Assignment 3

Here you will begin to work towards building a tic-tac-toe game.

1. 25 points

Given a tuple t, and an index i, and a value v, produce a new tuple which is the old tuple updated to have value v at index i.

That is, finish the following:
def assign(t, i, v):
\#your code here

For example, assign $((40,30,20), 2,15)$ should return $(40,30,15)$.

You do not have to handle the case where the index is out of bounds, only the case where $0<=i<l e n(t)$
2. 45 points

Assume that a position is represented as a tuple of tuples.
This is an example of a position:
(('O', 'X','-'),('X','-', X'), ('O','-', $\left.0^{\prime}\right)$)

Given an input position, and player (represented as the character 'X' or 'O'), determine if a player has one on a row, column, or diagonal. You will return True or False.

That is, finish the following functions:
def won_row(position,player):
\#your code here
def won_column(position,player):
\#your code here
def won_diagonal(position, player):
\#your code here
3. 15 points

Write a function which returns a tuple representing the argmax, followed by the max of a list.

That is, finish the following:
def argmax_max(x):
\#your code here
If the max isn't unique, argmax can be any index corresponding to a max.

For instance, argmax_max $([0,5,9,4,3,7,6,4,9,2,3,9,4])$ could return the tuple (2,9)
4. 15 points

Write the analogous function argmin_min.

