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Fake/Spam/Biased Reviews

e Online reviews play an important role in Decision making process

e Review Spamming, Motivations:
o Fame
o Financial gain

e To promote or demote other products

e Opinion spamming is now a business
o people get paid to write fake reviews
o  So they write many reviews about many products, such collective behavior can give them away

e This study: Focusing on Spammer Groups instead of individual

reviews/reviewers 2
s



Dataset

e C(reated a Labeled dataset for group opinion spam
e Refers to prior studies and argue that in absence of labeled data, best
option is to create one based on human expert

e Dataset Stats:

o Amazon Dataset from 2006 (updated on 2010)
o Only manufactured products (53K reviewer with 110K reviews on 39K products)
o Attributes: Title, content, star rating , posting date and helpful feedbacks

e 1) Candidate groups: Using Frequent Itemset Mining (FIM)
o On list of reviewer ids per product
o All groups with min_sup =3 and 2 items
m  Groups with at least 2 reviewers who worked at least on 3 products



Dataset

e 2)Opinion Spam signals:
o Provided the list spam signals from prior research and websites:
m (i) having zero caveats, (ii) full of empty adjectives, (iii) purely glowing praises with
no downsides, (iv) being left within a short period of time of each other
o Access to review Database

e Judges: employees from Rediff shopping (4) and eBay.in (4)
o Spent 8 weeks to label 2431 groups.
o Spamicity Rate (SR)
m 1:spam, 0.5 borderline, 0: no-spam
e 8 votes, average of all would be the SR for review.
e average of reviews SR => group spamicity



SPAMMING BEHAVIOR INDICATORS

For modeling or learning, a set of effective spam indicators or features is needed




Spamming behavior indicators

1. Group spam behavior indicators
o  Group time window (GTW)

GTW(g)= rﬂax{GTWp{g, p)).

0 if L(g,p)-F(g.p)>7
GTW,(g,p)= I_L(g,p)—F(g,p}

(3

otherwise

o Group Deviation (GD)

GD(g) = n;g}( D(g, p)).

1755 = 7ps |
D(g, p)=—""%,



Spamming behavior indicators

e Group spam behavior indicators
o Group Content Similarity (GCS)

GCS(g)=max(CSg (8, P));

CS.(g,p)= avg (casfne(ﬂ(m; . p)c(m,, PD),

m“mJEg,i{j

o Group Member Content Similarity (GMCS)

ZCSH {g:m]

|g|

CS, (g,m)= avg (cﬂsine(c(m, p;).c(m,p; )]')

Pi:P jEPg A 7



Spamming behavior indicators

e Group spam behavior indicators
o Group Early Time Frame (GETF)

GETF(g) = max(GTF(g, p)).
pEPS
0 if L(g,p)—A(p)>p
GTF(g,p)=1,_L(g.p)—A(p)
B

otherwise

o Group Size Ratio (GSR)

GSR(g) = m}:ﬁg(GSRp{g,p)],
pef,

lg|
GSR.(g,.p)=—"—,
M, |



Spamming behavior indicators

e Group spam behavior indicators
o Group Size (GS)

| g|
GS(g)=—"2—
B )

o  Group Support Count (GSUP)

GSURg)=— 2.
max(| P, |)




Spamming behavior indicators

2. Individual Spam Behavior Indicators
o Individual Rating Deviation (IRD):

ro—r
IRD(m, p)=—| | L 7 £ |

o Individual Content Similarity (ICS)

ICS (m, p) = avg (cosine (¢(m, p))
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Spamming behavior indicators

2. Individual Spam Behavior Indicators
o Individual Early Time Frame (IETF)

0 if L(m, p)—A(p) > f
[ETRm,p) = 1— Lom,p)—A(p) otherwise 2
B
o Individual Member Coupling in a group (IMC) This behavior measures how
closely a member works with
the other members of the
IMC(g,m)=av |(T(m, p) — F(g, p)) —ave(g,m)| group. If a member m almost
’ peP, Lig.p)—F(g,p) i posts at the same date as
other group members, then m
Tént  pY—F is said to be tightly coupled
] ;,E. (m. p)~Fig.p) with the droup
avg(g,m) == ;
lg|-1
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Empirical Analysis




Statistical validation

e Spamicity threshold : 0.5 =>62% non-spam and 38% spam groups
e Feature effectiveness:
° Eff (f)=P(f >0|Spam)— P(f > 0| Non — spam ),

F{f}mgpﬂm}=|{S|f(g}}UAgESpam}|
|{g | g € Spam |
BT 0] Now—spam) = 18 17(@) > 0~ g & Nori—spam} |
| {g | g € Non—spam} |

o Using Fisher's exact test, it is reported that spam groups are more likely to exhibit
feature.
m null hypothesis rejected with p< 0.0001

13



Behavioral Distribution

e Position

o  for a given cumulative percentage cp, the corresponding
feature value xn for non-spam groups is less than xs for spam
groups

e Steep initial jumps
o very few groups obtain significant feature

GCs GMCS

e

‘‘‘‘‘

values 0s {,~
0.6
e Gaps
o The separation margin refers to the relative r
discriminative potency '
1
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Figure 4: Behavioral Distribution. Cumulative % of spam (solid) and
non-spam (dashed) groups vs. feature value 14



MODELING RELATIONS




MODELING RELATIONS

Better not to follow the classic approach : Classification

1. training and testing instances are not independently and identically
drawn from some distribution (groups share members)

2. Group features only summarize the group behaviors (avg/sum)
a. lead to loss of information

3. ltis difficult to include the effect of Products!

So, they propose a more effective model to address the above concerns and
also cover three binary relations:

Group Spam-Products
Member Spam-Products,

and Group Spam-Member Spam. »



Group Spam-Products Model

e The relation among groups and products they target.

o (i) spam contribution to p by each group reviewing p and
o (ii) “spamicity” of each such group

w(p,g,)= é{GTWP(g,-,p,-) +D(g;,p)+GTF(g,;,p;)+CSs(g;, p))+ GSR,(g;,p)],
Wre = [wi(pi, g)] PG (16)

Wee denotes the corresponding contribution matrix.

e

(5
s(p;)= {2 wi(p:.8,;)5(8,); Vo =Wp:Vs,
j=1
[ &
s(g,)=D2 w(p,.&g)s(p,); Vo =WV,
i=1
17
s



Member Spam-Product Model

e |RD (individual rating deviation of m towards p)
e |CS (individual content similarity of reviews on p by m)
e |ETF (individual early time frame of spam infliction by m towards p)

|
wy(m,, p,) = 3 [IRD(m,, p,)+ICS(m,, p,)+ IETF (m_, p,)],

Wi = [wa(mi, pi)] pxip (19)

We sum the individual contribution of each member w2, weighted by its
spamicity: " mes
5(’"&)=sz(mkapf)3(ﬂ)5 Vie =WV

M|
s(p;) = sz (m,p)s(my); Ve =Wy,
k=1
18
s



Group Spam-Member Spam Model

e |IMC (degree of m’'s couplingin g),
e GS (size of g with which m worked), and
e GSUP (number of products towards which m worked with g)

Ws(gj,mk)=%[J’MC(gpmk)-P(I—GS(g,,-))+GSUP(gj)],

Wan = [w3(gj, mi)] |Gpm) /

for large groups, the individual contribution of a member diminishes. Hence we use 1-GS(gj) to compute w3.

M) - B
s(g,) =D wi (g, ,m)s(m); Vi =We,Vy,
k=1

1G]
s(m,) = Zw3(gj:mk )S(gj); Vi = WJMVG'

J=1

19
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GSRank: Ranking Group Spam

Algorithm: GSRank

IIlpl.ltZ Welght matrices WP(}*, Wyp, and Wy,
Output: Ranked list of candidate spam groups

1. Initialize Vg’ « [0.5])ig; t<1;

e Iterate: |
1. Vp «— Wpg VG(I- ) s V= Wup Vp;
11 VG «— WGM VM, VM e WGMT VG "

i, Vo Wiel Viis Ve W W?
iv. V@V Veh;
until || V6 = V6" ||, <8
3. Output the ranked list of groups in descending order of V;*

Complexity: linear in the number of candidate groups discovered by FIM
O(«(|GI(|M[+|P]) + [M]|P]))

20




EXPERIMENTAL EVALUATION

e We first split 2431 groups:

o The development set, D with 431 groups (randomly sampled) for parameter estimation
m for GTW and GETF,
e using a greedy hill climbing search to maximize the log likelihood of the set D

o T=287
the time interval beyond which members in a group are not likely to be working in collusion
e PB=886

denotes the time interval beyond which reviews posted are not considered to be “early” anymore

o The validation set, V with 2000 groups for evaluation.

e All evaluation metrics averaged over 10-fold cross validation (CV)



Ranking Experiments :: baselines

1.

2.

Using regression

(@)

(@)

The problem of ranking spammer groups can be seen as:
m optimizing the spamicity of each group as a regression target
the support vector regression (SVR) system in SVMiight is used

and Learning to Rank

(@)

(@)

(@)

we treat each feature f as a ranking function

The rank produced by each feature is based on a certain spamicity dimension

None of the ranks may be optimal. A learning to rank method basically learns an optimal
ranking function using the combination of f1...f8

Each group is vectorized with (represented with a vector of) the 8 group spam features

22



Ranking Experiments, cont.

e Normalized Discounted Cumulative Gain (NDCQ) as our evaluation metric

e GSRank performs the best at all top rank positions except at the bottom,
o which are unimportant because

they are most likely to be non-spam I T s
(since in each fold of cross validation, 0.8 - ”»y‘s”{)e'"-?’—':—?\:‘
the test set has only 200 groups and 06 i
out of the 200 there are at most 38%
0.4
Spam groups) R e
02 e SVR
----- SVMRank
0 ——— RankBoost
0 20 40 60 80 100
rank

23



Ranking Experiments, cont.

e we also experimented with the 09 | SSVMRank = RunkBoos
. . 0.8 A ESVMRank H ®RankBoost_H
following baselines: 07 FSunm ~ WHS

o Group Spam Feature Sum (GSFSum) e

04 -

B torankthe groups in descending order of the
sum of all feature values

o Helpfulness Score (HS)

20 40 60 80 100
(a) The spamicity threshold of £=0.5

m GSRank mSVR
m  HS uses the mean helpfulness score 09 - B SVMRank  RankBodst
(percentage of people who found a review 08 1 '%‘SfoEnﬂk_H :EgnkBﬂDst_H
helpful) of reviews of each group to rank 0.7 A
groups in ascending order of the scores 0.6 |
o Heuristic training rankings (H) 0.5 1
0.4 -
B three heuristic rankings using feature mixtures 20 40 60 80 100
h(g): G— R*, hy(g) = GCS(g) + GMCS(g) = o _
halg): G — R, hn(g) = GS(g) + GSUP(g) + GTW(g) (b) The spamicity threshold of &= 0.7
hle}: G+ K . In(e) = GSR(E) + GRIEIEY+GDg) Figure 6: Precision @ n = 20, 40, 60, 80, 100 rank positions.

All the improvements of GSRank over other methods are statistically significant at
the confidence level of 95% based on paired t-test.

£=05 | £=07
Spam 38% 29%
Non-spam 62% 1%




Classification

e |f a spamicity threshold is applied to decide spam and non-spam groups,
supervised classification can also be applied

e features that we consider in learning;:
o Group Spam Features (GSF)
o Individual Spammer Features (ISF)
o Linguistic Features of reviews (LF)
(word and POS (part-of-speech) n-gram features))

e AUC (Area Under the ROC Curve) is employed for classification evaluation

25



Classification

. | SVM | Rank | SVM Rank GS
Feature Settings| SVM | LR |SVR Rank | Boost [Rank_H| Boost_H | Rank
GSF 081 10771083 083 | 0.85 0.81 0.83 0.93
ISF 0.67 10671071 0.70 | 0.74 0.68 0.72
LF 065 |062]063] 067 | 0.72 0.64 0.71
GSF+ISF+LF| 0.84 |0.81]085] 0.84 | 0.86 0.83 0.85
(a) The spamicity threshold of £= 0.5
2 SVM | Rank | SVM Rank GS
Feature Settings| SVM | LR |SVR Rank | Boost [Rank_H| Boost_H | Rank
GSF 083 10.79]1084] 085 | 0.87 0.83 0.85 0.95
ISF 0.68 |06810.73] 0.71 | 0.75 0.70 0.74
LF 0.66 10.62]10.67] 069 | 0.74 0.68 0.73
GSF+ISF+LF| 0.86 |0.83]086]| 0.806 | 0.88 0.84 0.86
(b) The spamicity threshold of £= 0.7

Table 2: AUC results of different algorithms and feature sets.
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The End




