CIS 422/522

Midterm Review

CIS 422/522
Stuart Faulk

DO YOU WANT A

HOW LONG WILL
IT TAKE TO FIX THE REALISTIC ESTIMATE pibivalls
BUGS IN OUR CONTROL THAT WILL RUIN YOUR OPTION

DAY, OR A LIE THAT

I™MA
WILL ALLOW YOUR Zobine

FESTIVE. FLEASER.
‘
\

MANAGEMENT SOFT—
WARE?

IGNORANCE AND YOUR
HAPPINESS TO LOCK ARMS
AND SQUARE DANCE TO
THE NEXT CUBICLE?

=S

CIS 422/522 © S. Faulk 1

':‘

Dilbert.com _ DilbertCartoonist@gmail.com
+1990 ©2010 Scott Adams, Inc./Dist. by UFS, Inc.

Next

Midterm Wednesday

— Multiple choice, short answer

— Based on lectures

— Review lecture on line: pwd CIS4220nline
Project I

— Put up project ideas to share

— Short discussions with instructor for initial
selection

CIS 422/522 © S. Faulk 2

CIS 422/522

The “Software Crisis”

Have been in “crisis” since the advent of big software
(roughly 1965)
What we want for software development

— Low risk, predictability

— Lower costs and proportionate costs

— Faster turnaround

What we have:

— High risk, high failure rate

— Poor delivered quality

— Unpredictable schedule, cost, effort

— Examples: Ariane 5, Therac 25, Mars Lander, DFW Airport, FAA
ATC, Cover Oregon

Characterized by lack of control

CIS 422/522 © S. Faulk 3

Large System Context

Discuss issues in terms of large, complex systems
— Multi-person: many developers, many stakeholders

— Multi-version: intentional and unintentional evolution
Quantitatively distinct from small developments

— Complexity of software rises exponentially with size

— Complexity of communication rises exponentially
Qualitatively distinct from small developments

— Multi-person introduces need for organizational functions,
policies, oversight, etc.

— More stakeholders and more kinds of stakeholders
We can only approximate this in our projects

CIS 422/522 © S. Faulk 4

CIS 422/522

Implications: the Large System Difference

Small system development is driven by technical issues
(l.e., programming)

Large system development is dominated by
organizational issues

— Managing complexity, communication, coordination, etc.

— Projects fail when these issues are inadequately addressed

Lesson #1: programming # software engineering

— Techniques that work for small systems often fail utterly when
scaled up

— Programming alone won’t get you through real developments or
even this course

CIS 422/522 © S. Faulk 5

View of SE in this Course

« The purpose of Software Engineering is to
gain and maintain intellectual and managerial
control over the products and processes of
software development.

— Intellectual control: able to make rational
development decisions based on an

understanding of the downstream effects of those
choices.

— Managerial control means we likewise control
development resources (budget, schedule,
personnel).

CIS 422/522 © S. Faulk 6

CIS 422/522

Course Approach

+ Learn methods for acquiring and maintaining
control of software projects (two threads)
+ Managerial control
— Team organization and people management
— Organizing people and tasks
— Planning and guiding development
+ Intellectual control

— Establishing and communicating exactly what should
be built

— Making effective decisions about system properties
(behavioral and developmental)

— Choosing appropriate order for decisions and ensuring
feedback/correction

CIS 422/522 © S. Faulk 7

The Software Lifecycle

CIS 422/522 © S. Faulk 8

CIS 422/522

Need to Organize the Work

+ Nature of a software project

— Software development produces a set of interlocking,
interdependent work products
+ E.g. Requirements -> Design -> Code

— Implies dependencies between tasks

— Implies dependencies between people
+ Must organize the work such that:

— Every task gets done

— Tasks get done in the right order

— Tasks are done by the right people

— The product has the desired qualities

— The end product is produced on time

CIS 422/522 © S. Faulk 9

Usefulness of Life Cycle Models

+ Application of “divide-and-conquer” to
software processes and products
— Identify distinct process objectives
— Can then address each somewhat separately

* Intended use

— Provide guidance to developers in what to
produce and when to produce it

— Provide a basis for planning and assessing
development progress
+ Never an accurate representation of what
really goes on

CIS 422/522 © S. Faulk 10

CIS 422/522

A “Waterfall” Model

Requirements 1. As a guide: does not address

Analysis

some common development risks

» What happens if requirements
are wrong?

Is scheduling or budget is wrong?

Architecture —l

Design

System Integration

Problems of temporal

and Testing distance
2. As amodel: unrealistic as a [Deployment }_l
model of any real development
3. Useful in identifying conceptually Maintenance and
distinct activities Evolution
CIS 422/522 © S. Faulk 11

Characteristic Processes:
The lterative Model

« Process is viewed as a sequence of iterations
— Essentially, a series of waterfalls

+ Addresses some common waterfall risks
— Risk that software cannot be completed — build incremental subsets

— Risk of building the wrong system — stakeholder have opportunities to see the
software each increment

— Also, can double check feasibility, schedule, budget and others issues

Requirements Analysis & Design

Implementation
Planning

e Deployment
Initial
Planning

Evaluation)
Testing

12

CIS 422/522

Characteristic Processes:
The Spiral Model

Process viewed as Duseviic b
. alternatives an

repeating cycles of pimtiy

increasing scale

Identify risks and

determine (next set of)

requirements

Each cycle builds next

version by extension,

increasing scale each

Evaluate alternatives,
identify, resolve risks

Risk
analysis

Risk
analysis

Risk
analysis _—
Prototype 2

Risk

Proto-
analysis
REVIEW ysi type 1

Requirements plan
Life-cyce plan | Concept of
Operation

Requirement
validation

tl me Integration Design
A and test plan vav Integration
Explicit Go/No-Go Plrves hise dels g S
decision points in ot e prodoct
process
CIS 422/522 © S. Faulk 13
T
determin . .
etials € Risk evaluation
9 and Mitigation
lan next
P development
phase
CIS 422/522 © S. Faulk 14

CIS 422/522

Characteristic Processes:
Agile (e.g. scrum)

+ Process viewed as nested sequence of builds (sprints)
— Each build adds very small feature set (one or two)
— Nightly build/test, frequent customer validation
— Focus on delivering code, little or no time spent on documentation

DAILY SCRUM
MEETING
~

\24 HOURS

POTENTIALLY

PRODUCT SPRINT \ SHIPPABLE
BACKLOG BACKLOG PRODUCT

INCREMENT

N 2-4 WEEKS

OPYRIGHT © 2005, MOUNTAIN GOAT SOFTWARE

CIS 422/522 © S. Faulk 15

Process Objectives

+ Objective: proceed in a controlled manner from
stakeholder needs to a design that demonstrably
meets those needs, within design and resource
constraints

— Understand that any process description is an abstraction

— Always must compensate for deviation from the ideal

— Still important to have a well-defined process to follow and
measure against

+ Choose process to provide an appropriate level of
control for the given product and context
— Sulfficient control to achieve results, address risks
— No more than necessary to contain cost and effort

+ Question of control vs. cost: processes introduce
overhead

CIS 422/522 © S. Faulk 16

CIS 422/522

Example

. Project 1 requirements and constraints
1. Deadline and resources (time, personnel) are fixed
2. Delivered functionality and quality can vary (though they affect the
grade)
3. Risks:
1. Missing the deadline
2. Technology problems
3. Inadequate requirements
4. Learning while doing
+ Process model
— All of these risks can be addressed to some extent by building
some version of the product, then improving on it as time allows
(software and docs.)
— Technology risk requires building/finding software and trying it

(prototyping)
— Most forms of incremental development will address these

CIS 422/522 © S. Faulk 17

Project Planning and Management

CIS 422/522 © S. Faulk 18

CIS 422/522

Document Types and Purposes

+ Management documents
— Basis for managerial control of resources
+ Calendar time, skilled man-hours, budget
+ Other organizational resources
— Project plan, WBS, Development schedule
— Utility: supports resource allocation to meet time and budget

constraints
+ allows managers to track actual against expected use of resources

* Development documents
— Basis for intellectual control of product content and
quality
— ConOps, Requirements (SRS), Architecture, Detail
design, code, User’s Guide, etc.
— Utility: vehicles for making and recording development
decisions

+ Allows developers to track decisions from stakeholder needs
to implementation

CIS 422/522 © S. Faulk

Project Plan

+ Purpose: specifies how project resources will be

organized to:

— Create each deliverable

— Meet quality goals

— Address developmental goals (e.g., mitigate risk)
+ Audience: should answer specific kinds of

questions for different types of users, e.g.:

— Customers: When will the product be delivered?

— Stakeholders: What is the development approach?
How does it address project risks?

— Managers: When will tasks be completed? What is the
current progress against the plan?

— Developers: What should | be working on and when?

CIS 422/522 © S. Faulk

20

10

CIS 422/522

From Process to Plan

Process manifests itself in the project plan
— Process definition is an abstraction

— Many possible ways of implementing the same
process

Project plan makes process concrete, it
assigns

— People to roles

— Artifacts to deliverables and milestones

— Activities to tasks over time

Evolves as the project proceeds

CIS 422/522 © S. Faulk 21

Planning Tools

Work Breakdown Structure: decompose tasks and
allocate responsibilities

— If incomplete, some tasks may not be done

— If imprecise, people do not know exactly what to do

— Without a complete set of tasks, schedules are unrealistic
PERT charts: identify where ordering of tasks may
cause problems

— Represent precedence or resource constraints

— Identify critical path

Gantt Charts: method for visualizing project schedule
(tasks, dependencies, timing, persons)

Note that these help address problems our projects
have encountered

CIS 422/522 © S. Faulk 22

11

CIS 422/522

Intellectual Control

CIS 422/522 © S. Faulk

23

Business Goals LemTTT T RPN
Hardware 4 ~
Software RS
Marketing ~
~
N
~ < s
Product Planning %,
Development & b ~ '{'@/;0
Marketing Strategy S /°'e,.
9
~ o 5% S
Requirements ~ \
Functionality S ~ \
Qualities ~ \
~ \
~ \
~ \
Design So |
Goals/ 4—1
tradeoffs A ~ ,'
~ 1
Code S 1
~
. _\ II
Intellectual control: delivery of Test& ’
. T 7
* Functional capabilities Validate <—1 /
Software qualities
Deploy
CIS 422/522 © S. Faulk 24

12

CIS 422/522

Document Types and Purposes

+ Management documents
— Basis for project management (managerial control of
resources)
+ Calendar time, skilled man-hours budget
+ Other organizational resources
— Project plan, WBS, Development schedule
— Use: allows managers to track actual against expected
consumption of resources

+ Development documents

— Basis for intellectual control
+ Used for making and communicating engineering decisions
(requirements, design, implementation, verification, etc.)
+ Allows developers to track decisions from stakeholder needs to
implementation

— Basis for communicating decisions
— Requirements, Architecture, Detail design, Reviews, Tests

CIS 422/522 © S. Faulk

25

What is a “software requirement?”

+ A description of something the software must
do or property it must have

+ The set of system requirements denote the
problem to be solved and any constraints on
the solution
— Specifies “what” not “how”
— Bounds the set of acceptable implementations

CIS 422/522 © S. Faulk

26

13

CIS 422/522

Importance of Getting Requirements Right

1. The majority of software errors
are introduced early in software
development

2. The later that software errors are
detected, the more costly they are
to correct

$100 error

$1 error PN

requirergents design construction and acceptance 1
an

system {osting and rhoru | Lgesigh Eﬁ unit test, | acceptand
functional development test operation = debug integratio test operatiof
S — \

Development Phase

Relative cost to
correct an error

error detected

Percent of all software development
faults

i
@
O]
=]

5
I

5|

S
u
I
I

i
2
O
D
®
of
=
I3
g
=
q

rror detected

n

:l error detected

Phase in which error detected

CIS 422/522 © S. Faulk 27

Requirements Phase Goals

What does “getting the requirements right” mean
in the systems development context?

Only three goals

1. Understand precisely what is required of the software

2. Communicate that understanding to all of the parties
involved in the development (stakeholders)

3. Control production to ensure the final system satisfies
the requirements

Sounds easy but hard to do in practice, observed
this and the resulting problems in projects

Understanding what makes these goals difficult
helps us understand how to mitigate the risks

CIS 422/522 © S. Faulk 28

CIS 422/522

What makes requirements difficult?

+ Comprehension (understanding)
— People don't (really) know what they want (...until they see it)
— Superficial grasp is insufficient to build correct software
« Communication
— People work best with regular structures, coherence, and visualization

— Software’s conceptual structures are complex, arbitrary, and difficult to
visualize

+ Control (predictability, manageability)

— Difficult to predict which requirements will be hard to meet

— Requirements change all the time

— Together make planning unreliable, cost and schedule unpredictable
+ Inseparable Concerns

— Many requirements issues cannot be cleanly separated

— Difficult to apply “divide and conquer,” must make tradeoffs

+ Implication: all the requirements goals are difficult to
achieve, must be managed as a risks!

CIS 422/522 © S. Faulk 29

Requirements Communication
(Specification)

+ Many potential stakeholders using requirements
for different purposes

— Customers: the requirements document what should
be delivered

— Managers: provides a basis for scheduling and a
yardstick for measuring progress

— Software Designers: provides the “design-to”
specification

— Coders: defines the range of acceptable
implementations

— Quality Assurance: basis for validation, test planning,
and verification

— Also: potentially Marketing, regulatory agencies, etc.

CIS 422/522 © S. Faulk 30

15

CIS 422/522

Needs of Different Audiences

-
Customer/User Problem Understanding/
— Focus on problem Business Needs
understanding <
Customer
— Use language of problem
domain
— Technical if problem space
is technical -
e Requirements
Development organization Analyst
— Focus on system/software
solutions
— Use language of solution <
space (software) Detailed technical
. . Requirements
— Precise and detailed enough
to write code, test cases, L
etc. Developer
CIS 422/522 © S. Faulk 31

Documentation Approaches

« ConOps: informal requirements to describe the
system’s capabilities from the customer/user
point of view

— Answer the questions, “What is the system for?” and
“How will the user use it?”

— Tells a story: “What does this system do for me?”
— Helps to use a standard template

+ SRS: formal, technical requirements for
development team

— Purpose is to answer specific technical questions
about the requirements quickly and precisely

— Precise, unambiguous, complete, and consistent as
practical

CIS 422/522 © S. Faulk 32

16

CIS 422/522

Scenario Analysis and Use Cases

+ Common user-centered analysis method

+ Requirements Elicitation

— Identify stakeholders who interact with the system
— Collect “user stories” - how people would interact with the

system to perform specific tasks
+ Requirements Specification

— Record as use-cases with standard format
— Use templates to standardize, drive elicitation
+ Requirements verification and validation
— Review use-cases for consistency, completeness, user

acceptance
— Apply to support prototyping

— Verify against code (e.g., use-case based testing)

CIS 422/522 © S. Faulk

33

1 Brief Description

This use case describes how the Bank Customer uses the ATM to withdraw money to his/her
bank account.

2 Actors

2.1 Bank Customer
2.2 Bank

3 Preconditions

There is an active network connection to the Bank.
The ATM has cash available.

4 Basic Flow of Events

1. The use case begins when Bank Customer inserts their Bank Card.

2. Use Case: Validate User is performed.

3. The ATM displays the different alternatives that are available on this unit. [See Supporting
Requirement SR-xxx for list of alternatives]. In this case the Bank Customer always selects
"Withdraw Cash".

4. The ATM prompts for an account. See Supporting Requirement SR-yyy for account types

that shall be supported.

. The Bank Customer selects an account.

. The ATM prompts for an amount.

. The Bank Customer enters an amount.

. Card ID, PIN, amount and account is sent to Bank as a transaction. The Bank Consortium

replies with a go/no go reply telling if the transaction is ok.

9. Then money is dispensed.

10. The Bank Card is returned.

11. The receipt is printed.

® o w

5 Alternative Flows
5.2 Wrong account

If in step 8 of the basic flow the account selected by the Bank Customer is not associated with this bank
card, then

1. The ATM shall display the message "Invalid Account - please try again".

2. The use case resumes at step 4.|

Example Use Case

+ Avoids design decisions

+ References other use
cases

+ References more
precise definitions
where necessary

« Some terms need
further definition (e.g.
PIN)

34

17

CIS 422/522

Benefits and Drawbacks

+ Use cases can be an effective tool for:
— Eliciting user-group’s functional requirements
— Communicating to non-technical stakeholders
— Creating initial test cases
— Verifying expected behavior
+ Generally inadequate for detailed technical
requirements
— Difficult to find specific requirements
— Inherently ambiguous and imprecise
— Cannot establish completeness or consistency

+ True of all informal specification methods

CIS 422/522 © S. Faulk 35

Technical Specification

The SRS
The role of rigorous specification

CIS 422/522 © S. Faulk 36

18

CIS 422/522

Requirements Documentation

Is a detailed requirements specification necessary?

How do we know what “correct” means?

— How do we decide exactly what capabilities the modules
should provide?

— How do we know which test cases to write and how to
interpret the results?

— How do we know when we are done implementing?

— How do we know if we've built what the customer asked for
(may be distinct from “want” or “need”)?

— Etce...
Correctness is a relation between a spec and an
implementation (M. Young)

— Implication: until you have a spec, you have no standard for
“correctness”

CIS 422/522 © S. Faulk 37

Technical Requirements

Focus on developing a technical specification

— Should be straight-forward to determine
acceptable inputs and outputs

— Can systematically check completeness
consistency

Provides

— Detailed specification of precisely what to build
— Design-to specification

— Build-to specification for coders

— Characterizes expected outputs for testers
Little application in Project 1

CIS 422/522 © S. Faulk 38

19

CIS 422/522

Quality Requirements

CIS 422/522 © S. Faulk

39

Quality Requirement Types

+ Avoid “functional” and non-functional"
classification

- Behavioral Requirements — any requirements or
constraints on the system's run-time behavior

— Measurable qualities (safety, performance, fault-
tolerance)

— In theory all can be validated by observing the running
system and measuring the results

- Developmental Quality Attributes - any
constraints on the system's static construction
— Maintainability, reusability, ease of change (mutability)

— Measures of these qualities are necessarily relativistic
(l.e., in comparison to something else

CIS 422/522 © S. Faulk

40

20

CIS 422/522

Behavioral and Developmental
Requirements

Behavioral (observable) Developmental Qualities
Performance + Modifiability(ease of change)
Security + Portability
Availability + Reusability
Reliability + Ease of integration
Usability * Understandability

» Support concurrent

development

Properties resulting from the Properties resulting from the
behavior of components, structure of components,
connectors and interfaces connectors and interfaces
that exist at run time. that exist at design time

whether or not they have any
distinct run-time
manifestation.

CIS 422/522 © S. Faulk 4

Importance

+ Quality requirements are as or more
important to user acceptance than functional
— Every system has critical quality requirements
— The most frequent reason for user dissatisfaction
+ Quality requirements are often implicit or
assumed
— E.g., response time, data integrity
* Must be explicit to be controlled

— Implicit requirements cannot be communicated,
tracked, verified, etc.

— Left out at crunch time

CIS 422/522 © S. Faulk 42

21

CIS 422/522

Specifying Quality Requirements

« When using natural language, write
objectively verifiable requirements when
possible
— Load handling: The system will support a

minimum of 15 concurrent users while staying with
required performance bounds.

— Maintainability: “The following kinds of
requirement changes will require changes in no
more than one module of the system...”

— Performance:

+ “System output X has a deadline of 5 ms from the input
event.”

+ “System output Y must be updated at a frequency of no
less than 20 ms.”

CIS 422/522 © S. Faulk 43

Requirements Validation and Verification

+ Feedback-control for requirements

+ Should answer two distinct questions:
— Validation: “Are we building to the right requirements?”
— Verification: “Are we building what we specified?”
+ Validation requires going back to the stakeholders:
can use many techniques
— Review of specifications
— Prototyping, software review
— Use case walkthroughs
+ Verification requires checking work products against
specifications
— Review
— Testing
— Formal modeling and analysis

CIS 422/522 © S. Faulk 44

CIS 422/522

Real meaning of “control”

What does “control” really mean?

Can we really get everything under control
then run on autopilot?

Rather control requires continuous feedback
loop

Define ideal

Make a step

Evaluate deviation from idea

Correct direction or redefine ideal and
go back to 2

A\

CIS 422/522 © S. Faulk 45

End

CIS 422/522 © S. Faulk 46

23

CIS 422/522

Work Breakdown Structure

-
[1 software Davelopment
——a

T & & T ' 8

(122ness) (120eson) (1.8 constrution) (15 Testing) (1 Ratout)

1.1 Project Management

b 1.1.1 PM Plan

P
{1 1.1.2 Scope Statement

fd 1.1.4 Risk Plan

—
L 1.1.5 Change Plan

1.2.2.2 Supplementary Specs

1.2.2.3 Reporting Requirements

1. Software Development
1. Project Management
2. Analysis

Equivalent list format
1. Glossary

2. Requirements Specification
1. Use Cases
2. Supplementary Specs...
CIS 422/522 © S. Faulk 447
Breadboard Manufacture
Design hardware ‘ Rerawers l Release hardware hardware
1200 9 Nov 9Nov 23 Nov 14 Dec 28 Dec 26 0ec 2530
2010 |*"ks| 2010 2010 |2%| 2010 2010 |2%S| 2010 2010 |4%ks| 011
= Formalize specs ‘ Design software ‘ Test hardware Complete software Release software FinEh
15 2010 1Sep 12 Oct " 120ct 23 Nov l 23 Nov. 14 Dec il 14 Dec [113an ” 11 Jan [1832an "25 Jen 2011
2010 |5™| 2010 2010 |8™| 2010 2010 3| 2010 2010 |*"¢| 2011 201 | ™| 2011 X
J Layout manual ‘ ‘ Finish manual ‘ ‘ Release manual Print manuals
1200 2Nov 2Nov 30 Nov 30 Nov 7 Dec 7 0ec 42
2010 |3%*s| 2010 2010 |*%ks| “2010 2010 | 1"k | 2010 2010 |4%%s| 2011

+ Which tasks can we start on?
+ Which tasks can be done concurrently?
+ Which tasks depend on which other tasks?

* Critical Path: which path has the longest duration?
— Gives minimum length of project

http://www.conceptdraw.com/samples/project-chart
CIS 422/522 © S. Faulk

48

24

CIS 422/522

Example Gantt Chart

(i)
<

&

Task Name Duration
ABC Book Development 4225 days
Stant Book 0days
Research Phase 4.13days
Interview Subject Matter Expents 2days
Search the Web. 326 days
Outline Phase Tdays
Create outine 5 days
Presentto publisher 0.5 days
Revise Outline 1 day
Review with Subject Matter Expert 05 days
Outline complete 0days
Develop ment Phase 19 days
Write content 1mon

Add graphios 1wk
Development complete 0 days
Edit Phase 7days
Check grammar, speling, and proofread 1wk
Check for technical accuracy 1.4 wks
RevewPhase 126 days
Approve editing ohanges 1 day
Meet with edtor 026 days
Prirt Phase Sdays
Brint proof 1 day
Review proof 3days
Print fnal 1 day
Book Complete 0days

February 2003

Warch 2003

15[18/2124[27 [30 2 |5 [& [1114]17 [20 23126 1 [4 |7 [10]13]16]19[22[25 Z8 |31

v

April 2003

TTeng content can
egin before the
5 complete

w

\
udget Graphics
35

) Sdtor(26%)

(Subject Matter Expart 1,Subjact Matte

60 [12[15]18

Project ABC Book Development
Date: Thu 1011002

Task

Critioal Task

Progress

Rolled Up Task

Rolled Up Crtieal Task

Rolled Up Miestone <y

External Tasks

B

Summary

Group By Summary

i

49

eamwork and
roup Dynamics

CIS 422

/522 © S. Faulk

50

25

CIS 422/522

What do software developers do?

+ Most time is not spent coding

+ So how do they spend their time?

« IBM study (McCue, 1978):
— 50% team interactions
— 30% working alone (coding & related)
— 20% not directly productive

-Technical excellence is not enough
Must understand how to work effectively in teams

CIS 422/522 © S. Faulk 51

Being a Good Team Member

+ Attributes most valued by other team
members

— Dependability
* When you say you’ll do something, you do it
« Correctly
+ Ontime
— Carrying your own weight (doing a fair share of the
work)
+ People will overlook almost everything else if

you do these

CIS 422/522 © S. Faulk

52

26

CIS 422/522

Consensus decision making

+ Consensus is not counting votes
— Democracy is 51% agreement
— Unanimity is 100% agreement

+ Consensus is neither
— Everyone has their say

— Everyone accepts the decision, even if they
don't prefer it

— Itis "buying in" by group as a whole, including
those who disagree

+ Usually best approach for peer groups

Consensus takes time and work, but is worthwhile

CIS 422/522 © S. Faulk

53

27

