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Monitoring Traffic Statistics

Network management

Network-wide flow statistics

Traffic Flow Heavy
distribution cardinality hitters




Sketch: A Promising Solution

» Sketch: a family of randomized algorithms
* Key idea: project high-dimensional data into small subspace

High-dimensional data

Randomized projection
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Data structure

Small subspace:
low computation & communication overheads

» Subspace reflects mathematical properties
* Strong theoretical error bounds when querying for statistics



Example: Count-Min Sketch

» Count flow packets

* |Increment each selected counter

Packet > Query a flow

* Hash the flow to multiple counters

* Take the minimum counter as estimated packet count

» Theoretical guarantees
* Allocate rows and counters each row
Each element is a counter * The error for a flow is at most with probability at least




Our Focus

» Sketch-based measurement atop software switches

Network-wide sketch

Local sketch

IR

Local sketch

Local sketch

T - Local sketch

Hardware Switches



Limitation of Sketches

Basic setches

Lack of generality Limited query

‘ More structures

Complicated sketches
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Our Contributions

SketchVisor: Sketch-based Measurement System for Software Packet Processing

» Performance
* Catch up with underlying packet forwarding speed

» Resource efficiency
* Consume only limited resources

» Accuracy
* Preserve high accuracy of sketches

> Generality
* Support multiple sketch-based algorithms
> Simplicity
* Automatically mitigate performance burdens of sketches without manual tuning



Architecture: Double-Path Design

Control plane

Network-wide merge & recovery

Global fast path

Merge two paths
* Recover lost information
* Transparent to users

Data plane Switches

To control plane

Local fast path

User-defined sketches Sketch 1 Il Sketch 2

* High accuracy Sketch 3 || Sketch 4

Fast path
algorithm

* (Relatively) slower

Buffer *

Fast path

* High speed

* (Relatively) less accurate

* General for multiple sketches

Packets
— T




Key Questions

» Data plane: how to design the fast path algorithm?

» Control plane: how to merge the normal path and fast path?



Intuitions

» Consider sketches which map flow byte counts into counters
* Other sketches (e.g., Bloom Filter) can be converted

Each large flow has significant impact

I Flows Sketch counters
I I En I D D D B D S ..
Large Flows Many Small Flows

Each small flow Aggregated impact of
has limited impact small flows is significant
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Fast Path Algorithm

ldeal algorithm
Infeasible with limited resources

Per-flow byte count
of large flows

Aggregated byte count of
small flows

Our practical algorithm
How

(Approximate) per-flow
byte count of large flows

(Approximate) aggregated
byte count of small flows

Byte of small flows = total byte — byte of large flows »




Approximate Tracking of Large Flows

» A small hash table
* “Guess” and kick out potentially small flows when table is full
* Each flow has three counters

Estimated errors due
Byte count to flow kick-outs

*—

Flow ID Counter1 Counter 2 Counter 3




Performance and Accuracy

» Theoretical analysis shows:
* All large flows are tracked
* Amortized O(1) processing time per packet
* Bounded errors

» Compared to Misra Gries top-k algorithm
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Key Questions

» Data plane: how to design a fast path algorithm?

» Control plane: how to merge the normal path and fast path?
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Control Plane: Challenge

» Input insufficient to form network-wide sketches

Input 1: Incomplete sketch

Expected output:

with missing values Network-wide sketch

Network-wide

Global fast path

Flow ID Counter 1 Counter 2 Counter 3

recovery

o : Input 2: Approximate large

Flow 2 1 flows in fast path

Flow 3 2

Total byte Input 3: Total byte

count counts in fast path
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Matrix Interpolation Problem

» The recovery process can be expressed as

Expected output sketch (unknown) Large flows in fast path (unknown)

T 1

T=N+SHX+W
1

Sketch in global normal path (known)

Small flows in fast path (unknown)
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Matrix Interpolation Problem

» Based on theoretical analysis and microbenchmarks

Expected output sketch (unknown) Large flows in fast path (unknown)

T 1

T=N+SHX+W
1

Sketch in global normal path (known)

Small flows in fast path (unknown)
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Matrix Interpolation Problem

» Based on theoretical analysis and microbenchmarks

(low-rank structure)

Expected output sketch (urkrewn) Large flows in fast path (unknown)

T 1

T=N+SHX+W
1

Sketch in global normal path (known)

Small flows in fast path (unknown)
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Matrix Interpolation Problem

» Based on theoretical analysis and microbenchmarks

(1. sparse vector)
(low-rank structure) (2. each flow is bounded)

Expected output sketch (brknewr) Large flows in fast path (drknrewn)

T 1

T=N+SHX+W
1

Sketch in global normal path (known)

Small flows in fast path (unknown)
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Matrix Interpolation Problem

» Based on theoretical analysis and microbenchmarks

(1. sparse vector)
(low-rank structure) (2. each flow is bounded)

Expected output sketch (brknewr) Large flows in fast path (drknrewn)

T 1

T=N+SHX+W
1

Sketch in global normal path (known)

Small flows in fast path (vrkrewnr)
(small and close values)
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Matrix Interpolation Problem

» Based on theoretical analysis and microbenchmarks

(1. sparse vector)
(low-rank structure) (2. each flow is bounded)

Expected output sketch (wrkrewn) Large flows in fast path (drknrewn)

Total traffic is known

—Y

T N+Sk

Sketch in global normal path (known)

Small flows in fast path (vrkrewnr)
(small and close values)
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Recovery Approach

Existing Information

T =N + sk(x+y) T has low-rank structure values in y are small and close
X IS sparse Flows in x are bounded

Total traffic of x and y is known

Compressive sensing framework

Optimization problem
(encode existing information)

Solve optimization problem

An estimated network-wide sketch

22



Evaluation
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Evaluation Setup

> Prototype based on OpenVSwitch

> Environments

* Testbed: 8 OVS switches connected by one 10Gbps hardware switch
* In-memory simulation: 1 — 128 simulation processes

» Workloads: CAIDA

Measurement tasks

/—%

Heavy hitter detection Heavy changer detection Superspreader detection
DDoS detection Cardinality estimation Entropy estimation

Flow distribution estimation
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Throughput

» Compared with two data plane approaches
* NoFastPath: use only Normal Path to process all traffic
* MGFastPath: use Misra-Gries Algorithm to track large flows in Fast Path

» Achieve ~10 Gbps in testbed (single CPU core)
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» Achieve ~20 Gbps in simulation (single CPU core)
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Accuracy

> Compare with four recovery approaches
* Ideal: an oracle to recover the perfect sketch
* NR: no recovery at all
* LR: only use lower estimate of large flows in Fast Path
* UR: only use upper estimate of large flows in Fast Path

» SketchVisor matches the ideal approach
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Network-wide Results

> Recover sketch from 1-128 hosts

» Accuracy improved as number of hosts increases
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» Work for both byte-based tasks (heavy hitter detection) and
connection-based tasks (cardinality estimation)
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Conclusion

» SketchVisor: high-performance system for sketch algorithms

» Double-path architecture design
* Slower and accurate sketch channel (normal path)
* Fast and less accurate channel (fast path)

» Fast path algorithm in data plane
* General and high performance

» Recovery in control plane
* Achieve high accuracy using compressive sensing

» Implementation and evaluation
* OpenVSwitch based implementation
* Trace-driven experiments
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