span-

ners. We say that R is selectable by C if for every spanner P ∈ C
and sequence ~x = x1, . . . , xk of variables in SVars(P ), the span-
ner ςR~x P is also in C. Let ~x = x1, . . . , xk be a sequence of span
variables, and let X = {x1, . . . , xk}. The R-restricted universal
spanner over ~x, denoted ΥR

~x , is the spanner ςR~x ΥX . (Recall that
ΥX is the universal spanner over X .) The following (straightfor-
ward) proposition states that under some assumptions (that hold in
all the spanner classes of our interest), selectability of R is equiva-
lent to the ability to define the R-restricted universal spanners. We
will later use this proposition as a tool to decide whether or not a
relation R is selectable by a class of spanners at hand.

PROPOSITION 4.6. Let R be a string relation, and let C be a
class of spanners. Assume that C contains all the universal span-
ners, and that C is closed under natural join. R is selectable by C
if and only if ΥR

~x ∈ C for all ~x ∈ SVarsk.

Let RECk be as defined in Section 2.1. It is well known (see [8,
20]) that a k-ary string relation R is in RECk if and only if it is a
finite union of Cartesian products L1 × · · · × Lk, where each Li
is a regular language over Σ. That, combined with Proposition 4.6,
easily implies that every recognizable relation is selectable by the
regular spanners. Interestingly, the other direction is also true.

THEOREM 4.7. A string relation is selectable by the regular
spanners if and only if it is recognizable. That is, REC is precisely
the class of string relations selectable by JVAsetK.

4.2 Core Spanners
As the core of AQL we identify the algebra RGX{∪,π,1,ς

=}.
Henceforth, we call a spanner in JRGX{∪,π,1,ς

=}K a core span-
ner. A consequence of Theorems 4.2 and 4.5 is that the algebra
RGX{∪,π,1,ς

=} has the same expressive power as VA
{∪,π,1,ς=}
stk

and VA
{∪,π,1,ς=}
set . Therefore, the core spanners are obtained from

the regular spanners by extending the algebra with the selection
operator ς=.

x` y ` ax a y

y ` x`

A1

A2

Σ Σ

ax

Σ

Σ Σ

a y

Σ

Figure 5: Two vset-automata with equal spanners

The following lemma is a key tool for reasoning about the ex-
pressiveness of core spanners. This lemma, which we call the core-
simplification lemma, states that every core spanner can be defined
by a very simple expression: a single vset-automaton, on top of
which we apply string-equality selections, and finally a single pro-
jection. The proofs of the inexpressibility results we later give for
core spanners are inherently based on this result.

LEMMA 4.8 (CORE-SIMPLIFICATION LEMMA). Every core
spanner is definable by an expression of the form πV SA, where
A is a vset-automaton, V ⊆ SVars(A), and S is a sequence of
selections ς=x,y for x, y ∈ SVars(A).

Next, we discuss selectable relations. Observe that string equal-
ity, which is obviously selectable by the core spanners, is not se-
lectable by the regular spanners, because string equality is not in
REC (and because of Theorem 4.7). Another way of seeing that
is as follows: if string equality were selectable by the regular span-
ners, then a Boolean regular spanner (which can be represented as
an NFA) could recognize the non-regular language {s ·s | s ∈ Σ∗}
by π∅ ς=x,y(x{Σ∗} · y{Σ∗}).

Let s and t be two strings. By s v t we denote that s is a (con-
secutive) substring of t (i.e, s is equal to some t[i,j〉). By s vprf t
we denote that s is a prefix of t (i.e, s is equal to some t[1,j〉). By
s vsfx t we denote that s is a suffix of t (i.e, s is equal to some
t[i,|t|+1〉).

Next, we will use Proposition 4.6 to show that the binary sub-
string relation v is selectable by the core spanners. Due to Propo-
sition 4.6, it suffices to show that the spanner Υvx,y is definable in
JRGX{∪,π,1,ς

=}K. Let γ(x′, y) be the spanner that captures the
property that x′ is a sub-span of y. We can define γ(x′, y) by
Σ∗ · y{Σ∗ · x′{Σ∗} · Σ∗} · Σ∗. Then Υvx,y is defined by

π{x,y} ς
=
x,x′

(
Υ{x,x′,y} 1 γ(x′, y)

)
.

Similar constructions show that the relations vprf and vsfx are also
selectable by the core spanners. We record this as a proposition,
for later use. We also include in the proposition the fact that every
relation in REC is also selectable by the core spanners; the proof
is by the same argument that precedes Theorem 4.7.

PROPOSITION 4.9. Every string relation in REC, as well as
each of the string relations v, vprf and vsfx, is selectable by the
core spanners.

The next theorem shows that the classes of regular and rational
relations are incomparable with the class of relations selectable by
the core spanners.

THEOREM 4.10. There is a string relation that is selectable by
the core spanners but is non-rational (and hence nonregular), and
there is a regular (and hence rational) relation that is not selectable
by the core spanners.

The existence of a regular relation that is not selectable by the
core spanners is due to the following theorem.

THEOREM 4.11. Assume that the alphabet Σ contains at least
two symbols. The string relation {(s, t) | |s| = |t|} is not se-
lectable by the core spanners.

Theorem 4.11 is a fairly direct consequence of the following the-
orem.

THEOREM 4.12. The language {0m1m | m ∈ N} is not rec-
ognizable by any Boolean core spanner.



5. DIFFERENCE
In this section, we discuss the difference operator. Let P1 and

P2 be spanners that are union compatible (that is, SVars(P1) =
SVars(P2)). The difference P1 \ P2 is defined as follows. First,
SVars(P1 \ P2) = SVars(P1). Second, if s is a string, then (P1 \
P2)(s) = P1(s) \ P2(s).

The result with the most involved proof in this section states that
core spanners are not closed under difference. Recall that the core
spanners are those spanners that are expressible in RGX{∪,π,1,ς

=}.
One may be tempted to think that non-closure of core spanners un-
der difference should be trivial to prove due to some monotonic-
ity properties, as in the case of ordinary relational algebra. But
this is not the case, because our algebra does not involve ordi-
nary relations, but rather spanners; and the primitive representation
of spanners (e.g., regex formulas or vset-automata) can simulate
non-monotonic behavior (e.g., regular expressions are closed under
complement). In fact, we later show that core spanners can simu-
late string relations of a non-monotonic flavor. Moreover, regular
(but not core) spanners are actually closed under difference.

THEOREM 5.1. Regular spanners are closed under difference;
that is, JVA

{\}
set K = JVAsetK.

In an attempt to prove that core spanners are not closed under
difference (or, equivalently, complement), we tried to prove that
the language {s#t | s 6= t}, where s and t are over the alphabet
{0, 1}, and # is a new symbol, is not recognizable by any Boolean
core spanner. After multiple failing attempts, we were surprised
to discover that our candidate language L is a wrong candidate,
since it actually is recognizable by a Boolean core spanner, for the
following reason.

PROPOSITION 5.2. The binary string relation 6= is selectable
by the core spanners.

We remark that a proof similar to that of Proposition 5.2 shows
that the string relations 6vprf and 6vsfx are also selectable by the core
spanners. Eventually, we were able to prove non-closure of the
core spanners under difference through the (complement of) the
substring relation.

THEOREM 5.3. Assume that the alphabet Σ contains at least
two symbols. The string relation 6v is not selectable by the core
spanners.

Building on the core-simplification lemma (Lemma 4.8) and on
Proposition 4.6, our proof of Theorem 5.3 obtains a contradiction
by assuming that an expressionE given by πV SA, as in Lemma 4.8,
is such that JEK = Υ6vx,y .

Recall from Proposition 4.9 that the string relationv is selectable
by the core spanners. Theorem 5.3, on the other hand, states that 6v
is not selectable by the core spanners. By combining these two we
get the following.

THEOREM 5.4. Assume that the alphabet Σ contains at least
two symbols. Core spanners are not closed under difference; that
is, JRGX{∪,π,1,ς

=}K ( JRGX{∪,π,1,ς
=,\}K.

Theorems 5.1 and 5.4 show an interesting contrast between reg-
ular and core spanners with respect to difference.

6. SPANNERS VS. OTHER FORMALISMS
We now discuss the relationship between (core and regular) span-

ners and two related formalisms in the literature.

6.1 Extended Regular Expressions
We first relate core spanners to extended regular expressions [1,

12, 14, 23] (xregex for short), which extend the classic regular ex-
pressions with backreferences (a.k.a. variable references) that spec-
ify repetitions of a previously matched substring. Their expres-
sive power goes strictly beyond the class of regular languages and,
due to their usefulness in practice, most modern regular expres-
sion matching engines actually support extended regular expres-
sions [24]. From a theoretical perspective, the extended regular
expressions were formalized by Aho [1], and investigated with re-
spect to the complexity of their membership problem [1], their ex-
pressiveness and closure properties [12–14], and their conciseness
and decidability [23], among other properties.

Syntactically, an xregex can be viewed as a regex formula, but
with two major differences. First, there is no restriction on the
number of bindings of a variable to a span. Second, in addition
to the variable-binding expressions x{γ} an xregex also allows
variable backreferences of the form &x. For example, if δ1 is
x{(0 ∨ 1)∗} ·&x, and δ2 is x{(0 ∨ 1)∗} ·&x · x{(0 ∨ 1)∗} ·&x,
then δ1 and δ2 are xregexes. An xregex is interpreted from left to
right as follows when parsing an input string s (cf., e.g., [12, 23]).
As before, a binding subexpression x{γ} matches a substring if γ
matches the substring, in which case x is bound to the correspond-
ing span. A backreference &x matches a substring s′ if s′ = s[i,j〉
with [i, j〉 the span previously bound to x. If x has been bound
multiple times, then the last binding prior to the backreference is
taken; and if x has not been bound before, &x matches the empty
string. As an example, the above xregex δ1 matches precisely the
strings ss with s ∈ {0, 1}∗, and δ2 matches precisely the strings
sss′s′ with s, s′ ∈ {0, 1}∗. Observe that neither of these languages
is regular.

The evaluation of an xregex over a string is not (naturally) mapped
to an s-tuple, since a variable can be assigned multiple spans. There-
fore, we restrict our discussion to the comparison of xregexes with
Boolean core spanners. An important part of the expressive power
of xregexes stems from the fact that both variable binders and back-
references can occur under the scope of a Kleene star (or plus). For
example, (x{(0 ∨ 1)∗} · &x)+ matches all strings s1s1 · · · snsn
with n ≥ 1 and every si ∈ {0, 1}∗. Moreover,

1+ · x{0∗} · (1+ ·&x)∗ · 1+

matches all strings s1ts2t · · · sn−1tsn, where t ∈ 0∗ and every
si is in 1+. In other words, it accepts the language of strings over
{0, 1}∗ that start and end with 1, and where all maximal chunks of
consecutive 0’s are of equal length. We refer to this language as the
uniform-0-chunk language. As the following theorem states, this
language is beyond the expressive power of core spanners.

THEOREM 6.1. The uniform-0-chunk language is recognizable
by an xregex but is not recognizable by any Boolean core spanner.

It is currently still open whether every language recognized by a
Boolean core spanner can also be recognized by an xregex. We do
note the following. Consider a core spanner represented by πY SA,
as in the core-simplification lemma (Lemma 4.8). If the variables of
the vset-automaton A cover disjoint spans, then it is easy to prove
that such a simulating xregex must exist. To illustrate, consider
the regex formula γ := x {γ1} · γ2 · y{γ3}, where x and y are
variables, and γ1, γ2, and γ3 are regular expressions. Then the
core spanner π∅ς=x,y(γ) is specified by the xregex x{δ} · γ2 · &x,
where δ is the regular expression that recognizes the intersection
of the regular expressions γ1 and γ3. The problem in finding an
xregex that corresponds to a Boolean core spanner arises when the
variables in the core spanner have overlapping spans.



6.2 CRPQs on Marked Paths
Regular expressions have been extensively used and studied in

database theory as a means to express reachability queries in semi-
structured and graph databases since the late 1980s. Arguably, the
simplest form of such queries are the regular path query (RPQ for
short) on directed graphs with labeled edges [16, 17]. RPQs search
for the existence of a path, such that the word formed by the edge
labels belongs to a specified regular language. A conjunctive regu-
lar path queries (CRPQ for short) applies conjunction and existen-
tial quantification (over nodes) to RPQs; this concept has been the
subject of much investigation [10, 11, 16, 19, 21].

Superficially speaking, spanners and CRPQs are inherently dif-
ferent concepts: spanners operate on strings while CRPQs oper-
ate on graphs (directed, edge-labeled graphs); and the variables in
the spanner world represent spans, while those in the CRPQ world
represent nodes. However, we can adjust CRPQs to represent span-
ners, as follows.

In terms of the data model, a string can be viewed as a special
case of a graph, namely a simple path. Formally, given a string
s = σ1 · · ·σn, we denote by p(s) the simple path 1→ 2→ · · · →
n+ 1 (with the natural numbers 1, . . . , n+ 1 as nodes), where for
i = 1, . . . , n the label of the edge i → i + 1 is σi. Now, the span
[i, j〉 of s can be naturally represented by the pair i, j of nodes from
p(s). A CRPQ Q is evaluated over p(s) by means of assignments
α from Q’s variables to the node set {1, . . . , n+ 1}. Restricted to
the simple paths p(s), casting a CRPQ as a spanner representation
entails the following.

• The node variables of a CRPQ are set to be of two kinds:
x`, where x ∈ SVars, represents the left border of a span,
and xa represents the right border of the span. Hence, a span
variable x is represented by [x`, xa〉.

• The valid assignments α are now required to be consistent:
α(x`) ≤ α(xa) for all relevant x ∈ SVars.

It is not difficult to see that in our adjustment so far, a CRPQ Q
can represent only spanners that are monotonic w.r.t. substrings: if
s v t, then the assignments for Q on p(s) are, up to needed re-
alignment, among the assignments for Q on p(t). The reason is
that CRPQs cannot recognize the endpoints of the input path. To
go beyond monotonic spanners, we need to make those endpoints
recognizable. Interestingly, it is not clear how to do so without sig-
nificantly complicating the model. The cleanest way we found is
to extend p(s) with the two loops 0 → 0 and (n+ 1) → (n+ 1),
labeled with new labels � and � (not in the alphabet Σ), respec-
tively. We call the resulting graph a marked path. As an example,
the marked path for s = Aba is the following.

1
�

2 3 4
�A b a

With this adjustment, we can show that every regular spanner
can be simulated by a union of CRPQs over marked paths. Quite
interestingly, we can also show the reverse direction: every union
of CRPQs over marked paths simulates some regular spanner. So
within our adjustment, unions of CRPQs over marked paths capture
precisely the regular spanners. A formal, detailed discussion will
appear in the extended version of this paper.

7. SUMMARY AND DISCUSSION
We introduced the concept of a spanner, and investigated three

primitive spanner representations: regex formulas, vstk-automata
and vset-automata. As we showed, the classes of regex formu-
las and vstk-automata have the same expressive power, and vset-
automata (defining the regular spanners) have the same expressive

power as the closure of regex formulas under the relational op-
erators union, natural join and projection. By adding the string-
equality operator, one gets the core spanners. We gave some ba-
sic results on core spanners, like the core-simplification lemma.
We discussed selectable string relations, and showed, among other
things, that REC is precisely the class of relations selectable by
the regular spanners. We showed that regular spanners are closed
under difference, but core spanners are not (which we proved us-
ing the core-simplification lemma). Finally, we discussed the con-
nection between core spanners and xregexes, and showed a tight
connection between regular spanners and CRPQs.

This work is our first step in embarking on the investigation of
spanners. Indeed, many aspects remain to be considered, and many
problems remain to be solved. One major aspect is that of complex-
ity. For example, what is the complexity of the translations among
spanner representations that were applied in this paper? What is
the (data and combined) complexity that query evaluation entails
in each representation? Regarding the difference operator, an in-
triguing question is whether we can find a simple form, in the spirit
of the core-simplification lemma, when adding difference to the
representation of core spanners (i.e., the class VA

{∪,π,1,ς=,\}
set ); as

illustrated here, such a result would be highly useful for reasoning
about the expressive power of that class. As another open problem,
we repeat the one we mentioned in Section 6: can extended regular
expressions express every Boolean core spanner? We conclude by
discussing the major issue of conflict resolvers.

Conflict Resolvers
Resolution of conflicting tuples has an important role in the practice
of rule-based information extraction [15]. As a simple example,
on the string John_Fitzgerald_Kennedy, one component of an
extraction program may identify the span of John_Fitzgerald as
that of a person name, another may do so for Fitzgerald_Kennedy,
and a third may do so for John_Fitzgerald_Kennedy. As only
one of these is the mentioning of a person name, a cleanup res-
olution filters out two of the three annotations. In CPSL [3], for
instance, this resolution takes place implicitly at every stage (cas-
cade). A significant differentiator of AQL is that it exposes conflict
resolution as an explicit relational operator, similarly to selection,
and moreover, supports multiple resolution semantics. Yet, this op-
erator is different from a standard selection, as it is not applied in a
tuple-by-tuple basis, but rather in an aggregate manner. In this sec-
tion, we discuss the semantics of such an operator, which we shall
investigate more deeply in a future paper.

How should a conflict resolver be defined? At the high level,
it is a unary spanner operator crx parameterized by a variable x ∈
SVars. This operator takes as input a spannerP with x ∈ SVars(P )
and outputs a spanner P ′, such that SVars(P ′) = SVars(P ) and
P ′ ⊆ P (i.e., for all strings s ∈ Σ∗ we have P ′(s) ⊆ P (s)). The
operator crx filters out s-tuples whenever conflicts are involved
in the spans assigned to x by different s-tuples. The output is a
conflict-free subset of P (s).

For concreteness, let us focus on the simple (yet practical) case
where crx is specified by a conflict condition stating when two
spans µ1(x) and µ2(x) are in conflict, and a resolution rule stating
which of µ1(x) and µ2(x) prevails. Still, how should resolution be
defined for a given conflict condition and resolution rule? Elimi-
nating tuples sequentially does not seem to be the right way, since
the result may be sensitive to the order in which conflicts are con-
sidered. For example, a standard conflict condition says that µ1(x)
and µ2(x) overlap but are not equal, and the resolution rule is left-
to-right winner: µ1(x) prevails over µ2(x) if µ1(x) starts before
µ2(x); and if they start at the same position, then µ1(x) is longer.



Now, take the three spans µ1(x) = [1, 3〉, µ2(x) = [2, 4〉, and
µ3(x) = [3, 5〉. Resolving conflicts from left to right gives a dif-
ferent result than the right-to-left resolution. Indeed, from left to
right, we take [1, 3〉, discard [2, 4〉, then keep [3, 5〉; and from right
to left we take [3, 5〉, then discard [3, 5〉 in favor of the span [2, 4〉,
then discard [2, 4〉 in favor of the span [1, 3〉.

In accommodating the above, an approach we are exploring is
adopting the concept of inconsistent databases [4] to our setting.
Specifically, we can think of our span relation as an inconsistent
relation, and every maximal non-conflicting subset of tuples as a
possible world. But the traditional theory of inconsistent databases
does not allow for different priority among tuples, and we treat such
priorities as first-class citizens (and specify them with our resolu-
tion rule). Nevertheless, recent work of Staworko et al. [43] pro-
poses and studies various concepts of inconsistent databases with
prioritized repairing, and we are currently studying the application
of prioritized repairing to conflict resolution within spanners.
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