
SilkRoad

Making Stateful Layer-4 Load Balancing Fast and Cheap 
Using Switching ASICs

Rui Miao 

James Hongyi Zeng, Jeongkeun Lee, Changhoon Kim, Minlan Yu

1



Layer-4 Load Balancing

VIP1

Layer-4 load balancing is a critical function
– handle both inbound and inter-service trafc
– >40%* of cloud trafc needs load balancing (Ananta [SIGCOMM’13])

2

– Direct IP

– Virtual IP

DIP1 DIP2 DIP3 DIP4 DIP5

VIP1DIP4

VIP2

L4 Load 
Balancer
L4 Load 
Balancer



Scale to trafc growth

3

 Multi-rooted 
topology 

 Datacenter 
transport

…

Cloud trafc has a rapid growth
– doubling every year in Google, Facebook (Jupiter Rising [SIGCOMM’15])

L2/L3: one big virtual switch

L4: can we scale out load balancing to 
match
       the capacity of physical network?

L4: can we scale out load balancing to 
match
       the capacity of physical network?



Frequent DIP pool updates

4

VIP1

L4 Load 
Balancer
L4 Load 
Balancer

DIP pool updates
– failures, service expansion, service upgrade, etc.
– up to 100 updates per minute in a Facebook cluster

Hash function changes under DIP pool updates
– packets of a connection get to diferent DIPs
– connection is broken

Hash(p) % 3

ECMP: Hash(p) = 9

Hash(p) % 2

VIP1



Per-connection consistency (PCC)

Broken connections degrade the performance of cloud services
– tail latency, service level agreement, etc.

PCC: all the packets of a connection go to the same DIP

5

L4 load balancing needs connection statesL4 load balancing needs connection states



Scale to trafc growth
 

While ensuring PCC under frequent DIP pool updates

Design requirements

6



Existing solution 1: use software server

VIP1

7

High cost 
– 1K servers (~4% of all servers) for a cloud with 10 Tbps

High latency and jitter
– add 50-300 μs delay for 10 Gbps in a server

Poor performance isolation
– one VIP under attack can afect other VIPs

Software load 
balancer

Scale to trafc growth
PCC guarantee

Ananta [SIGCOMM’13]
Maglev [NSDI’16]

L4 Load 
Balancer
L4 Load 
Balancer



Existing solution 2: partially ofoad to switches

8

Hash function changes under DIP pool updates
– switch does not store connection states

Scale to trafc growth
No PCC guarantee

VIP1

Duet [SIGCOMM’14]
Rubik [ATC’15]

ECMP: Hash(p) = 9

Hash(p) % 3

Partial ofoading

Hash(p) % 2

Software load 
balancer



Scale to trafc growth PCC guarantee

Software load balancer

Partial ofoading

SilkRoad

SilkRoad

9

Challenge: 
guarantee PCC 
under multi-Tbps

Build on switching 
ASICs 
with multi-Tbps

Address such challenges using hardware primitives



ConnTable in ASICs

VIP DIP pool

20.0.0.1:
80

10.0.0.1:
20

10.0.0.2:
20

Connection DIP

1.2.3.4:1234
20.0.0.1:80 
TCP

10.0.0.2:
20

VIPTable 
store the DIP pool for each VIP

ConnTable
store the DIP for each connection

Insert

mis
s

hit

10

1.2.3.4:123
4

20.0.0.1:8
0 TCP

1.2.3.4:123
4 

10.0.0.2:2
0 TCP



Design challenges

11

Challenge 2: do all the operations (e.g., PCC) in a few nanoseconds

Approach: use hardware primitives to handle connection state and its 
dynamics

Challenge 2: do all the operations (e.g., PCC) in a few nanoseconds

Approach: use hardware primitives to handle connection state and its 
dynamics

Challenge 1: store millions of connections in ConnTable

Approach: novel hashing design to compress ConnTable

Challenge 1: store millions of connections in ConnTable

Approach: novel hashing design to compress ConnTable



• Up to 10 million active connections per rack in Facebook trafc 
– a naïve approach: 10M * (37-byte 5-tuple + 18-byte DIP) = 550 MB 

• ASIC features: storing all connection states just become possible 
– increasing SRAM size 
– emerging programmability allows to use SRAM fexibly

Many active connections in ConnTable

12

Year 2012 2014 2016

SRAM 
(MB)

10-
20

30-
60

50-
100



Compact connection match key by hash digests
False positives caused by hash digests
– the chance is small (<0.01%) 
– resolved via switch CPU (details in the paper)

Approach: novel hashing design to compress ConnTable

13

Connecti
on

DIP

0xEF1C [1002:200C::1
]:80

 

Connection DIP
[2001:0db8::2]:1234[2001:0db8::1]
:80 TCP

[1002:200C::1
]:80

 

ConnTable
5-tuple

(37-
byte)

hash 
digest 
(16-bit)



Compact action data with DIP pool versioning

Approach: compress ConnTable

14

VIP
Versi
on

DIP pool

[2001:0db8::1]
:80 100000

[1002:200C::1
]:80

[1002:200C::2
]:80

[2001:0db8::1]
:80

100001 [1002:200C::1
]:80

  

DIPPoolTable

Connecti
on

DIP

0xEF1C
[1002:200C::1
]:80

 

Connecti
on

Versi
on

0xEF1C 100000

0x1002 100001

 

ConnTable

18 bytes

version
(6-bit)

ConnTable

store VIP-to-DIP pool mapping

x 10M entries



Design challenges

15

Challenge 2: do all the operations (e.g., PCC) in a few nanoseconds

Approach: use hardware primitives to handle connection state and its 
dynamics

Challenge 2: do all the operations (e.g., PCC) in a few nanoseconds

Approach: use hardware primitives to handle connection state and its 
dynamics

Challenge 1: store millions of connections in ConnTable

Approach: novel hashing design to compress ConnTable

Challenge 1: store millions of connections in ConnTable

Approach: novel hashing design to compress ConnTable



ASIC feature: ASICs use highly efcient hash tables
– fast lookup by connections (content-addressable) 
– high memory efciency
– but, require switch CPU for entry insertion, which is not atomic

Entry insertion is not atomic in ASICs

16

t1: Arrived t2: Inserted
C1

1 ms

t

C1 is a pending connection between t1 and t2C1 is a pending connection between t1 and t2

match on ConnTable
to select DIP1

cannot see entry in 
ConnTable

select DIP1



DIP pool update breaks PCC for pending connections
Frequent DIP pool updates
– a cluster has up to 100 updates per minute

Many broken connections under DIP pool updates

17

Arrived Inserted

use new version
and violate PCC

use old 
version

DIP pool update









1K connections
t

t

t

C1



ASIC feature: registers
– support atomic update directly in ASICs
– store pending connections in registers

Approach: registers to store pending connections

18

Arrived Inserted

DIP pool update







 t

t

t
Store in registers



Strawman: store connection-to-DIP mapping
– to look up connections, need content addressable memory
– but, registers are only index-addressable 

Key idea: use Bloom flters to separate old and new DIP pool 
versions
– store pending connections with old DIP pool version
– other connections choose new DIP pool version
– this is a membership checking, and only need index addressable

Approach: registers to store pending connections

19

Details in the paper



Data plane in a programmable switching ASIC
– 400 lines of P4 code
– ConnTable, VIPTable, DIPPoolTable, Bloom flter, etc.

Control plane functions in switch software
– 1000 lines of C code on top of switch driver software
– connection manager, DIP pool manager, etc.

Prototype implementation

20



Throughput
– a full line rate of 6.5 Tbps
– one SilkRoad can replace up to 100s of software load balancers
– save power by 500x and capital cost by 250x

Latency
– sub-microsecond ingress-to-egress processing latency

Robustness against attacks and performance isolation
– high capacity to handle attacks
– use hardware rate-limiters for performance isolation

PCC guarantee

Prototype performance

21



Data from Facebook clusters
– about a hundred clusters from PoP, Frontend, and Backend
– One month of trafc trace with around 600 billion connections
– One month of DIP pool update trace with around three millions update 

Flow-level simulation
– run SilkRoad on all ToR switches
– 16-bit digest and 6-bit version in ConnTable

Simulation setup

22



SilkRoad can ft into switch memory

23

switching ASICs have 50-100 MB SRAM

use up to 58MB SRAM
to store 15M connections



Conclusion

24
Application trafc Application servers

SilkRoad: direct path 

Scale to trafc growth with switching ASICs
High-speed ASICs make it challenging to ensure PCC
– limited SRAM and limited per-packet processing time

SilkRoad: layer-4 load balancing on high-speed ASICs
– a line rate of multi-Tbps
– ensure PCC under frequent DIP pool updates
– 100-1000x saving in power and capital cost



Thank You!

Please come and see our demo
Implemented using P4 on Barefoot Tofno ASIC

Time: Tuesday (August 22), 10:45am - 6:00pm 
Location: Legacy Room

25



BACK UP

26



Network-wide deployment

27

Simple scenario: at all the ToR switches and core switches
– each SilkRoad switch announces routes for all the VIPs
– all inbound and intra-datacenter trafc is load-balanced at its frst hop

VIP2

VIP1

DIP1 DIP2 DIP3

DIP 
trafc

VIP 
trafc

Core 

Agg 

ToR



Network-wide deployment

28

Harder scenarios: network-wide load imbalance, limited SRAM 
budget, incremental deployment, etc.
Approach: assign VIPs to diferent switch layers to split trafc

VIP1

DIP1 DIP2

VIP1

DIP 
trafc

VIP 
trafc

VIP1

VIP assignment is a 
bin-packing problem

Core 

Agg 

ToR

assign VIP1 to 
Agg switches


	Slide 1
	Layer-4 Load Balancing
	Slide 3
	Frequent DIP pool updates
	Per-connection consistency (PCC)
	Design requirements
	Existing solution 1: use software server
	Existing solution 2: partially offload to switches
	SilkRoad
	ConnTable in ASICs
	Design challenges
	Many active connections in ConnTable
	Approach: novel hashing design to compress ConnTable
	Approach: compress ConnTable
	Design challenges
	Entry insertion is not atomic in ASICs
	Many broken connections under DIP pool updates
	Approach: registers to store pending connections
	Approach: registers to store pending connections
	Prototype implementation
	Prototype performance
	Simulation setup
	SilkRoad can fit into switch memory
	Conclusion
	Slide 25
	Back up
	Network-wide deployment
	Network-wide deployment

