SketchVisor: Robust Network Measurement
for Software Packet Processing

Qun Huang, Xin Jin, Patrick P. C. Lee,
Runhui Li, Lu Tang, Yi-Chao Chen, Gong Zhang

g@]OHNSI—i;:'(')PKINS

HUAWEI UNIVERSITY

Monitoring Traffic Statistics

Network management

Network-wide flow statistics

Traffic Flow Heavy
distribution cardinality hitters

Sketch: A Promising Solution

» Sketch: a family of randomized algorithms
* Key idea: project high-dimensional data into small subspace

High-dimensional data

Randomized projection

——————————————————

! !
: {%:._) Statistics :
! !
: Subspace | :

Data structure

Small subspace:
low computation & communication overheads

» Subspace reflects mathematical properties
* Strong theoretical error bounds when querying for statistics

Example: Count-Min Sketch

» Count flow packets

* |Increment each selected counter

Packet > Query a flow

* Hash the flow to multiple counters

* Take the minimum counter as estimated packet count

» Theoretical guarantees
* Allocate rows and counters each row
Each element is a counter * The error for a flow is at most with probability at least

Our Focus

» Sketch-based measurement atop software switches

Network-wide sketch

Local sketch

IR

Local sketch

Local sketch

T - Local sketch

Hardware Switches

Limitation of Sketches

Basic setches

Lack of generality Limited query

‘ More structures

Complicated sketches

2150001 10.0-

& 8 o A
510000, 3 70 o"'g”&

3 350 ., -0
S 5000 < VA

) 3 55 &/ - <>FlowRadar
- = - RevSketch
Q. 0+ — Cr UnivMon
© A 0.0- [Deltoid_

1 2 3 4 5
Number of threads

Our Contributions

SketchVisor: Sketch-based Measurement System for Software Packet Processing

» Performance
* Catch up with underlying packet forwarding speed

» Resource efficiency
* Consume only limited resources

» Accuracy
* Preserve high accuracy of sketches

> Generality
* Support multiple sketch-based algorithms
> Simplicity
* Automatically mitigate performance burdens of sketches without manual tuning

Architecture: Double-Path Design

Control plane

Network-wide merge & recovery

Global fast path

Merge two paths
* Recover lost information
* Transparent to users

Data plane Switches

To control plane

Local fast path

User-defined sketches Sketch 1 Il Sketch 2

* High accuracy Sketch 3 || Sketch 4

Fast path
algorithm

* (Relatively) slower

Buffer *

Fast path

* High speed

* (Relatively) less accurate

* General for multiple sketches

Packets
— T

Key Questions

» Data plane: how to design the fast path algorithm?

» Control plane: how to merge the normal path and fast path?

Intuitions

» Consider sketches which map flow byte counts into counters
* Other sketches (e.g., Bloom Filter) can be converted

Each large flow has significant impact

I Flows Sketch counters
I I En I D D D B D S ..
Large Flows Many Small Flows

Each small flow Aggregated impact of
has limited impact small flows is significant

10

Fast Path Algorithm

ldeal algorithm
Infeasible with limited resources

Per-flow byte count
of large flows

Aggregated byte count of
small flows

Our practical algorithm
How

(Approximate) per-flow
byte count of large flows

(Approximate) aggregated
byte count of small flows

Byte of small flows = total byte — byte of large flows »

Approximate Tracking of Large Flows

» A small hash table
* “Guess” and kick out potentially small flows when table is full
* Each flow has three counters

Estimated errors due
Byte count to flow kick-outs

*—

Flow ID Counter1 Counter 2 Counter 3

Performance and Accuracy

» Theoretical analysis shows:
* All large flows are tracked
* Amortized O(1) processing time per packet
* Bounded errors

» Compared to Misra Gries top-k algorithm

o)
o

gigggg MGFastPath E? | “bﬂwergmggﬁtgﬂm
| | — ==|Jpper astPat
EBDDDD- Sketchkﬂ’lsm O 40{ = Lower(SketchVisor)
9 = - Upper{SketchVisc:rr} g A
£20000: o "
= 100001 ._ -
l:l::i
] s |

A R
Ou, 9"15‘ % 2y
1?‘:?{}’1:? ﬁ‘ﬂf% MG fqbr

(a) Number of flow kick-outs (b) Errors of top-k flows

Key Questions

» Data plane: how to design a fast path algorithm?

» Control plane: how to merge the normal path and fast path?

14

Control Plane: Challenge

» Input insufficient to form network-wide sketches

Input 1: Incomplete sketch

Expected output:

with missing values Network-wide sketch

Network-wide

Global fast path

Flow ID Counter 1 Counter 2 Counter 3

recovery

o : Input 2: Approximate large

Flow 2 1 flows in fast path

Flow 3 2

Total byte Input 3: Total byte

count counts in fast path

15

Matrix Interpolation Problem

» The recovery process can be expressed as

Expected output sketch (unknown) Large flows in fast path (unknown)

T 1

T=N+SHX+W
1

Sketch in global normal path (known)

Small flows in fast path (unknown)

16

Matrix Interpolation Problem

» Based on theoretical analysis and microbenchmarks

Expected output sketch (unknown) Large flows in fast path (unknown)

T 1

T=N+SHX+W
1

Sketch in global normal path (known)

Small flows in fast path (unknown)

17

Matrix Interpolation Problem

» Based on theoretical analysis and microbenchmarks

(low-rank structure)

Expected output sketch (urkrewn) Large flows in fast path (unknown)

T 1

T=N+SHX+W
1

Sketch in global normal path (known)

Small flows in fast path (unknown)

18

Matrix Interpolation Problem

» Based on theoretical analysis and microbenchmarks

(1. sparse vector)
(low-rank structure) (2. each flow is bounded)

Expected output sketch (brknewr) Large flows in fast path (drknrewn)

T 1

T=N+SHX+W
1

Sketch in global normal path (known)

Small flows in fast path (unknown)

19

Matrix Interpolation Problem

» Based on theoretical analysis and microbenchmarks

(1. sparse vector)
(low-rank structure) (2. each flow is bounded)

Expected output sketch (brknewr) Large flows in fast path (drknrewn)

T 1

T=N+SHX+W
1

Sketch in global normal path (known)

Small flows in fast path (vrkrewnr)
(small and close values)

20

Matrix Interpolation Problem

» Based on theoretical analysis and microbenchmarks

(1. sparse vector)
(low-rank structure) (2. each flow is bounded)

Expected output sketch (wrkrewn) Large flows in fast path (drknrewn)

Total traffic is known

—Y

T N+Sk

Sketch in global normal path (known)

Small flows in fast path (vrkrewnr)
(small and close values)

21

Recovery Approach

Existing Information

T =N + sk(x+y) T has low-rank structure values in y are small and close
X IS sparse Flows in x are bounded

Total traffic of x and y is known

Compressive sensing framework

Optimization problem
(encode existing information)

Solve optimization problem

An estimated network-wide sketch

22

Evaluation

23

Evaluation Setup

> Prototype based on OpenVSwitch

> Environments

* Testbed: 8 OVS switches connected by one 10Gbps hardware switch
* In-memory simulation: 1 — 128 simulation processes

» Workloads: CAIDA

Measurement tasks

/—%

Heavy hitter detection Heavy changer detection Superspreader detection
DDoS detection Cardinality estimation Entropy estimation

Flow distribution estimation
24

Throughput

» Compared with two data plane approaches
* NoFastPath: use only Normal Path to process all traffic
* MGFastPath: use Misra-Gries Algorithm to track large flows in Fast Path

» Achieve ~10 Gbps in testbed (single CPU core)

g 15 BENoFastPath BMGFastPath BSketchVisor

Ml el ol T

Deltoid UnivMon Twolevel RevSketch FlowRadar FM kMin MRAC

» Achieve ~20 Gbps in simulation (single CPU core)

g %0 ENoFastPath [IMGFastPath [lSketchVisor

TR EREREE|

Deltoid UnivMon Twolevel RevSketch FlowRadar FM kMin LC MRAC

<

2 o

Throughput(Gbp

25

Accuracy

> Compare with four recovery approaches
* Ideal: an oracle to recover the perfect sketch
* NR: no recovery at all
* LR: only use lower estimate of large flows in Fast Path
* UR: only use upper estimate of large flows in Fast Path

» SketchVisor matches the ideal approach
EINR BELR BUR [JSketchVisor [[Jldeal

Recall (%)
S
Precision (%
[I |
=

]
o

100 ~.100;
75 — 75
25]
.D- i

=

FlowRadar RevSketch UnivMon Deltoid FlowRadar RevSketch UnivMon Deltoid
(a) HH Recall (b) HH Precision

Network-wide Results

> Recover sketch from 1-128 hosts

» Accuracy improved as number of hosts increases

1004 jmm R -|_|-.--'.}--i_i“-{__:---I.}--{_l
¥ F :'—;r'.-_ il Y
et L ——

% 90 1/‘ =

E: 80y < fﬁ;} <> FlowRadar

@ 20 / » RHevSketch

o Y s UnivMon
— O Deltoid

1 2 4 8 16 32 B4 128
Mumber of hosts

(a) HH recall

Precision (%)

-1 DD_ _r-|_ r ¥ £l :-'l_r ‘_-_H':T

99
98-

1 <» FlowRadar
97 RevSketch
061 s UnivMon

O Deltoid

95

1 2 4 8 16 32 B4 128
Mumber of hosts

(b) HH precision

Relative error (%)

on

< FM
L+kMin
10{ ~ s “LC
i NN ol el
0

1 2 4 8 16 32 64 128
Mumber of hosts
(d) Cardinality error

» Work for both byte-based tasks (heavy hitter detection) and
connection-based tasks (cardinality estimation)

27

Conclusion

» SketchVisor: high-performance system for sketch algorithms

» Double-path architecture design
* Slower and accurate sketch channel (normal path)
* Fast and less accurate channel (fast path)

» Fast path algorithm in data plane
* General and high performance

» Recovery in control plane
* Achieve high accuracy using compressive sensing

» Implementation and evaluation
* OpenVSwitch based implementation
* Trace-driven experiments

28

	Slide 1
	Monitoring Traffic Statistics
	Sketch: A Promising Solution
	Example: Count-Min Sketch
	Our Focus
	Limitation of Sketches
	Our Contributions
	Architecture: Double-Path Design
	Key Questions
	Intuitions
	Fast Path Algorithm
	Approximate Tracking of Large Flows
	Performance and Accuracy
	Key Questions
	Control Plane: Challenge
	Matrix Interpolation Problem
	Matrix Interpolation Problem
	Matrix Interpolation Problem
	Matrix Interpolation Problem
	Matrix Interpolation Problem
	Matrix Interpolation Problem
	Recovery Approach
	Evaluation
	Evaluation Setup
	Throughput
	Accuracy
	Network-wide Results
	Conclusion

