
1
CIS 422/522

CIS 422/522 © S. Faulk 1

CIS 422/522
2nd Half Concept Review

Stuart Faulk

CIS 422/522 © S. Faulk 2

View of SE in this Course

• The purpose of software engineering is to
gain and maintain intellectual and managerial
control over the products and processes of
software development.
– “Intellectual control” means that we are able

make rational choices based on an understanding
of the downstream effects of those choices (e.g.,
on system properties)*

– Managerial control means we control
development resources (budget, schedule,
personnel)

2
CIS 422/522

CIS 422/522 © S. Faulk 3

The Architectural Business Cycle

Business Goals
Hardware
Software
Marketing
other

Product Planning
Economic Evaluation
Development Strategy
Marketing Strategy
Prioritization

Requirements
Capabilities
Qualities
Reusability

Architecture
Tradeoffs of
quality goals

Strategic
Plan

ConOps or BRD
Business

Requirements
Definition

SRS
Software

Requirements
Specification

Architecture
Design

Documents

Traceability

Detailed
Design

Internal
Design

Documentation

Code

Stakeholder goals

Design decisions,
tradeoffs and constraints

CIS 422/522 © S. Faulk 4

Fit in the Development Cycle

Detailed
Design

System Integration
and Testing

Coding

Deployment

Maintenance and
Evolution

Requirements
Analysis

Software
Architecture

“…The earliest artifact that enables the
priorities among competing concerns to be
analyzed, and it is the artifact that manifests the
concerns as system qualities.”

3
CIS 422/522

CIS 422/522 © S. Faulk 5

Implications of the Definition

“The software architecture of a program or computing system is
the structure or structures of the system, which comprise software
components, the externally visible properties of those
components, and the relationships among them.” - Bass, Clements,
Kazman

• Systems typically comprise more than one architecture
– There is more than one useful decomposition into

components and relationships
– Each addresses different system properties or design goals

• It exists whether any thought goes into it or not!
– Decisions are necessarily made if only implicitly
– Control issue is who makes them and when
– Being in control implies having the right person make each

decision at the appropriate time

CIS 422/522 © S. Faulk 6

Examples: These are architectures
• An architecture comprises a set of

– Software components
– Component interfaces
– Relationships among them

• Examples

Structure Components Interfaces Relationships

Calls Structure Programs Program interface
and parameter
declarations.

Invokes with
parameters
(A calls B)

Data Flow Functional tasks Data types or
structures

Sends-data-to

Process Sequential
program
(process, thread,
task)

Scheduling and
synchronization
constraints

Runs-concurrently-
with, excludes,
precedes

4
CIS 422/522

CIS 422/522 © S. Faulk 7

This is not
Control
Process

(CP)

Noise
Model

(MODN)

Reverb
Model

(MODR)

Prop Loss
Model

(MODP)

Typical (but uninformative) architectural diagram
• What is the nature of the components?
• What is the significance of the link?
• What is the significance of the layout?

CIS 422/522 © S. Faulk 8

Effects of Architectural Decisions
• What kinds of system and development properties

are and are not affected by architecture?
• System run-time properties

– Performance, Security, Availability, Usability
• System static properties

– Modifiability, Portability, Reusability, Testability
• Production properties? (effects on project)

– Work Breakdown Structure, Scheduling, time to market
• Business/Organizational properties?

– Lifespan, Versioning, Interoperability
• But not functional behavior

5
CIS 422/522

CIS 422/522 © S. Faulk 9

Relation to Stakeholders

• Many stakeholders have a vested interest in
the architectural design
– Management, marketing, end users, maintenance,

IV&V, Customers, etc
• Their interests often defy mutual satisfaction

– There are inherently tradeoffs in most architectural
design choices

– E.g. Performance vs. security, initial cost vs.
maintainability

• Making successful tradeoffs requires
understanding the nature, source and priority
of quality requirements

CIS 422/522 © S. Faulk 10

Implications for the Development
Process

Goal: keep developmental goals and architectural
capabilities in synch:
• Understand the goals for the system (e.g.,

business case or mission)
• Understand/communicate the quality

requirements
• Design architecture(s) that satisfy quality

requirements
• Evaluate/correct the architecture
• Implement the system based on the architecture

6
CIS 422/522

CIS 422/522 © S. Faulk 11

Designing Architectures

CIS 422/522 © S. Faulk 12

Elements of Architectural Design

• Design goals
– What are we trying to accomplish in the

decomposition?
• Architectural Structures

– How to we capture and communicate design
decisions?

– What are the components, relations, interfaces?
• Decomposition principles

– How do we distinguish good design decisions?
– What decomposition (design) principles support the

objectives?
• Evaluation criteria

– How do I tell a good design from a bad one?

7
CIS 422/522

CIS 422/522 © S. Faulk 13

Design Means…
• Design Goals: the purpose of design is to solve

some problem in a context of assumptions and
constraints
– Assumptions: what must be true of the design
– Constraints: what should not be true

• Process: design proceeds through a sequence of
decisions
– A good decision brings us closer to the design goals
– An idealized design process systematically makes

good decisions
– Any real design process is chaotic

• Good Design: by definition a good design is one
that satisfies the design goals

CIS 422/522 © S. Faulk 14

Which structures should we use?

• Choice of structure depends the specific
design goals

• Compare to architectural blueprints
– Different view for load-bearing structures, electrical,

mechanical, plumbing

Structure Components Interfaces Relationships
Calls Structure Programs

(methods,
services)

Program interface and
parameter declarations

Invokes with
parameters
(A calls B)

Data Flow Functional tasks Data types or
structures

Sends-data-to

Process Sequential
program (process,
thread, task)

Scheduling and
synchronization
constraints

Runs-concurrently-with,
excludes, precedes

8
CIS 422/522

CIS 422/522 © S. Faulk 15

Elevation/Structural

CIS 422/522 © S. Faulk 16

Models/Views

• Different views answer different kinds of
questions

• Designing for particular software qualities also
requires the right architectural model or “view”
– Any model presents a subset of system structures and

properties
– Different models answer different kinds of questions

about system properties
• Goal is choose a set of views where

– Structures determine key required qualities
– Consequences of related design choices are made

visible

9
CIS 422/522

CIS 422/522 © S. Faulk 17

Example:
Designing the Module Structure

CIS 422/522 © S. Faulk 18

Modularization

• For large, complex software, must divide the
development into work assignments (WBS).
Each work assignment is called a “module.”

• Properties of a “good” module structure
– Parts can be designed, understood, or

implemented independently
– Parts can be tested independently
– Parts can be changed independently
– Integration goes smoothly

10
CIS 422/522

CIS 422/522 © S. Faulk 19

Module Hierarchy

• For large systems,
organize modules such
that
– Every requirement is

allocated to some module
– Can easily find the module

providing a given
capability

– When a change is
required, it is easy to
determine which modules
must be changed

• The module hierarchy
defined by the
submodule-of relation

Problem

Interface

Encap-
sulated

Secrets

Submodule-of
relation

Secrets Secrets

Secrets Secrets

Interface

Encap-
sulated

Interface

Encap-
sulated

CIS 422/522 © S. Faulk 20

Modular Structure
• Comprises components, relations, and interfaces
• Components

– Called modules
– Leaf modules are work assignments
– Non-leaf modules are the union of their submodules

• Relations (connectors)
– submodule-of => implements-secrets-of
– The union of all submodules of a non-terminal module must

implement all of the parent module’s secrets
– Constrained to be acyclic tree (hierarchy)

• Interfaces (externally visible component behavior)
– Defined in terms of access procedures (services or method)
– Only external (exported) access to internal state

11
CIS 422/522

CIS 422/522 © S. Faulk 21

Design Approach

CIS 422/522 © S. Faulk 22

Decomposition Strategies Differ

• How do we develop this structure so that we
know the leaf modules make independent work
assignments?

• Many ways to decompose hierarchically
– Functional: each module is a function
– Steps in processing: each module is a step in a chain

of processing
– Data: data transforming components
– Client/server

• But, these result in strong dependencies (strong
coupling)

12
CIS 422/522

CIS 422/522 © S. Faulk 23

Information Hiding Decomposition
• Approach: divide the system into submodules according

to the kinds of design decisions they encapsulate
(secrets)
– Put design decisions likely to change together in the same

module
– Put design decisions likely to change independently in different

modules
• Viewed top down, each module is decomposed into

submodules such that
– Each design decision allocated to the parent module is allocated

to exactly one child module
– Together the children implement all of the decisions of the parent

• Stop decomposing when each module is
– Simple enough to be understood fully
– Small enough to re-write easily

• This is called an information-hiding decomposition

CIS 422/522 © S. Faulk 24

Module Hierarchy
Problem

Interface

Encapsulated

“Secrets” “Secrets” “Secrets”

“Secrets” “Secrets”

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Submodule-of relation

Given a set of likely
changes
• Things that change

together in same
module

• Separately in
different modules

• Meets design goals

13
CIS 422/522

CIS 422/522 © S. Faulk 25

Specifying Abstract Interfaces

CIS 422/522 © S. Faulk 26

Module Interface Specs
• Documents all assumptions user’s can make

about the module’s externally visible behavior
– Access programs, events, types, undesired events
– Design issues, assumptions

• Document purpose(s)
– Provide all the information needed to write a module’s

programs or use the programs on a module’s interface
(programmer’s guide, user’s guide)

– Specify required behavior by fully specifying behavior
of the module’s access programs

– Define any constraints
– Define any assumptions
– Record design decisions

14
CIS 422/522

CIS 422/522 © S. Faulk 27

Why these properties?

Module Implementer
• The specification tells me

exactly what capabilities my
module must provide to users

• I am free to implement it any
way I want to

• I am free to change the
implementation if needed as
long as I don’t change the
interface

Module User
• The specification tells me how

to use the module’s services
correctly

• I do not need to know anything
about the implementation
details to write my code

• If the implementation changes,
my code stays the same

Key idea: the abstract interface specification defines
a contract between a module’s developer and its users

that allows each to proceed independently

CIS 422/522 © S. Faulk 28

Design Principles

15
CIS 422/522

CIS 422/522 © S. Faulk 29

What are Principles?

• Principle (n): a comprehensive and
fundamental rule, doctrine, or assumption

• Design Principles – rules that guide
developers in making design decisions
consistent with overall design goals and
constraints
– Guide the decision making process of design by

helping choose between alternatives
– Embodied in methods and techniques (e.g., for

decompositions)

CIS 422/522 © S. Faulk 30

Key Design Principles

• Three principles covered
– Most solid first
– Information hiding
– Abstraction

• Should understand
– Design guidance provided by each principle
– The result of applying the principle (e.g., from

examples covered in class)
– Why principles are more effective than heuristics

16
CIS 422/522

CIS 422/522 © S. Faulk 31

Quality Assurance

CIS 422/522 © S. Faulk 32

Requires Feedback-Control

• Uncertainty means we cannot get everything
under control then run on autopilot

• Rather control requires continuous feedback
1. Define ideal
2. Make a step
3. Measure deviation from idea
4. Correct direction or redefine ideal and go back to 2

17
CIS 422/522

CIS 422/522 © S. Faulk 33

Increase in Software Cost-to-fix vs. Phase (1976) *

10

20

50

100

200

500

1000

Re
la

tiv
e

co
st

 to
 fi

x
de

fe
ct

2
1

5

Requirements Design Code Development Acceptance Operation
test test

Smaller Software Projects•

Phase in which defect was fixed

10

20

50

100

200

500

1000

2
1

5

Requirements Design Code Development Acceptance Operation
test test

•

* Barry Boehm - A View of 20th and 21st Century Software Engineering

COMS 510X Weiss Fall 2012 V&V

CIS 422/522 © S. Faulk 34

Quality is Cumulative

• Are the requirements valid?
• Complete? Consistent? Implementable?
• Testable?

• Does the design satisfy requirements?
• Are all functional capabilities included?
• Are qualities addressed (performance,

maintainability, usability, etc.?

• Do the modules work together to implement all
the functionality?

• Are likely changes encapsulated?
• Is every module well defined

• Implement the required functionality?
• Race conditions? Memory leaks? Buffer

overflow?

Requirements
Analysis

Architectural
Design

Detailed
Design

Coding

18
CIS 422/522

CIS 422/522 © S. Faulk 35

We need a plan!

• QA activities are
– Critical to control
– Part of every phase of the project
– Time consuming, labor intensive and expensive

• Consumes significant project resources
• Cannot do everything, need to choose

• Suggests need to plan QA activities
– Detect issues as early as possible
– Target highest priority/risk issues for project
– Support cost-effective use of resources

CIS 422/522 © S. Faulk 36

QA Activities

Verification and Validation

19
CIS 422/522

CIS 422/522 © S. Faulk 37

Validation and Verification

• Validation: activities to answer the question –
“Are we building a system the customer
wants?”
– E.g. customer review of prototype

• Verification: activities to answer the question –
“Are we building the system consistent with its
specifications?”
– E.g., functional testing

CIS 422/522 © S. Faulk 38

V&V Methods

• Most applied V&V uses one of two methods
• Review: use of human skills to find defects

– Pro: applies human understanding, skills. Good for
detecting logical errors, problem misunderstanding

– Con: poor at detecting inconsistent assumptions,
details of consistency, completeness. Labor intensive

• Testing: use of machine execution
– Pro: can be automated, repeated. Good at detecting

detail errors, checking assumptions
– Con: cannot establish correctness or quality

• Tend to reinforce each other

20
CIS 422/522

CIS 422/522 © S. Faulk 39

Peer Review Process

• Peer Review: a process by which a software
product is examined by peers of the product’s
authors with the goal of finding defects

• Why do we do peer reviews?
– Review is often the only available verification method

before code exists
– Formal peer reviews (inspections) instill some

discipline in the review process
– Generally the most effective manual technique for

detecting defects
• Means that you should be doing peer reviews,

but there are issues

CIS 422/522 © S. Faulk 40

Active Review Method
Key idea: Works by forcing the reviewer to actually
use the artifact to answer specific questions
1. Identify several types of review each targeting a

different type of error
2. Identify appropriate classes of reviewers for each

type of review
3. Assign reviews to achieve coverage
4. Design review questionnaires
5. Review consists of filling out questionnaires

defining
6. Review process: overview, review, meet

21
CIS 422/522

CIS 422/522 © S. Faulk 41

Examples
• In practice: an active review asks a qualified

reviewer to check a specific part of a work
product for specific kinds of defects by answering
specific questions, e.g.,
– Ask a designer to check the functional completeness

by showing the calls sequences sufficient to implement
a set of use cases

– Ask a systems analyst to check the ability to create
required subsets by showing which modules would use
which

– Ask a technical writer to check the SRS for
grammatical errors

• Can be applied to any kind of artifact from
requirements to code

CIS 422/522 © S. Faulk 42

Takeaway

• Understand when and why reviews should be
used

• Understand how active reviews work
• Understand why they are better at detecting

defects

22
CIS 422/522

CIS 422/522 © S. Faulk 43

Testing

CIS 422/522 © S. Faulk 44

Testing Fundamentals

• Coding produces errors
– Data show 30-85 errors are made per 1000 SLOC

• Testing: processes of executing the code to
detect errors

• In practice, it is impossible to check for all
possible errors by testing

• Even checking a useful subset is expensive
– 40%-80% of development cost
– Must be re-done when software changes
– Potentially unbounded effort

23
CIS 422/522

CIS 422/522 © S. Faulk 45

Testing Fundamentals (2)

• Reality: must settle for testing a subset of
possible inputs
– Even extensively tested software contains 0.5-3 errors

per 1000 SLOC
• Pesticide Paradox: every method used to prevent or find

bugs leaves a residue of subtler bugs against which those
methods are ineffectual [Beizer]

– Always a tradeoff of cost vs. errors found
• Fundamental cost/benefit questions

– Which subsets of possible test cases will find the most
errors?

– Which will find the most important errors?
– How much testing is enough?

CIS 422/522 © S. Faulk 46

Ideal Testing Goal

• Goal: choose a sufficiently small but
adequate set of test cases (input domain)
– Small enough to economically run the complete

set and re-run when software changes
– “Adequate” much harder to define, generally

means some combination of:
• Acceptably close to required functional behavior
• Contains no catastrophic faults
• Reliable to an acceptable level (mean time to failure)
• Within tolerance levels for qualities like performance,

security, etc.

24
CIS 422/522

CIS 422/522 © S. Faulk 47

Number of Approaches

• Fault detection vs. Confidence building
• White-box vs. Black Box
• Different methods for choosing “adequate”

test set
– Coverage, fault-detection, operational profiles

CIS 422/522 © S. Faulk 48

Experimental Results

• There is no uniformly best technique
• Different techniques tend to reveal different types

of faults
• Multiple techniques reveal more faults (at a cost)
• Cost-effectiveness of run-time testing is low,

particularly compared to inspections (vast
majority of tests find no errors)
– Design review: 8.44
– Code review: 1.38
– Testing: 0.17

25
CIS 422/522

CIS 422/522 © S. Faulk 49

Interpretation

• A combination of manual and automated
techniques is most cost effective
– People are better at detecting many kinds of errors

than machines
– Machines are better at repetitive checks and minute

details (comparing values)
• Testing works best in a supporting role (checking

assumptions)
– Activity of producing test cases and results double-

checks other artifacts
• Is it well enough defined to write a good test case?
• Are edge cases defined? Etc.

– Gives feedback on assumptions and expectations:
does the system do what we expect?

CIS 422/522 © S. Faulk 50

Development Realities

26
CIS 422/522

CIS 422/522 © S. Faulk 51

Developer Realities

• Nothing counts but delivery
– Software product properties

• Sufficient desired functionality
• Acceptable qualities

– Process properties
• Timely
• “low cost” (acceptable ROI)

• But…
– Delivery must be repeatable, usually building on legacy

systems
– The target moves
– The process is done largely in the dark

CIS 422/522 © S. Faulk 52

Issues

• Balancing all these factors is difficult
• Easiest to come up with partial, short-term

solutions
– Acceptable solution but late, over cost
– On time delivery but difficult to change, maintain
– Deliver but is not what the customer wants
– Quick fix, difficult to maintain, etc.

• Results from complexity, shortsighted approach
– Huge pressure to “code first, ask questions later”
– Overall problem too complex to comprehend at once
– Focus on parts of the problem, excluding others
– Fail to look ahead (paint ourselves into a corner)

27
CIS 422/522

CIS 422/522 © S. Faulk 53

Software Engineering

• Principles of Software Engineering provide an
antidote

• Helps to foresee downstream problems of
poor decisions

• Supports doing the right thing rather than only
the most “urgent”

• Provides principles and tools to keep a
project in control

CIS 422/522 © S. Faulk 54

End

