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ABSTRACT Deep belief nets (DBNs) with restricted Boltzmann machines (RBMs) as the building block
have recently attracted wide attention due to their great performance in various applications. The learning
of a DBN starts with pretraining a series of the RBMs followed by fine-tuning the whole net using
backpropagation. Generally, the sequential implementation of both RBMs and backpropagation algorithm
takes significant amount of computational time to process massive data sets. The emerging big data learning
requires distributed computing for the DBNs. In this paper, we present a distributed learning paradigm for
the RBMs and the backpropagation algorithm using MapReduce, a popular parallel programming model.
Thus, the DBNs can be trained in a distributed way by stacking a series of distributed RBMs for pretraining
and a distributed backpropagation for fine-tuning. Through validation on the benchmark data sets of various
practical problems, the experimental results demonstrate that the distributed RBMs and DBNs are amenable
to large-scale data with a good performance in terms of accuracy and efficiency.

INDEX TERMS Big data, deep learning, MapReduce, Hadoop, deep belief net (DBN), restricted Boltzmann
machine (RBM).

I. INTRODUCTION
In recent years, deep learning has been receiving great popu-
larity from both academia and industry due to its excellent
performance in many practical problems. Deep belief
nets (DBNs) with stacked restricted Boltzmann machines
(RBMs) [1], [2] are one of the most important multiple-layer
network architectures in deep learning. DBNs are generative
models that are trained to extract a deep hierarchical repre-
sentation of the input data by maximizing the likelihood of
the training data. For the learning of a DBN, the weights
and biases in each level RBM are initialized at first by using
a greedy layer-wise unsupervised training [3], and all the
weights and biases in the global net are then fine-tuned by
using a (supervised) back-propagation algorithm [4].

Although DBNs have achieved great potential in
various applications, such as image and object recognition
[1], [2], [5], speech and phone recognition [6]–[8], infor-
mation retrieval [9] and human motion modeling [10], the
current sequential implementation of both RBM and the
back-propagation based fine-tuning limits their application to
large scale datasets due to the memory demanding and time-
consuming computation. Scalable and efficient learning on
emerging big data requires distributed computing for RBMs
and DBNs.

MapReduce is a programming model introduced by
Google [11] for processing massive datasets. It is typically

used for parallel computing in a distributed environment on
a large number of computation nodes. MapReduce has been
implemented in several systems. One of the most power-
ful implementations is Apache Hadoop [12], a popular free
open-source software framework. In addition to high data
throughput, the Hadoop system can automatically not only
manage the data partition, inter-computer communication and
MapReduce task schedule across clusters of computers, but
also handle computer failure with a high degree. With a suit-
able configuration of the Hadoop ecosystem to the problem at
hand, all the users need to do is to design a master controller
and provide aMap function and a Reduce function. Neverthe-
less, Hadoop does not easily allow iterative processing which
is common in machine learning algorithms.
To make DBNs amenable to large-scale datasets stored on

computer clusters, this paper develops a distributed learning
paradigm for DBNs with MapReduce. We design proper
key-value pairs for each level RBM, and the pre-training
is achieved via layer-wise distributed learning of RBMs in
the MapReduce framework. Subsequently, the fine-tuning is
done via the use of a distributed back-propagation algorithm
based on MapReduce. In particular, mrjob [13] is used in the
implementation to automatically run multi-step MapReduce
jobs, which provides a way for Hadoop to perform iterative
computing required during both the training of RBMs and
the back-propagation. Thus, the distributed learning of DBNs
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is accomplished by stacking a series of distributed RBMs
for pretraining and a distributed back-propagation for fine-
tuning.

Recently, increasing attention on massive data and large
scale network architectures has driven parallel implementa-
tion of deep learning techniques. Locally connected neural
networks [14] and convolutional-alike neural networks [15]
were successfully paralleled on computer clusters. Different
from these works, this paper explores the performance of
deep neural networks with unsupervised pretraining under
distributed settings. In addition, parallel processing of deep
unsupervised learning models, such as stacked RBMs and
sparse coding, using graphical processors (GPUs) has been
discussed in [16], but the use of GPUs may reduce model
performance and is hardly scalable to big data due to limited
memory (typically less than 6 gigabytes). Conversely, our
work enjoys the benefit of high data throughput inherent in
the MapReuce framework. To the best of our knowledge, this
is the first work with implementation details of parallelizing
RBMs andDBNswith theMapReuce framework. To leverage
the data parallelism, we also propose a modified mini-batch
approach for updating parameters.

The remaining of the paper is organized as follows.
Section II provides some basic background on MapReduce,
RBMs and DBNs. Section III elaborates the devel-
oped scheme for distributed RBMs and DBNs based on
MapReduce. Experiments and evaluation results on the
benchmark datasets are given in Section IV with respect to
accuracy and scalability. Finally, this paper is concluded in
Section V.

II. BACKGROUND
In this section, we will give a brief introduction of
MapReduce and DBNs.

A. REVIEW OF MAPREDUCE
MapReduce provides a programming paradigm for perform-
ing distributed computation on computer clusters. Figure 1
gives an overview of theMapReduce framework. In aMapRe-
duce system such as hadoop, the user program forks aMaster
controller process and a series of Map tasks (Mappers) and

FIGURE 1. An overview of the MapReduce framework.

Reduce tasks (Reducers) at different computers (nodes of a
cluster). The responsibilities of the Master involve creating
some number of Mappers and Reducers and keeping track of
the status of each Mapper and Reducer (executing, complete
or idle).
The computation in one MapReduce job consists of two

phases, i.e., a map phase and a reduce phase. In the Map
phase, the input dataset (stored in a distributed file system,
e.g., HDFS) is divided into a number of disjoint subsets which
are assigned to mappers in terms of <key, value> pairs.
In parallel, each Mapper applies the user-specified map func-
tion to each input<key, value> pair and outputs a set of inter-
mediate<key, value> pairs which are written to local disks of
the map computers. The underlying system pass the locations
of these intermediate pairs to the master who is responsible
to notify the reducers about these locations. In the Reduce
phase, when the reducers have remotely read all intermediate
pairs, they sort and group them by the intermediate keys. Each
Reducer literately invokes a user-specified reduce function to
process all the values for each unique key and generate a new
value for each key. The resulting <key, value> pairs from all
of the Reducers are collected as final results which are then
written to an output file.
In the MapReduce system, all the map tasks (and reduce

tasks) are executed in a fully parallel way. Therefore, high-
level parallelism can be achieved for data processing through
the use of the MapReduce model. In recent years, there have
been some parallel learning algorithms [17]–[23] using the
MapReduce framework for efficient implementation.

B. REVIEW OF RBMS AND DBNS
1) RESTRICTED BOLTZMANN MACHINES
An RBM is composed of an input (visible) layer and a hidden
layer with an array of connection weights between the input
and hidden neurons but no connections between neurons of
the same layer. Figure 2 illustrates the undirected graphical
network of an RBM.

FIGURE 2. An illustration of an RBM network.

Rooted in the probabilistic model, RBM is also one par-
ticular type of energy model. Consider an RBM with the
input layer x, hidden layer h, the energy function of the pair
of observation and hidden variables is bilinear (assume the
vectors in this paper are column vectors):

Energy (x, h) = −bT x− cT h− hTWx, (1)
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where vectors b and c are the biases of the input layer and the
hidden layer, respectively, andmatrixW is the fully connected
weight between the two layers. Thus, the distribution of input
is tractable as follows:

P (x) =
∑
h

P(x, h) =
∑
h

e−Energy(x,h)

Z
.

where Z is the partition function. By introducing a new
definition

freeE (x) = −log
∑
h

e−Energy(x,h)

= −bT x−
∑
i

log
∑
hi

eh
T
i (ci+Wix), (2)

the input likelihood can be expressed in an easier way as

P (x) =
e−freeE(x)

Z̃
, (3)

where Z̃ =
∑

x e
−freeE(x).

According to [1] and [24], the conditional distribution in
RBM can be factorized due to the lack of input-input and
hidden-hidden connections. That is to say, calculation of the
conditional distribution can be decomposed into that on the
single node P (h|x) =

∏
i P(hi|x). In the binary case where

hidden node takes either zero or one, the probability of hidden
node taking value one happens to be a sigmoid function of the
input as follows:

P (hi = 1|x) = sigmod (ci +Wix)

=
1

1+ e−(ci+Wix)
. (4)

The essential goal of the training is actually for the hidden
random variables to maintain the distribution of the input
data as much as possible, say, find the optimal parameters
2 = {W, b, c} to maximize the input likelihood. According
to the gradient descent method, the parameters can be itera-
tively updated proportional to the gradient of log-likelihood

∂logP (x)
∂2

= −
∂freeE (x)

∂2
+

∑
x̃

P(x̃)
∂freeE(x̃)

∂2
, (5)

where x̃ denotes the reconstructed x. One commonly used
updating rule to train RBM with approximate data log-
likelihood gradient is contrastive divergence (CD) [25].
In CD, the second term in Eq. 5, statistically representing
an average over all the possible inputs, is replaced with a
single term since the iteration itself has done the average job.
Thus the gradient can be written as

12 ≈ −
∂freeE (x)

∂2
+

∂freeE(x̃)
∂2

. (6)

One can run a Markov chain Monte Carlo (MCMC) to obtain
the input reconstructed by the model. K -step CD takes the
input x as the initial state x1, and runs the chain for k times
x1, x2, . . . , xk+1 by reconstructing input using the learned
model. Although longer MCMC chain promises better per-
formance, the pain is there regarding the computational cost.

Note that small values of k normally suffices for a good result,
even in the case when k = 1.

2) DEEP BELIEF NETS
As a building block for deeper architecture, single RBM is
stacked on top of each other taking the output of previous
RBM as the input after parameters of each RBM are learned
properly. Figure 3 gives an illustration of a DBNwith stacked
RBMs.

FIGURE 3. An illustration of a DBN with stacked RBMs.

In DBNs, concerning that parameters learned in previous
RBMs might not be optimal for parameters learned after-
wards, label information is involved for improvement on the
discriminative power. Hinton et al. [1] proposed to integrate
the label information into the input of top two layers and
fine tune the stacked RBMs with a contrastive version of the
‘‘wake-sleep’’ algorithm, which performed a bottom-up pass
followed by a top-down pass. As far as we are concerned,
the process is tedious and the efficiency is not guaranteed.
It is more straightforward to put the label layer on top as the
output layer and fine-tune the parameters in all layers as in
conventional multilayer perceptron (MLP) [2]. Therefore, the
distributed implementation of stacked RBMs in this paper is
conducted on the basis of MLP structure.

III. METHODOLOGY
This section will describe the main design of distributed
RBMs and DBNs using MapReduce. The key is to design
both a Map function and a Reduce function with proper
input/output key-values pairs for the MapReduce jobs.

A. DISTRIBUTED RBM WITH MAPREDUCE
Given an input dataset D = {xi|i = 1, 2, . . . ,N }, the goal
of training an RBM is to learn the weights W, the biases
b and c. In general, an iterative procedure with a number
of epochs to reach convergence is necessary. In the case
of distributed RBM with MapReduce, one MapReduce job
is required in every epoch. In this paper, we automate the
execution flow of multiple MapReduce jobs with the help of
the mrjob [13] framework which enables the design of multi-
step MapReduce jobs.
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Procedure 1 mrjob_RBM
1: Initialize the variables
2: for each epoch do
3: Map phase

Input: <mapID, valuelist>
Take the values and perform Gibbs sampling to

compute the approximate gradients of W, b and c
Output: <key, valuelist>

4: Reduce phase
Input: <key, valuelist>
Sum up the approximate gradients to get the incre-

ments of W, b and c, and then update them
Output: <mapID, valuelist>

5: end for
Output: the learned W, b and c

Since Gibbs sampling needs to do substantial matrix-
matrix multiplications, it dominates the computation time
during the training of RBM. Hence parallelizing Gibbs sam-
pling on different data subsets in the Map phase will improve
the efficiency. Procedure 1 outlines the pseudo code for dis-
tributed RBM. First, some variables are initialized such as
the numbers of neurons for both visible and hidden layers, the
weight W, the input layer bias b, the hidden layer bias c, the
number of epochs (e.g., T ) to run, and the hyper-parameters
(e.g., learning rate, momentum factor). Then both the map
phase and the reduce phase are repeated for T times. In each
epoch, each mapper performs Gibbs sampling to compute the
approximate gradients of W, b and c, and the reducer updates
them with the calculated increments. (The details for the map
phase and the reduce phase are provided in the following
sections.) It is noteworthy that the format of key-value pairs
emitted by the reducer should be the same as that of the input
for the mapper so that the output of the reducer can be as the
input of the mapper in the next epoch.

1) MAP PHASE
For each mapper, the corresponding mapper ID (a number)
is as the input key and the input value is a list of values.
Each of the values has two elements: the first is a string
(e.g., ′W ′) identifying the type of this value, the second is
the corresponding data (e.g., it can be anM ×N matrix if the
first element is ′W ′). In every epoch (except the first one), the
value is the output of the reducer in the previous epoch, which
is the updated W, b and c and their accumulated approximate
gradients.

The input dataset D is divided into a number of disjoint
subsets which are stored as a sequence of files (blocks) on
Hadoop Distributed File System (HDFS). After reading all
of the key-value pairs, each mapper loads one subset from
the HDFS into memory. Given the information, each mapper
can compute the approximate gradients of the weight and
biases by going through all the mini-batches of the subset
of the training dataset. Each mapper will emit three types

Procedure 2 mrjob_RBM::Map
Input: <mapID, valuelist> pairs
1: Parse valuelist into W, b, c, delta_W, delta_b, delta_c

and t
2: for each data batch x do
3: In positive phase, compute P (h|x):

pos_prob1 = sigmoid((W+ delta_W)x+
c+ delta_c)

and sample the states based on P (h|x):
pos_h_state = (pos_prob1 > randn)

where ‘randn’ is a random number generator to gener-
ate a random number in [0, 1]

4: In negative phase, reconstruct the data:
x̃ = sigmoid((W+ delta_W)T pos_h_state+

b+ delta_b)
and compute P (h|x̃):

pos_prob2 = sigmoid((W+ delta_W)x̃+
c+ delta_c)

5: Compute the approximate gradients of the weight and
biases:
Gw = momentum ∗ Gw+ x.∗pos_prob1−x̃.∗pos_prob2

#samplings_batch

Gb = momentum ∗ Gb+ sum(x)−sum(x̃)
#samplings_batch

Gc = momentum ∗ Gc+ sum(pos_prob1)−sum(pos_prob2)
#samplings_batch

6: Update delta_W, delta_b and delta_c:
delta_W = delta_W+ Gw
delta_b = delta_b+ Gb
delta_c = delta_c+ Gc

7: end for
Output: Emit intermediate key-value pairs< ′Gw′, [W,Gw,

t]>, < ′Gb′, [b, Gb, t]>, and < ′Gc′, [c, Gc, t]>

of intermediate keys: delta_W, delta_b and delta_c which
represent the increments of W, b and c, respectively, and
the intermediate values have three elements: the value of
delta_W, delta_b or delta_c, the corresponding increment
and the current epoch index.
Procedure 2 provides the pseudo code for the map function

executed by each mapper. Step 1 gets the parameters’ values,
where t ∈ [1,T ] is the epoch index. Steps 2–7 go through
each data batch to compute the approximate gradients of
both the weight and the biases, and update their increments.
Finally, the intermediate key-value pairs are emitted as the
output.

2) REDUCE PHASE
For the training of RBM, there are three reducers in ideal
case. Each reducer reads as input one type (i.e., delta_W,
delta_b or delta_c) of the intermediate key-value pairs, and
applies the reduce function to first calculate the increments
and then update parameter. The reducer takes the mapper ID
as the output key, and the resulting increment and the updated
parameter as the output value.

Procedure 3 gives the pseudo code for the reduce function
executed by each reducer. Steps 1–10 are to process the

398 VOLUME 2, 2014



K. Zhang, X.-W. Chen: Large-Scale DBNs With MapReduce

Procedure 3 mrjob_RBM::Reduce
Input: intermediate <key, valuelist> pairs
1: if key == Gw then
2: Parse valuelist into W, t and a list of Gw (denoted as

Gw_list)
3: Compute the increment of the weight:

delta_W← sum(Gw_list)
4: Update W: W←W+ delta_W
5: if t == T then
6: Save the learned W
7: else
8: Increase the epoch index: t ← t + 1
9: Emit key-value pairs to the mappers: <mapID,

[′W ′, W]>, <mapID, [′delta_W ′, delta_W]> and
<mapID, [′t ′, t] >

10: end if
11: else if key == Gb then
12: Parse valuelist into b, t and a list of Gb (denoted as

Gb_list)
13: Compute the increment of the input layer bias:

delta_b← sum(Gb_list)
14: Update b: b← b+ delta_b
15: if t == T then
16: Save the learned b
17: else
18: Emit key-value pairs to the mappers: <mapID,

[′b′, b]>, and <mapID, [′delta_b′, delta_b]>
19: end if
20: else if key == Gc then
21: Parse valuelist into c, t and a list of Gc (denoted as

Gc_list)
22: Compute the increment of the hidden layer bias:

delta_c← sum(Gc_list)
23: Update c:c← c+ delta_c
24: if t == T then
25: Save the learned c
26: else
27: Emit key-value pairs to the mappers: <mapID,

[′c′, c]>, and <mapID, [′delta_c′, delta_c]>
28: end if
29: end if

weight where Step 2 gets the current weight, epoch index, and
a list of approximate gradients for weight, Steps 3–4 compute
the weight increment and update the weight, Steps 5–10
decide to whether save the learned weight when it is the final
epoch or increase the epoch index and emit the key-value pairs
to themappers. In a similar way, Steps 11–19 and Steps 20–28
are to process the input layer bias and hidden layer bias,
respectively.

B. DISTRIBUTED DBN WITH MAPREDUCE
Considering a DBN with H hidden layers, the training of this
distributed DBN consists of learning H distributed RBMs for

the pre-training and one distributed back-propagation algo-
rithm for fine-tuning the global network. In addition, a main
controller is required to manage the entire learning process.

1) DISTRIBUTED RBMS FOR PRE-TRAINING
The bottom-level RBM is trained in the same way as that
described in Section III-A. The training of the rest level RBMs
is also similar to the bottom-level RBM except that the input
dataset is changed accordingly. The input data for the lth
(H ≥ l > 1) level RBM will be the conditional probability
of hidden nodes computed in the (l − 1)th level RBM, that is{

P (h1|x) , when l = 2;
P (hl |hl−1) , when H ≥ l > 2.

(7)

Thus, the details of both the map function and the reduce
function are omitted here.

2) DISTRIBUTED BACK-PROPAGATION ALGORITHM
FOR FINE-TUNING
In the completion of pre-training of all the hidden layers,

it is time to gain discriminative power by simply putting the
label layer on top of the network and iteratively tuning the
weights of all the layers (i.e., W1, . . . ,WH+1). Actually, in
the first few epochs (e.g., 5), we first fine-tune the weight
WH+1 connecting the H hidden layer and the output layer, so
that it has a reasonable initialization. Note that during the fine-
tuning the ’weight’ of each layer means the concatenation of
the original weight and the bias.
For the distributed back-propagation based fine-tuning, the

feed-forward and back-propagation procedure [4] to compute
the gradient of weights using gradient descent is dominated
the computation time. Thus, in each epoch, this procedure
is executed parallely on each subset of the data in the map
phase, and then the reducers compute the weight increments
and update the weights.
Procedure 4 outlines the pseudo code for the distributed

back-propagation based fine-tuning. Step 1 loads the pre-
trained weights W1, . . . ,WH and initialize the variables such
as the weight WH+1 and some hyper-parameters. Steps 2–5
are for themap function and reduce function. In themap phase
(Step 3), each mapper take the mapper ID as the input key,
and the weight and its increment as the input value. For each
data batch, the mappers calculate the gradient of weights and
update the weight increments. Finally, each mapper emits the
intermediate key-value pairs. In the reduce phase (Step 4),
each reducer takes one or more type of weights, computes the
weight increments, updates the weight, and then passes back
to the mappers. In the final epoch, the reducers save the fine-
tuned weights, which are the final output.

3) MAIN CONTROLLER DESIGN
In this section, we further design a main controller to manage
the entire learning process of a DBN. The main controller
schedules the running ofMapReduce jobs for each level RBM
and the fine-tuning.
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Procedure 4 mrjob_Fine-Tune
1: Load the learned weights W1, . . . ,WH during the pre-

training and initialize the variables
2: for each epoch do
3: Map phase

– Input: <mapID, valuelist> pairs
– Parse valuelist into W1, . . . ,WH+1, delta_W1, . . .,
delta_WH+1 and t
– for each data batch do
◦ Feedforward and back-propagation to get the gra-

dients of the weights of all layers GW1, . . . ,GWH+1
using gradient descent
◦ Update delta_W1, . . . , delta_WH+1:
delta_W1← delta_W1 − GW1
· · ·

delta_WH+1← delta_WH+1 − GWH+1
– end for
– Output: Emit intermediate key-value pairs < ′GW ′1,
[W1,GW1, t]>, . . ., and< ′GWH+1

′, [WH+1,GWH+1,
t]>

4: Reduce phase
– Input: intermediate <key, valuelist> pairs
– if key == GWi where i ∈ [1,H + 1] then
◦ Parse valuelist into Wi, t and a list of GWi

(denoted as GWi_list)
◦ Compute the increment of the weight:
delta_Wi← sum(GW i_list)
◦ Update Wi: Wi←Wi − delta_Wi
◦ if t == T , Save the learned Wi
◦ else, increase the epoch index: t ← t+1 and emit

key-value pairs to the mappers: <mapID, [′delta_Wi
′,

Wi, delta_Wi]> and <mapID, [′t ′, t] >

– end if
5: end for

Output: the fine-tuned W1, . . . ,WH+1

Procedure 5 outlines the pseudo code for the main con-
troller of a DBN. Steps 1-11 are to run MapReduce jobs for
all H levels of distributed RBMs. For the first level RBM, the
input data will be the training dataset D, and the pretrained
weight W1 and bias c1 are saved for loading in the fine-
tuning stage. For the other RBM levels, the input data will
be P (hl−1|hl−2). Steps 12-14 are to run MapReduce jobs
for the distributed back-propagation based fine-tuning. The
pretrained weights and biases of all levels of RBM are loaded.
The resulting weights and biases of all layers are saved as the
final output.

Thus, a distributed DBN is trained with MapReduce pro-
gramming model via the help of the mrjob framework. The
training can be done off-line. Given a learned DBN, testing
on new data samples can be directly performed.

IV. EXPERIMENTS AND RESULTS
This section will demonstrate the performance of the
distributed RBMs and DBNs on several benchmark datasets

Procedure 5 MainControllerThread
Input: training dataset D, number of RBM levels H
1: for each l ∈ [1,H ] do
2: if l == 1 then
3: Setup for the first level RBM:

Set the training dataset D as the input data
Set the number of input neurons, the number of
hidden neurons, number of epoch to train, and
hyper-parameters

4: Invoke mrjob_RBM (Procedure 1)
5: Save the learned weight W1, bias c1, and P (h1|x)
6: else
7: Setup for other level RBM:

Set P (hl−1|hl−2) where h0 = x, as the input data
Set the number of input neurons, the number of
hidden neurons, number of epoch to train, and
hyper-parameters

8: Invoke mrjob_RBM (Procedure 1)
9: Save the learned weight Wl , bias cl , and P (hl |hl−1)
10: end if
11: end for
12: Setup for fine-tuning:

Set the training datasetD and the corresponding labels as
the input data
Load the pretrained weights and biases of all RBM levels
Set the number of epoch to train, and hyper-parameters

13: Invoke mrjob_Fine-tune (Procedure 4)
14: Save the final weights and bias of all layers
15: Exit

for various learning tasks. In particular, we investigate their
accuracy, and the scalability under conditions of varying
Hadoop cluster sizes and data samples.

A. EXPERIMENTAL SETUP
The datasets we tested are the MNIST1 for hand-written
digits recognition, and the 20 Newsgroups2 document set.
For the MNIST dataset, there are 60,000 images as the
training set and 10,000 images as the testing set. All the
images was size-normalized and centered in a fixed size
of 28 × 28 pixels. The intensity was normalized to have
a value in [0, 1]. The labels are integers in [0, 9] indicat-
ing which digit the image presents. For the 20 Newsgroups
dataset, there are 18,774 postings taken from the Usenet
newsgroup collection with 11,269 training documents and
7,505 test documents. Each document is represented as a
2000-dimensional vector whose elements are the probabil-
ities of the 2000 most frequently used words. The labels
for each document are integers in [0, 19] indicating which
topic the document belongs to. In this paper, the training set
of original MNIST and original 20 Newsgroups is copied
with 10-times, 20-times, 30-times, 40-times and 50-times,

1http://yann.lecun.com/exdb/mnist/
2http://qwone.com/ jason/20Newsgroups/
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TABLE 1. Summary of training datasets.

FIGURE 4. Filters obtained by (a) and (b) RBM and the distributed RBM at epcoch 50.

which are summarized in Table 1, to evaluate the scalability
performance.

All the experiments were performed on a cluster of 8
computers (nodes) where each is equipped with a 64-bit
AMD octo-core dual-processor with the speed of 2.4 GHz,
96 GB RAM, and Linux RHEL. The computers are con-
nected through 10Gbit Ethernet. The cluster is configured
with Hadoop 1.0.4, Java 1.7.0, and Python 2.7.5 with mrjob
0.4.1.

We set the HDFS block size to be 64 MB and the repli-
cation factor to be 4. Each node is set to simultaneously run
26 mappers and 4 reducers in maximum. It should be noted
that the cluster is generally shared with other users (except
when we occupy all the cores.)

B. EXPERIMENTS FOR ACCURACY AND
TRAINING TIME COMPARISON
The goal in this section is to compare the distributed RBMs
and DBNs with their sequential versions (i.e., the original
RBMs and DBNs) in terms of both testing accuracy and
training time. To provide fair comparisons, we run both the
sequential version and the distributed version in the same
conditions. That is, in both cases, we utilize the same param-
eter setting including the training set (10-times of original
MNIST dataset), the testing set (10,000 images), the network
architecture (784-500 for RBMs, 784-500-500-2000-10 for
DBNs), the initialization of the weight and the bias, the

learning rate, the momentum factor, and the number of epoch
to train. And both of them were programmed completely in
the python codes. The sequential programs were run on one
cpu while the distributed programs were run on 16 cpus of a
node.
Figure 4 shows the filters (i.e., the weight) obtained by

sequential RBM and the distributed RBM after epcoch 50.
Both of them learned visually excellent weights. Table 2
and Table 3 provide the result comparison for RBM and
DBN, respectively. One can see that both the distributed RBM
and the distributed DBN obtained similar accuracy to the

TABLE 2. Reconstruction error and training time by RBM and the
distributed RBM (with 16 cores) on 10-times of original MNIST dataset.

TABLE 3. Testing error rate and training time by DBN and the distributed
DBN (with 16 cores) on 10-times of original MNIST dataset.
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FIGURE 5. Training time versus data size for various numbers of cpus by (a) and (b) distributed RBM and DBN.

corresponding sequential versions but with much less training
time.

C. EXPERIMENTS FOR THE SCALABILITY PERFORMANCE
We evaluate the parallel performance of distributed RBMs
and DBNs with respect to the scalability. In particular, we
study running time (for training) versus data size for various
numbers of cpus. In the implementation, the distributed pro-
grams were run on the datasets summarized in Table 1 using
the number of cpus varying from 4 to 128. Figure 5 shows the
results on various times of original MNIST dataset obtained
by the distributed RBMs and DBNs. First, one can observe
that the running time raises as the increased size of training
data, and significantly decreases as using more cpus. Next, it
is also observed that the benefit of using more cpus decreases
when the size of data becomes small. The reason behind this
is system overhead (e.g., communication costs, job setup for
per iteration) dominates the processing time when the size of
data is small. Actually, it is the overhead in theHadoop system
that makes the speedup when adding more cpus is sublinear
with respect to the number of cpus.

We also performed the scalability experiment on the
20 Newsgroups dataset. An intuitively setted network archi-
tecture, i.e., 2000-500-1000-20, is trained. It should be noted

TABLE 4. Running time (hrs) of distributed DBN.

that our purpose of testing on 20 Newsgroups is for measur-
ing the scalability performance of the developed distributed
DBNs but not for achieving the accurate document classifi-
cation or retrieval. The specific running time of distributed
DBNs on various times of 20 Newsgroups dataset using
different number of cpus is listed in Table 4. Note the similar
observations as before, which expects that distributed DBNs
can be applied to other large-scale applications.

V. CONCLUSION
In this paper, we have presented a type of distributed DBNs
using MapReduce which can be accomplished by stack-
ing several levels of distributed RBMs and then using a
distributed back-propagation algorithm for the fine-tuning.
Concerning the communication cost, only data-level paral-
lelism is performed in the developed distributed algorithm
since a fully connected multi-layer network is considered.
Experiments demonstrate that the distributed DBNs not only
have achieved similar testing accuracy on the large version
of MNIST dataset to the sequential version, but also scale
well even there is big amount overhead for Hadoop system to
do iterative computing. We expect the developed distributed
DBNs would be able to process other massive datasets with
good performances. In the future work, we will conduct the
experiments on more large-scale learning problems.
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