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Abstract—To improve the efficiency of big data feature learning, the paper proposes a privacy preserving deep computation model by

offloading the expensive operations to the cloud. Privacy concerns become evident because there are a large number of private data by

various applications in the smart city, such as sensitive data of governments or proprietary information of enterprises. To protect the

private data, the proposed model uses the BGVencryption scheme to encrypt the private data and employs cloud servers to perform

the high-order back-propagation algorithm on the encrypted data efficiently for deep computation model training. Furthermore, the

proposed scheme approximates the Sigmoid function as a polynomial function to support the secure computation of the activation

function with the BGVencryption. In our scheme, only the encryption operations and the decryption operations are performed by the

client while all the computation tasks are performed on the cloud. Experimental results show that our scheme is improved by

approximately 2.5 times in the training efficiency compared to the conventional deep computation model without disclosing the private

data using the cloud computing including ten nodes. More importantly, our scheme is highly scalable by employing more cloud servers,

which is particularly suitable for big data.

Index Terms—Smart city, big data, deep computation model, cloud computing, BGVencryption, BGN encryption, high-order

back-propagation
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1 INTRODUCTION

DEVELOPING the smart city is the key to improve the effi-
ciency, reliability, and security of a traditional city [1].

Smart city consists of intelligent transportation, smart grid,
intelligent security and so on. With the development of these
fields, recent years have witnessed the remarkable growth of
smart cities [2]. With the massive deployment of various
mobile devices, such as sensors and RFID, data are being col-
lected at unprecedentedly rate in the smart city [3]. Therefore,
it is critical for smart city planning, monitoring and control-
ling to develop big data modeling and analytic technologies
[4], [5]. As a fundamental technique of big data analytic, fea-
ture learning can discover the underlying structure of big
data to provide intelligent decision for developing smart city
systems [6], [7], [8]. However, the characteristics of big data,
referring to large scale of data, different types of data, and the
speed of streaming data, pose feature learning many signifi-
cant challenges [9], [10]. To tackle these challenges, we pro-
posed a deep computation model for learning features on big
data effectively in the previous work. Owning to the huge
amount of data in the smart and high computational com-
plexity, the deep computation model finds it difficult to
perform in real-time with limited computing power and
memory storage. Although the performance of computers

has been improved, it still falls behind the growth of the big
data size. Thus, how to support the real-time deep computa-
tion model training for big data feature learning is one of the
most challenging issues in the smart city.

Motivation. Today, cloud computing has come to play a
vital role in big data modeling and analytic [11], [12]. It has
been successfully applied in industrial products and com-
mercial fields that take advantage of big data [13], [14].
For example, with cloud computing, Google offers a wide
variety of real-time services such as real-time searching,
real-time translation and voice recognition [15]. Cloud com-
puting provides us with strong computing power and mas-
sive storage space [16], [17], [18]. Therefore, it is an effective
method to improve the efficiency of training deep computa-
tion model for big data feature learning by offloading the
expensive operations to the cloud [19], [20]. However, pri-
vacy concerns bring forward in the cloud computing since
there exist a large number of private data collected from the
smart city, such as population and economic information.
These data may contain sensitive data of governments or
proprietary information of the enterprises [21], [22], [23].
Once they are disclosed, people’s lives and property will be
seriously threatened. Especially in the smart city, disclosure
of sensitive data is not only a privacy issue but of legal
concerns according to privacy protection laws such as
the Health Insurance Portability and Accountability Act
(HIPAA). Therefore, this paper focuses on the privacy pre-
serving deep computation model with the cloud computing.

Challenges. The privacy preserving deep computation
model poses a number of issues and challenges, especially
for big data feature learning by incorporating the computing
of the cloud. We discuss the key challenges in three aspects
as follows: (1) To protect the private data and intermediate
results, it requires secure computation of various operations
needed by the deep computation model, including
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additions, multiplications, and the nonlinear Sigmoid func-
tion. (2) To improve the efficiency of deep computation
model training and big data feature learning, it requires to
choose the efficient full homomorphic encryption scheme
according to the major operations of the algorithms in the
privacy preserving deep computation model. (3) To produce
the correct result on the ciphertexts using the full homomor-
phic encryption scheme, the Sigmoid function is required to
approximate as a new function involving only addition oper-
ations andmultiplication operations.

Contributions. In this paper, we propose a privacy pre-
serving deep computation model based on homomorphic
encryption. The proposed scheme improves the efficiency
by offloading the expensive computation tasks on the cloud.
Furthermore, the proposed scheme prevents the disclosure
of the private using homomorphic encryption which has
been successfully used for data mining and knowledge dis-
covery such as decision trees [25], [26], Bayesian networks
[27], [28], support vector machines [29], and k-means [30].

To support secure computation of various operations
such as additions and multiplications required by the high-
order back-propagation algorithm, the paper encrypts the
private data using the BGV encryption scheme [31] that is
the currently most efficient full homomorphic encryption
scheme and supports simultaneously supports arbitrary
number of addition operations and multiplication opera-
tions. However, BGV does not support the exponentiation
operation over ciphertexts, resulting in the failure to the
secure computation of Sigmoid function that is the activa-
tion function of the deep computation model. To address
this problem, the paper utilizes Taylor theorem to approxi-
mate the Sigmoid function as a polynomial function involv-
ing only addition operations and multiplication operations
so that it is suitable for the privacy preserving high-order
back-propagation algorithm. The main idea of the proposed
algorithm can be summarized as follows: the client first
encrypts the private data with the system public key and
then uploads the ciphertexts to the cloud; cloud servers
then perform the high-order back-propagation algorithm
over the ciphertexts and return the encrypted results to the
client; the client decrypts the results with which it updates
the parameters of deep computation model. During this
process, cloud servers learn no private data of the client and
intermediate results, so our proposed scheme is secure.

Our contributions can be summarized as follows:

� To improve the efficiency of deep computation model
training, we offload the expensive operations to the
cloud. Only the encryption operations and the decryp-
tion operations are performed by the client while all
the computation tasks are performed on the cloud.

� By encrypting the input data using the BGV encryp-
tion scheme before uploading them to the cloud, the
proposed algorithm protects the private data.

� Since the BGV encryption scheme does not support
the exponentiation operation required by Sigmoid
function, the paper utilizes Taylor theorem to approx-
imate the Sigmoid function as a polynomial function
involving only addition operations and multiplica-
tion operations so that it is suitable for the privacy
preserving high-order back-propagation algorithm.

Experimental results on two representative classification
datasets and two real smart city datasets show that our
scheme can efficiently train deep computation model for big
data feature learning by offloading the expensive operations
to the cloudwithout disclosing the private data.More impor-
tantly, our scheme is of high scalability by employing more
cloud servers, which is particularly suitable for big data.

The rest of the paper is organized as follows: Section 2
presents the preliminaries related to this paper. The privacy
preserving high-order back-order algorithm based on the
BGV encryption scheme is illustrated in Section 3. Section 4
evaluates our proposed scheme and Section 5 reviews
related works on the privacy preserving neural networks
learning. Finally, the whole paper is concluded in Section 6.

2 PRELIMINARIES

In this section, we present the technique preliminaries used
in our proposed scheme including the tensor auto-encoder
(TAE) proposed by our previous work and the BGV encryp-
tion scheme.

2.1 Tensor Auto-Encoder (TAE)

Basic auto-encoders and their variants work in the vector
space. Vectors cannot represent a large number of heteroge-
neous data that are prevalent in big data, making auto-
encoders difficult to learn features of big data. Aiming at this
problem, tensor auto-encoders uses the tensor-based model
for big data representation tomodel the highly non-linear dis-
tribution of various heterogeneous data [32], [33]. Given a
training sample, two tensors X 2 RI1�I2�����IN and H 2
RJ1�J2�����JN are denoted as the values of input layer nodes
and the values of hidden layer nodes respectively. TAEmaps
the input values to the hidden values via an encoder function:

H ¼ fuðW ð1Þ �X þ bð1ÞÞ: (1)

Then, TAE maps the hidden values to the reconstruction
Y via the decoder function:

Y ¼ hW;bðXÞ ¼ guðW ð2Þ �H þ bð2ÞÞ; (2)

where, u ¼ W ð1Þ; bð1Þ;W ð2Þ; bð2Þ
� �

is the parameter set, both
the encoder function and the decoder function adopt the
Sigmoid function [34]: sfðxÞ ¼ 1=ð1þ e�xÞ, � represents the
multi-dot product of two tensors, i,e., an N þ 1-order tensor

W 2 Ra�I1�I2�����IN with a sub-tensors and an N-order ten-

sor A 2 RI1�I2�����IN , defined as:

H ¼W �A; 8hj1j2...jn 2 H;hj1j2...jn ¼Wb �A

b ¼ jn þ
XN�1
i¼1
ðji � 1Þ

YN
t¼iþ1

Jt

 !
:

(3)

To encourage the representation obtained from a training
input x to capture as much as possible of the unknown dis-
tribution from heterogeneous data, the tensor distance [35]
is used in the reconstruction error, yielding the objective
function as follows:

JTAEðu;x; yÞ ¼ 1
2 ðhW;bðxÞ � yÞTGðhW;bðxÞ � yÞ; (4)

1352 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 5, MAY 2016



where x, y is denoted as the vector form representation of
the tensorsX and Y .

For a training set fðXð1Þ; Y ð1ÞÞ; . . . ; ðXðmÞ; Y ðmÞÞg with m
training examples, the reconstruction error of TAE is
defined as:

JTAEðuÞ ¼ 1

m

Xm
i¼1

1

2
ðhW;bðxÞ � yÞTGðhW;bðxÞ � yÞ

� �" #

þ �

2

XJ1�����JN

p¼1

XI1
i1¼1
� � �

XIN
iN¼1
ðW ð1Þ

pi1���inÞ
2

 

þ
XI1�����IN

q¼1

XJ1
j1¼1
� � �

XJN
jN¼1
ðW ð2Þ

qj1���jnÞ
2

!
:

(5)

In this reconstruction error, the first term is an average
sum-of-squares error term and the second term is a regulari-
zation term, called a weight decay term, for decreasing the
magnitude of the weights.

We use z
ð2Þ
j1j2...jn

ð1 � ji � Ji; 1 � i � nÞ; zð3Þi1i2...in
ð1 � ij � Ij;

1 � j � nÞ to represent the input values of the hidden layer

and the output layer respectively, and a
ð2Þ
j1j2...jn

ð1 � ji �
Ji; 1 � i � nÞ; að3Þi1i2...in

ð1 � ij � Ij; 1 � j � nÞ to represent the

activation values of the hidden layer and the output layer,
respectively. To train the parameters of TAE, the high-order
back-propagation algorithm has been proposed in our pre-
vious work outlined in Algorithm 1.

As outlined in Algorithm 1, high-order back-propagation
is mainly composed of two stages: feed forward and error
back-propagation. In the feed forward stage, the values at
hidden layer and output layer are calculated using the
parameters, the Sigmoid function, and the values at the pre-
vious layer. In the back propagation stage, the algorithm
calculates the partial derivatives of the reconstruction error
to the parameters for updating all the weights.

Several tensor auto-encoders can be stacked to a deep
computation model for unsupervised feature learning on
big data as shown in Fig. 1.

2.2 Homomoraphic Encryption Schemes

Homomorphic encryption was first introduced by Rivest,
Adleman and Dertouzous shortly after the invention of
RSA [36], [37]. Homomorphic encryption enables operations
on plaintexts to be performed on their respective ciphertexts
without disclosing the plaintexts [31]. Generally speaking, a

homomorphic encryption scheme " consists of four algo-
rithms:KeyGen, Encrypt,Decrypt, and Evaluate [38], [39].

KeyGen takes a security parameter � as input and produ-
ces a secret key sk and a public key pk, i.e., KeyGen
ð�Þ ! ðpk; skÞ.

Encrypt takes the public key pk and a plaintext m as
input and produces the ciphertext c of m, i.e., c 
Encryptðm; pkÞ.

Decrypt takes the secret key sk and c as input and produ-
ces the plaintextm of c, i.e.,m Decryptðc; skÞ.

Evaluate takes the public key pk, a circuit C and a tuple
of ciphertexts ðc1; c2; ::cnÞ as input and produces the
encrypted result c, i.e., Decryptðsk; c1; c2; ::cnÞ ¼ fðm1;
m2; ::;mnÞ, where f is the functionality that we want to
perform.

Algorithm 1.High-order Back-propagation Algorithm.

Input: fðXðiÞ; Y ðiÞÞg, iteratermax, h, threshold
Output: u ¼ W ð1Þ; bð1Þ;W ð2Þ; bð2Þ

� �
1 for iteration ¼ 1; 2; . . . ; iteratermax do
2 for example ¼ 1; 2; . . . ; N do
3 for j1 ¼ 1; 2; . . . ; J1 do
4 � � �;
5 for jn ¼ 1; 2; . . . ; JN do
6 z

ð2Þ
j1j2...jn

¼W ð1Þ
a �X þ b

ð1Þ
j1j2...jn

;

7 a
ð2Þ
j1j2...jn

¼ fðzð2Þj1j2...jn
Þ;

8 for i1 ¼ 1; 2; . . . ; I1 do
9 � � �;
10 for in ¼ 1; 2; . . . ; IN do
11 z

ð3Þ
i1i2...in

¼W
ð2Þ
b � að2Þ þ b

ð2Þ
i1i2...in

;

12 hði1i2...inÞW;bðXÞ ¼ a
ð3Þ
i1i2...in

¼ fðzð3Þi1i2...in
Þ;

13 if JTAEðuÞ > threshold then
14 for in ¼ 1; 2; . . . ; I1 � I2 � � � � � IN do

15 s
ð3Þ
i ¼ ðað3Þi � ð1� a

ð3Þ
i ÞÞ �

PI1�I2�����IN
j¼1 gijðað3Þj � yjÞ;

16 for j1 ¼ 1; 2; . . . ; J1 do
17 � � �;
18 for jn ¼ 1; 2; . . . ; JN do

19 s
ð2Þ
j1j2...jn

¼ ðPI1
i1¼1 � � �

PIn
in
w
ð2Þ
�j1j2...jn

� sð3Þi1i2...in
Þf 0ðzð2Þj1j2...jn

Þ;
20 for i1 ¼ 1; 2; . . . ; I1 do
21 � � �;
22 for in ¼ 1; 2; . . . ; IN do

23 Db
ð2Þ
i1i2...in

¼ Db
ð2Þ
i1i2...in

þ s
ð3Þ
i1i2...in

;

24 for j1 ¼ 1; 2; . . . ; J1 do
25 � � �;
26 for jn ¼ 1; 2; . . . ; JN do
27 Dw

ð2Þ
i1i2...inj1j2...jn

¼ Dw
ð2Þ
i1i2...inj1j2...jn

það2Þj1j2...jn
� sð3Þi1i2...in

;

28 for j1 ¼ 1; 2; . . . ; J1 do
29 � � �;
30 for jn ¼ 1; 2; . . . ; JN do

31 b
ð1Þ
j1j2...jn

¼ Db
ð1Þ
j1j2...jn

þ s
ð2Þ
j1j2...jn

;

32 for i1 ¼ 1; 2; . . . ; I1 do
33 � � �;
34 for in ¼ 1; 2; . . . ; IN do
35 Dw

ð1Þ
j1j2...jni1i2...in

¼ Dw
ð1Þ
j1j2...jni1i2...in

þxi1i2...in � sð2Þj1j2...jn
;

36 W ¼W � h� ð 1N DwÞ;
37 b ¼ b� h� ð 1N DbÞ;

Fig. 1. Stacking tensor auto-encoders for pre-training.
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Earlier homomorphic encryption schemes, called semi
homomorphic encryption, only support single operation-
either addition or multiplication. For example, some repre-
sentative additively homomorphic encryption schemes are
Okamoto-Uchiyama [40], Pallier [41] and Damard-Jurik [42]
while RSA [37] and ElGamal [43] are representatives of
the multiplicatively homomorphic encryption schemes. The
first fully homomorphic encryption scheme using ideal
lattices that allows both addition and multiplication to be
implemented by Craig in 2009 [39]. Recently, many fully
homomorphic encryption schemes have been proposed
such as BGV [31], Bral2 [44] and GSW13 [45].

BGV is a LWE/RLWE-based leveled full homomorphic
encryption scheme introduced by Brakerski et al. [31]. The
BGV scheme begins a Setup procedure that chooses a m-bit
modulus q and the parameters: the dimension n ¼ nð�;mÞ,
the degree d ¼ dð�;mÞ, the distribution x ¼ xð�;mÞ, and
N ¼ ð2nþ 1Þlog qd e for given a security parameter.

To produce the correct result, Brakerski devised a key
Switching Procedure and a modulus Switching Procedure
in the BGV scheme. Specifically, the key Switching Proce-
dure aims to reduce the dimension of the ciphertext by
the following algorithms: SwitchKeyGenðs1 2 Rn1

q ; s2 2 Rn2
q Þ

and SwitchKeyðts1!s2; c1Þ. The former takes the two secret
key vectors, the respective dimensions of these vectors, and
the modulus q as input. The corresponding output is some
auxiliary information ts1!s2 that enables the switching.

The latter takes this auxiliary information and a ciphertext
encrypted under s1 as input, and outputs a new ciphertext
c2. The modulus Switching Procedure is used to reduce the
noises by designing an algorithm Scaleðc; q; p; rÞ. We refer to
[31] for details of the BGV scheme.

The BGV encryption scheme supports unlimited number
of addition operations and multiplication operations with-
out bootstrapping. Furthermore, BGV is more efficient than
other full homomorphic encryption schemes. It is success-
fully used in many applications such as cloud computing
and security computing. Therefore, the paper uses the BGV
encryption scheme in the proposed privacy preserving
deep computation model.

3 PRIVACY PRESERVING HIGH-ORDER

BACK-PROPAGAGTION ALGORITHM

In this section, we illustrate the proposed privacy preserv-
ing high-order back-propagation algorithm based on the
BGV encryption scheme. We aim at training deep computa-
tion model efficiently by incorporating the computing
power of the cloud without revealing private data. To
achieve this goal, the main idea of our proposed scheme is
to implement a privacy preserving equivalence for each
step of the original high-order back-propagation algorithm
outlined in Algorithm 1. We describe the operations of the
BGV encryption scheme required by the proposed algo-
rithm first, followed by the details.

3.1 Secure Operations of the BGV
Encryption Scheme

To implement the privacy preserving high-order back-prop-
agation algorithm, the secure operations of the BGV encryp-
tion scheme are needed, including encryption, decryption,

secure additions and secure multiplications. Assuming that
the secret key and the public key are sk ¼ ð1; s0½1�;
s0½2�; . . . ; s0½n�Þ 2 Rnþ1

q and pk ¼ A, respectively for the

parameters params ¼ ðm; q; d; n;N;xÞ of the BGV encryption
scheme, the secure operations are described as follows [31]:

1) Encryption: Given a message m 2 R2, encrypt it as:

c mþATr 2 Rnþ1
q .

2) Decryption: Given a cihpertext c and the respective
secret key sj, decrypt it to get the plaintext
m ðð< c; sj > mod qÞmod 2Þ.

3) SecureAddition: Given the ciphertexts c1 and c2 of
messages m1 and m2, the cloud calculates their sum
as: let c3  c1 þ c2 mod qj, the sum of c1 and c2 is
c4  Refreshðc3; tðsj0 ! sj�1Þ; qj; qj�1Þ.

4) SecureProduct: Given the ciphertexts c1 and c2 of
messagesm1 andm2, the cloud calculates their prod-
uct as: let c3  c1 	 c2 mod qj, the product of c1 and
c2 is c4  Refreshðc3; tðsj0 ! sj�1Þ; qj; qj�1Þ.

3.2 Approximation of Sigmoid Function

As described in Algorithm 1, the high-order back-propaga-
tion algorithm requires addition operations, subtraction
operations, multiplication operations, division operantions,
and exponentiation operations shown in the Table 1.

For the five types of operations used in the deep compu-
tation model training, i.e., addition þ, subtraction �, multi-
plication �, division 
, and exponentiation ex, the first
three operations are homomorphic, while the last two are
non-homomorphic. The BGV encryption scheme does not
support the division operation and exponentiation
operation required by the Sigmoid function used as the
activation function in the high-order back-propagation
algorithm. Specially, the BGV encryption does not sup-
port the two operations over ciphertexts, i.e., calculating
Cð1=xÞ and CðexÞ for given CðxÞ. To support secure com-
putation of the Sigmoid function, we remove the expo-
nentiation operation and the division operation by using
Taylor theorem to approximate the Sigmoid function to a
polynomial function as follows:

y ¼ 1

1þ e�x
¼ 1

2
þ x

4
� x3

48
þ oðx4Þ

� 1

2
þ x

4
� x3

48
� 0:5þ 0:25x� 0:02x3:

(6)

As shown in the approximation of Sigmoid function in
(6), the major challenge of secure computation of the equa-
tion becomes to calculate x3. Since it can be calculated by

TABLE 1
Operations Used in the High-Order

Back-Propagation Algorithm

Operation Homomorphic Example

þ yes
Pa

k¼1 xk � wh
jk

� yes a
ð3Þ
j � yj

� yes a
ð2Þ
j1j2:::jn

� s
ð3Þ
i1i2...in

ex no e�x

 no 1=ð1þ e�xÞ
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x3 ¼ x� x� x, the approximation of Sigmoid function in (7)
involves only addition operations and multiplication opera-
tions. Therefore, the activation function can be calculated
securely by Algorithm 2.

Algorithm 2. Secure Computation of Activation Function
on Cloud.

Input: CðxÞ; Cð0:5Þ; Cð0:25ÞandCð�0:02Þ
Output: CðyÞ
1 Using secure addition to calculate: C1 ¼ Cð0:25Þ � CðxÞ;
2 Using secure multiplication to calculate: C2 ¼ Cð�0:02Þ�

CðxÞ � CðxÞ � CðxÞ;
3 Using secure addition to calculate: CðyÞ ¼ Cð0:5Þ þ C1 þ C2;
4 return CðyÞ;

3.3 Scheme Overview

Given the initial parameters u ¼ W ð1Þ; bð1Þ;W ð2Þ; bð2Þ
� �

, the
task of the privacy preserving deep computation model on

cloud is to train the parameters u ¼ W ð1Þ; bð1Þ;W ð2Þ; bð2Þ
� �

efficiently by performing the privacy preserving high-order
back-propagation algorithm on the cloud without disclosing
the private data.

To train the parameters u ¼ W ð1Þ; bð1Þ;W ð2Þ; bð2Þ
� �

of the
deep computation model securely, the proposed scheme
encrypts the training samples, i.e., input data fx1; x2; . . . ;
xag, output data ft1; t2; . . . ; tcg and initialized parameters

u ¼ W ð1Þ; bð1Þ;W ð2Þ; bð2Þ
� �

in the client and uploads the cip-

hertexts to the cloud, allowing the cloud servers to perform
one iteration of the privacy preserving high-order back-
propagation algorithm. The client downloads the results
from the cloud and decrypts them for updating the parame-
ters once, and then encrypts the updated parameters and
uploads the encrypted parameters to the cloud for perform-
ing one more iteration of the privacy preserving high-order
back-propagation algorithm. The repetitions will not be ter-
minated until the error is within the threshold or the max
number of iterations is exceeded. The overall scheme is out-
lined in Algorithm 3.

Algorithm 3. Overall Scheme of Privacy Preserving
High-order Back-propagation Algorithm.

Input: fx1; x2; . . . ; xag, u ¼ fW ð1Þ; bð1Þ;W ð2Þ; bð2Þg, iterationmax, h
Output: u ¼ fW ð1Þ; bð1Þ;W ð2Þ; bð2Þg
1 Client:;
2 Using encryption to encrypt the training samples;
3 Upload the encrypted training samples to the cloud;
4 Randomly initialize the parameters;
5 for iteration ¼ 1; 2; . . . ; iteratermax do
6 Using encryption to encrypt the parameters;
7 Upload the encrypted the parameters to the cloud;
8 Cloud:;
9 Perform Algorithms 4 and 5 over the ciphtexts;
10 Update the ciphertexts of u ¼ fW ð1Þ; bð1Þ;W ð2Þ; bð2Þg;
11 Send the results to the client;
12 Client:;
13 Using decryption operation to decrypt the results for

updating the parameters;

In the proposed scheme, we encrypted the data and
parameters using the BGV method which is a LWE/RLWE-

based leveled full homomorphic encryption scheme. There-
fore, when the number of the iteration is more than one, the
depth of the circuit will increase rapidly with the increasing
number of the iteration. The increase of the circuit depth
will severely reduce the efficiency of the deep computation
model training, and even produce the incorrect result. So,
the parameters need be sent to the client for re-encryption
after one iteration is performed.

As shown in the Algorithm 3, only the encryption opera-
tions and the decryption operations are performed by the cli-
ent while all the computation tasks are performed on the
cloud. So the proposed scheme can improve the training effi-
ciency by incorporating the computing power of the cloud.
The proposed scheme could not only protect the private data
of users but also the parameters of the deep computation
model since the client simultaneously encrypts the training
data and the parameters. Furthermore, all the computation
operations are performed on the ciphertexts in the cloudwith-
out disclosing private data. Therefore, our scheme is secure.

3.4 Privacy Preserving High-Order
Back-Propagation Algorithm on Cloud

Cloud servers perform the privacy preserving high-order
back-propagation algorithm over the ciphertexts for updat-
ing the parameters after receiving the encrypted data and
parameters from the client. According to the Algorithm 1,
cloud servers are required to complete the following com-
putation tasks.

1) In the feed forward stage, the cloud is required to
calculate the values of z2, z3, a2, and a3 over the
respective ciphertexts. Since only addition opera-
tions and multiplication operations are required by

the secure computation of the the values of z2 and z3,
the cloud can complete this task using the secure
addition operation and the secure multiplication
operation of the BGV encryption scheme. After-
wards, the cloud can use Algorithm 2 to calculate the

values of a2 and a3 which are the results of the acti-

vation function of z2 and z3, respectively. The feed
forward stage is outlined in Algorithm 4.

2) The task in the back propagation stage is to securely
calculate the values of s2, s3, DWl, and Dbl which
requires only addition operations and multiplication
operations, so the cloud can complete this task by
using the secure addition operation and the secure
multiplication operation of the BGV encryption
scheme. The back propagation stage is outlined in
Algorithm 5.

4 PERFORMANCE EVALUATION

To evaluate the performance of our cloud-based privacy-pre-
serving deep computation model, we executed experiments
on the cloud platform established in the Laboratory of Com-
puterArchitecture andCloudComputing, including 10 nodes
with 3.2 GHz Core i7 CPU and 4 GB memory. In Section 4.1,
we numerically evaluate the performance of our proposed
scheme in terms of computation cost and communication
cost. In Section 4.2, we evaluated the performance of our
proposed scheme using two representative classification
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datasets, namely STL-10 and NUS-WIDE [46], [47]. In Sec-
tion 4.3, we applied our proposed scheme to two real datasets,
namely PeMS and DLeMP, to evaluate our proposed scheme
further [48], [49]. Finally, we evaluate the scalability of our
proposed scheme in terms of speedup on the cloud.

Algorithm 4. Feed Forward of Privacy Preserving High-
order Back-propagation Algorithm on Cloud.

Input: fðXðiÞ; Y ðiÞÞg, u ¼ W ð1Þ; bð1Þ;W ð2Þ; bð2Þ
� �

Output: {zð2Þ; zð3Þ; að2Þ; að3Þg
1 for iteration ¼ 1; 2; . . . ; iteratermax do
2 for example ¼ 1; 2; . . . ; N do
3 for j1 ¼ 1; 2; . . . ; J1 do
4 � � �;
5 for jn ¼ 1; 2; . . . ; JN do
6 == Using secure addition and multiplication to

calculate z
ð2Þ
j1j2...jn

;

7 z
ð2Þ
j1j2...jn

¼W ð1Þ
a �X þ b

ð1Þ
j1j2...jn

;

8 == Using Algorithm 2 to calculate a
ð2Þ
j1j2...jn

;

9 a
ð2Þ
j1j2...jn

¼ fðzð2Þj1j2...jn
Þ;

10 for i1 ¼ 1; 2; . . . ; I1 do
11 � � �;
12 for in ¼ 1; 2; . . . ; IN do
13 == Using secure addition and multiplication to

calculate z
ð3Þ
i1i2...in

;

14 z
ð3Þ
i1i2...in

¼W
ð2Þ
b � að2Þ þ b

ð2Þ
i1i2...in

;

15 == Using Algorithm 2 to calculate hði1i2...inÞW;bðXÞ;
16 hði1i2...inÞW;bðXÞ ¼ a

ð3Þ
i1i2...in

¼ fðzð3Þi1i2...in
Þ;

4.1 Numerical Analysis

In this section, we evaluate the performance the proposed
scheme in terms of computation cost and communication
cost. To express clearly, the time cost of one addition opera-
tion, one multiplication operation and one modulus opera-
tion on Ring R are denoted by ADD, MUL and MOD,
respectively, in the following part.

Computation cost. In the proposed scheme, the client
needs to encrypt all its private data only once before
uploading the encrypted data to the cloud. After the learn-
ing process starts, the client needs to encrypt all the parame-
ters and decrypt all the intermediate results once in each
iteration while the cloud needs to perform the Algorithm 4
and the Algorithm 5 once in each iteration.

For the training sample represented by a tensor of the
form RI1�I2�����IN , the client needs to encrypt the sample

with
QN

i¼1 Ii � ðnþ 1Þ �N (ADD + MUL) using the encryp-
tion operation of the BGV encryption scheme with the
parameter ðm; q; d; n;N;xÞ. Note that encrypting the training
samples is the one-time cost performed before learning.
For the tensor auto-encoder, the basic module of the deep

computation model, with the configuration
QN

i¼1 Ii �
QN

j¼1
Jj �

QN
i¼1 Ii and the parameter set u ¼ fW ð1Þ; bð1Þ;W ð2Þ; bð2Þg ,

the client needs to encrypt the parameters with
QN

i¼1 Ji
ð2QN

j¼1 Ij þ 1Þ þQN
i¼1 IiÞ � ðnþ 1Þ �N (ADD + MUL) and

decrypt the intermediate results with ðQN
i¼1 Jið2

QN
j¼1 Ij þ

1Þ þQN
i¼1 IiÞ � ðnþ 1Þ MUL, ðQN

i¼1 Jið2
QN

j¼1 Ij þ 1Þ þQN
i¼1

IiÞ � n ADD and 2ðQN
i¼1 Jið2

QN
j¼1 Ij þ 1Þ þQN

i¼1 IiÞMOD in

each iteration.

Algorithm 5. Back Propagation of Privacy Preserving
High-order Back-propagation Algorithm on Cloud.

Input: fðXðiÞ; Y ðiÞÞg; u ¼ W ð1Þ; bð1Þ;W ð2Þ; bð2Þ
� �

; fzð2Þ; zð3Þ; að2Þ; að3Þg; h
Output: u ¼ W ð1Þ; bð1Þ;W ð2Þ; bð2Þ

� �
1 for iteration ¼ 1; 2; . . . ; iteratermax do
2 for example ¼ 1; 2; . . . ; N do
3 for in ¼ 1; 2; . . . ; I1 � I2 � � � � � IN do
4 == Using secure addition and multiplication to

calculate s
ð3Þ
i ;

5 s
ð3Þ
i ¼ ðað3Þi � ð1� a

ð3Þ
i ÞÞ �

PI1�I2�����IN
j¼1 gijðað3Þj � yjÞ;

6 for j1 ¼ 1; 2; . . . ; J1 do
7 � � �;
8 for jn ¼ 1; 2; . . . ; JN do
9 == Using secure addition and multiplication to

calculate s
ð2Þ
j1j2...jn

;

10 s
ð2Þ
j1j2...jn

¼ f 0ðzð2Þj1j2...jn
Þ � ðPI1

i1¼1 � � �
PIn

in

w
ð2Þ
�j1j2...jn

� sð3Þi1i2...in
Þ;

11 for i1 ¼ 1; 2; . . . ; I1 do
12 � � �;
13 for in ¼ 1; 2; . . . ; IN do
14 == Using secure addition to calculate Db

ð2Þ
i1i2...in

;

15 Db
ð2Þ
i1i2...in

¼ Db
ð2Þ
i1i2...in

þ s
ð3Þ
i1i2...in

;

16 for j1 ¼ 1; 2; . . . ; J1 do
17 � � �;
18 for jn ¼ 1; 2; . . . ; JN do
19 == Using secure addition and multiplication to

calculate Dw
ð2Þ
i1i2...inj1j2...jn

;

20 Dw
ð2Þ
i1i2...inj1j2...jn

¼ Dw
ð2Þ
i1i2...inj1j2...jn

þ
a
ð2Þ
j1j2...jn

� sð3Þi1i2...in
;

21 for j1 ¼ 1; 2; . . . ; J1 do
22 � � �;
23 for jn ¼ 1; 2; . . . ; JN do
24 == Using secure addition to calculate b

ð1Þ
j1j2...jn

;

25 b
ð1Þ
j1j2...jn

¼ Db
ð1Þ
j1j2...jn

þ s
ð2Þ
j1j2...jn

;

26 for i1 ¼ 1; 2; . . . ; I1 do
27 � � �;
28 for in ¼ 1; 2; . . . ; IN do
29 == Using secure addition and multiplication

to calculate Dw
ð1Þ
j1j2...jni1i2...in

;

30 Dw
ð1Þ
j1j2...jni1i2...in

¼ Dw
ð1Þ
j1j2...jni1i2...in

þ
xi1i2...in � sð2Þj1j2...jn

;

In the feed forward stage, by using Algorithms 2 and
4, the cloud performs ðnþ 1ÞððQN

i¼1 Ii þ
QN

j¼1 JjÞðnþ 1 þ
2NÞ þ 12N þ 8nþ 4Þ MUL, 2ðnþ 2ÞðQN

i¼1 Ii þ
QN

j¼1 Jj þ
6ÞN ADD and ðnþ 1ÞððQN

i¼1 Ii þ
QN

j¼1 JjÞðnþ 2Þ þ 8nþ 12Þ
MOD to calculate the values of every hidden layer node
and output layer node. In the back-propagation stage, to get
the residual error values of every hidden layer node and
output layer node, the cloud needs to perform ðnþ 1Þ
ððQN

i¼1 Ii þ
QN

j¼1 JjÞð3N þ nþ 1Þ þ 4N þ 4nþ 2Þ MUL, ðn þ
2Þð3ðQN

i¼1 Ii þ
QN

j¼1 JjÞ þ 4ÞN ADD and ðnþ 1ÞððQN
i¼1 Ii þQN

j¼1 JjÞðnþ 3Þ þ 4nþ 2Þ MOD. Then, by using the
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Algorithm 5, the cloud performs 2
QN

i¼1 Ii
QN

j¼1 Jjðnþ 1Þ
ðnþ 1þ 3NÞ MUL, 2NðQN

i¼1 Ii
QN

j¼1 Jj þ 2Þ ADD and

2ðQN
i¼1 Ii

QN
j¼1 Jj þ 1Þðnþ 1Þðnþ 3ÞMOD for the increments

of the parameters. Although the computation cost on the
cloud will increase with the increase of the training samples
and the number of the sample attributes, cloud can handle
it in parallel efficiently.

Communication cost. Before the learning process starts, the
client needs to sendm�QN

i¼1 Ii messages withm�QN
i¼1 Ii�

ðnþ 1Þ � m bits, where m is the number of the training sam-

ples to the cloud. Then, the client needs to exchange
QN

i¼1
Jið2

QN
j¼1 Ij þ 1Þ þQN

i¼1 Ii messages with
QN

i¼1 Jið2
QN

j¼1 Ijþ
1Þ þQN

i¼1 Ii � ðnþ 1Þ � m bits with the cloud during the one
round privacy preserving high-order back-propagation
learning process.

From the above analysis, by offloading all the computa-
tion tasks to the cloud, the client only needs to perform
the encryption/decryption operations and the cloud can
perform most of the computation tasks in parallel for
improving the efficiency. Furthermore, compared to the
computation tasks, the computational cost is so small that
it can be almost negligible.

4.2 Performance Analysis on Classification
Datasets

In this section, we provide the experimental results of the
privacy preserving high-order back-propagation algorithm
on cloud and evaluate the performance of the proposed
algorithm in terms of data encryption time, computational
cost and the accuracy. The datasets are described first, fol-
lowed by the experimental results.

In the STL-10 dataset, there are 500 training images
grouped into 10 categories. We collected 10,000 images
grouped into 20 categories from the NUS-WIDE dataset as
the training set. The learning parameters in our experiments
are set: iterationmax ¼ 100 and h ¼ 0:03.

Data encryption time. Before uploading the private data to
cloud for the privacy preserving high-order back-propaga-
tion algorithm, the client needs to encrypt the input data
and the parameters of the deep computation model with the
encryption operation of the BGV encryption scheme. Fig. 2
shows the data encryption time of the two training sets and
their respective weights, varying from 2.32 to 38.3 s. The
data encryption time is greatly affected by the number of
samples and features. Generally speaking, the encryption
time will increase with the growth of the data size. For the
training samples, the encryption time is a one-time cost and

can be precomputed offline while the parameters are
encrypted once in each iteration during the learning process.

Computation cost. To evaluate the efficient performance,
we perform the privacy preserving high-order back-prop-
agation algorithm on the cloud while performing the con-
ventional high-order back-propagation algorithm on the
client. Fig. 3 shows the execution time of two schemes for
one iteration.

As shown in Fig. 3, our scheme costs only about 28 per-
cent learning time compared to the conventional high-order
back-propagation algorithm for one iteration. In other
words, the efficiency of the proposed scheme is 2.5 times
higher than that of the conventional high-order back-propa-
gation algorithm for one iteration.

Fig. 4 shows the overall time required by performing the
two algorithms on the two training sets. The execution time
of the proposed scheme is about 34 percent of the conven-
tional high-order back-propagation algorithm. For the over-
all execution time, the efficiency of the proposed scheme is
two times higher than that of the conventional high-order
back-propagation algorithm rather than 2.5 times. This is
because the proposed scheme cost the addition overhead
for the data encryption/decryption operations and data
communication between the client and the cloud. In particu-
lar, the client needs to encrypt the parameters and decrypt
the intermediate results once in each iteration and to com-
municate with the cloud for uploading the encrypted
parameters and downloading the intermediate results.

Accuracy analysis. To analyze the accuracy loss in our pri-
vacy preserving high-order back-propagation algorithm,
we classify the two datasets using the parameters trained
by the proposed scheme and compare it with the non-pri-
vacy preserving high-order back-propagation algorithm.
The classification accuracy is defined as CN=N , where CN
represents the number of the objects that are classified
correctly and N denotes the total number of the objects.

Fig. 2. Encryption time of datasets and weights. Fig. 3. Execution time of one iteration.

Fig. 4. Execution time of two algorithms.
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Table 2 shows the average classification accuracy of the
privacy preserving deep computation model (PP-DCM) and
the conventional deep computation model (C-DCM).

As shown in the Table 2, our scheme achieves a lower
accuracy performance than the non-privacy-preserving deep
computation model due to the approximation of the activa-
tion function. Specially, our scheme produces about 2 percent
more error than the conventional deep computation model
when the number of Taylor series termswas set as 3.

Next, we reduce the accuracy loss by extending the num-
ber of Taylor series terms for 3 to 13. Fig. 5 shows the classi-
fication accuracy with regard to the different number of
Taylor series terms.

According to Fig. 5, as the number of Taylor series terms
grows, the classification accuracy increases. In other words,
adding more Taylor series terms can reduce the accuracy
lost effectively. Specifically, the accuracy lost can be
reduced by about one percent by extending the number of
Taylor series terms from 3 to 9. However, when the number
of Taylor series terms is more than 9, the accuracy is
improved very slightly with the increasing number of
Taylor series terms. We use only three Taylor series terms
rather than nine or more series terms in this paper because
adding more series terms will increase the levels of the BGV
encryption scheme and lower the performance of the pri-
vacy preserving high-order back-propagation algorithm.

4.3 Performance Analysis on Prediction Datasets

Intelligent transportation and wisdom economy are two
important parts of the smart city. In this section, we use two
real datasets, namely Performance Measurement System
(PeMS) and Dalian Economy Management Platform
(DLeMP), to evaluate the performance of the proposed
scheme in practical applications.

PeMS is the most widely used dataset in traffic flow pre-
diction [55]. The data are continuously collected from more
than 8,100 freeway locations over 39,000 individual

detectors deployed statewide throughout the State of
California [56]. To evaluate the performance of our scheme,
we aggregated the collected data by different detectors to
get the average traffic flow of the freeway with many detec-
tors. In this paper, we chose the collected traffic flow data of
the first 10 months in 2014 as the training set and the later
two months as the testing set. DLeMP is the commonly
used economy prediction dataset, collected from more than
300 towns and streets of Dalian in the past 30 years. The
dataset consists of 500,000 items, each with 52 attributes. To
evaluate the proposed scheme, we selected 26 representa-
tive attributes to predict the gross economic product (GDP)
of Dalian. In this experiment, the data of the first 20 years
was used as the training set and the later 10 years as the test-
ing set. The learning parameters in our experiments are
set: iteratermax ¼ 50; timeintervals ¼ 18; layersize ¼ 3 and
h ¼ 0:01, which were proved to produce the best results.

In this section, we present the experimental results of our
proposed scheme on the PeMS dataset and the DLeMP data-
set in terms of computation cost and prediction accuracy. At
the same time, we compare the proposed scheme with the
conventional deep computation model.

Computational cost. To evaluate the efficient performance
of our scheme, we perform privacy preserving high-order
back-propagation algorithm on the cloud while performing
the non-privacy preserving high-order back-propagation
algorithm on the client. In this experiment, we use 1/5, 2/5,
3/5, 4/5 and all the samples in the two datasets, respec-
tively for learning. Figs. 6 and 7 show the training time of
the two schemes.

As demonstrated in Figs. 6 and 7, the training time of
two schemes is greatly affected by the data size. To be

TABLE 2
Classification Accuracy

Dataset C-DCM(%) PP-DCM(%)

STL-10 87:2 85:5
NUS-WIDE 81:7 79:8

Fig. 5. Classification accuracy with regard to the different number of Tay-
lor series terms.

Fig. 6. Training time on the PeMS dataset.

Fig. 7. Training time on the DLeMP dataset.
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more exact, the training time will increase with the
growth of data size. The training time of our proposed
scheme includes the data encryption/decryption time, the
secure computation time of high-order back-propagation
on the cloud and the communication time between the cli-
ent and the cloud. When the data size is small, our pro-
posed scheme shares almost the same training with the
non-privacy-preserving deep computation model. This is
because the major time is taken to perform the data
encryption/decryption operations and to communicate
between the client and the cloud for the small dataset.
However, when the proportion of the PeMS data size and
the DLeMP data size is larger than 3/5 and 2/5, respec-
tively, the efficiency of our scheme is improved by almost
two times than the non-privacy-preserving scheme. This
is because the major operation for the large dataset, i.e.,
the high-order back-propagation, is offloaded to the cloud
which can conduct parallel computation for improving
the efficiency. In fact, the efficiency of our proposed algo-
rithm can be improved by employing more cloud servers
as the data set size increases. So our proposed algorithm
is especially suitable for big data feature learning used
trained deep computation model.

Then, we compare the proposed scheme to the non-pri-
vacy-preserving scheme in terms of prediction accuracy.
For the PeMS dataset, three tasks are used here to evaluate
the proposed scheme: (1) predicting the traffic flow in peak
periods; (2) predicting the traffic flow in nonpeak periods;
(3) predicting the traffic flow of peak periods in several time
intervals in advance. The results are demonstrated in Table 3
and Fig. 8.

Fig. 9 presents the prediction results of the Dalian gross
economic product for 10 years by the two schemes.

As shown in the Table 3, Figs. 8 and 9, our scheme
achieves a lower accuracy performance than the non-pri-
vacy-preserving deep computation model on the two data-
sets since the approximation of the activation function
introduces the accuracy loss. In particular, our scheme
introduces about 1 to 2 percent more error rate compared
with the conventional deep computation model. This result

is similar to the previous results on the STL-10 dataset and
the NUS-WIDE dataset.

Although the accuracy performance of our scheme is a
litter lower than that of the non-privacy-preserving deep
computation model, it is acceptable in practical use of big
data feature learning in the smart city.

Scalability analysis. Finally, we evaluate the scalability of
the proposed scheme in terms of the speedup. Speedup is
an important criteria to measure the scalability of an algo-
rithm based on cloud computing. Perform the privacy-
preserving back-propagation algorithm for learning the
parameters of deep computation model on three datasets in
the different cloud computing platforms, in which there are
1 node, 5 nodes, 10 nodes, 15 nodes, 20 nodes, respectively.
The result is shown as in Fig. 10.

From Fig. 10, the training time of the proposed scheme
for training the four three datasets reduces gradually with
the increasing number of computing nodes in the cloud
computing platform, which demonstrates that adding
nodes can significantly improve the system capacity. In par-
ticular, for the STL-10 dataset, the PeMS dataset and the
DLeMP dataset that are smaller than the NUS-WIDE data-
set, the efficiency of our proposed scheme is improved
slightly by employing more cloud servers when the number
of the cloud nodes is larger than 10. So, 10 cloud nodes
are enough for the three training datasets. However, for the
NUS-WIDE dataset, the efficiency of our proposed scheme
is improved significantly when the number of the cloud
nodes is larger than 10. There, our proposed scheme is
particularly suitable for big data feature learning since the

TABLE 3
Prediction Accuracy of Two Schemes

Periods C-DCM(%) PP-DCM(%)

Peak periods 89:3 88:4
Nonpeak period 83:4 81:9

Fig. 8. Prediction accuracy on different time intervals.

Fig. 9. Prediction accuracy on different years.

Fig. 10. Training time on different clouds.
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performance of our proposed scheme can be further
improved by employing more cloud servers for big data.

5 RELATED WORKS

In recent years, some privacy preserving methods for data
mining and knowledge discovery have been proposed,
which can be grouped into two categories: data perturbation
method and cryptographic method. The former was pro-
posed by Agrawal and Srikant which preserves the private
data by adding noise to the source data [50], while the latter
was proposed by Lindell and Pinkas using cryptograhpic
methods to prevent the disclosure of the private data [51].

Our proposed scheme belongs to the second group of
methods, focusing on privacy preserving deep computation
model training and secure big data feature learning by
incorporating the strong computing power of the cloud
without disclosing the private data. Several works on the
problem of privacy preserving neural network learning
have been presented recently. For example, Schlitter pro-
posed a privacy preserving back-propagation algorithm for
neural network learning that supports horizontal parti-
tioned data [52]. This algorithm only prevent the disclosure
of the source data and cannot protect the intermediate
results during the learning process. Another scheme
proposed by Chen and Zhong protects simultaneously
the source data and the intermediate results [53]. Moreover,
the solution supports vertically partitioned data while the
scheme proposed by Schlitter supports horizontal parti-
tioned data. Bansal et al. proposed a privacy preserving
back-propagation neural network learning algorithm for
arbitrarily partitioned data [54]. The above schemes just
support the two-party scenario. They cannot be applied to
the multiparty setting because directly extending them to
the multiparty setting will increase a large of communica-
tion overhead. To overcome this limitation, Yuan and Yu
introduced a privacy preserving back-propagation neural
network learning algorithm for multiparty scenario which
keeps the computation and communication costs on each
party minimal and independent to the number of partici-
pants by using the power of cloud computing [21]. Another
advantage of this scheme is that it supports arbitrarily parti-
tioned data like the scheme proposed by Bansal et al. Other
methods focusing on privacy preserving back-propagation
algorithm can be found in [55] and [56].

There are at least two notable differences between our
work and the above schemes. The current schemes have
proposed for the privacy preservation of the conventional
back-propagation neural network learning while our
method focuses on the secure high-order back-propagation
algorithm for deep computation model learning proposed
in our previous work. Furthermore, the above schemes are
designed for secure multiparty collaboration which con-
ducts joint back-propagation neural network learning on
the union of their respective datasets. Different from them,
the goal of our scheme is to improve the efficiency of deep
computation model learning by incorporating the comput-
ing power of the cloud without disclosing the private data.
Our scheme is especially suitable for big data learning since
the performance can be improved further by employing
more cloud servers when the data size grows.

6 CONCLUSION

Big data offers the great opportunities and transformative
potential for various areas such as e-commerce, healthcare
industry manufacturing, social network and educational
services. Therefore, deep computation, a novel area, has
attracted great interests of researchers in recent years. It
refers to a systematical model for big data representation,
storage, analytic and mining based on tensor theory. In this
paper, we proposed a privacy preserving deep learning
model for big data feature learning by incorporating the
computing power of the cloud. The proposed scheme uses
the BGV encryption scheme to support the secure computa-
tion operations of the high-order back-propagation algo-
rithm efficiently for deep computation model training on
the cloud. In our scheme, only the encryption operations
and the decryption operations are performed by the client
while all the computation tasks are performed on the cloud.

Experimental results clearly demonstrated that: (1) our
scheme can efficiently deal with deep computation model
for big data feature learning by incorporating the high com-
puting power of the cloud without disclosing private data;
(2) although our scheme takes additional overhead to per-
form the data encryption/decryption and communication
between the client and the cloud, it is still more efficient
than the conventional deep computation model. More
importantly, the performance of our scheme can be further
improved by employing more cloud servers, which is par-
ticularly suitable for big data, thanks to the high scalability
of the cloud; (3) although the accuracy performance of our
scheme is a litter lower than that of the non-privacy-
preserving deep computation model, it is acceptable in
practical use of big data feature learning in smart city.
Future work focuses on the design of the incremental deep
computation model to improve the efficiency of big data
computing in the smart city.

REFERENCES

[1] W. Rong, X. Zhang, C. Dave, L. Chao, andS. Hao, “Smart city
architecture: A technology guide for implementation and design
challenges,” China Commun., vol. 11, no. 3, pp. 56–69, 2014.

[2] J. Jin, J. Gubbi, S. Marusic, and M. Palaniswami, “An information
framework for creating a smart city through Internet of Things,”
IEEE Internet Things J., vol. 1, no. 2, pp. 112–121, Apr. 2014.

[3] A. Domingo, B. Bellalta, M. Palacin, M. Oliver, and E. Almirall,
“Public open sensor data: Revolutionizing smart cities,” IEEE
Technol. Soc. Mag., vol. 32, no. 4, pp. 50–56, Dec. 2013.

[4] G. Pan, G. Qi, W. Zhang, S. Li, Z. Wu, and L. T. Yang, “Trace anal-
ysis and mining for smart cities: Issues, methods, and
applications,” IEEE Commun. Mag., vol. 51, no. 6, pp. 120–126, Jun.
2013.

[5] I. Vilajosana, J. Llosa, B. Martinez, M. Domingo-Prieto, A. Angles,
and X. Vilajosana, “Bootstrapping smart cities through a self-
sustainable model based on big data flows,” IEEE Commun. Mag.,
vol. 51, no. 6, pp. 128–134, Jun. 2013.

[6] X. -W. Chen and X. Lin, “Big data deep learning: Challenges and
perspectives,” IEEE Access, vol. 2, pp. 514–525, May 2014.

[7] K. Slavakis, G. B. Giannakis, and G. Mateos, “Modeling and opti-
mization for big data analytics: (Statistical) learning tools for our
era of data deluge,” IEEE Signal Process. Mag., vol. 31, no. 5,
pp. 18–31, Sep. 2014.

[8] T. Condie, P. Mineiro, N. Polyzotis, and M. Weimer, “Machine
learning on big data,” in Proc. IEEE Int. Conf. Data Eng., 2013,
pp. 1242–1244.

[9] X. Wu, X. Zhu, G. -Q. Wu, and W. Ding, “Data mining with big
data,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 1, pp. 97–107, Jan.
2014.

1360 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 5, MAY 2016



[10] H. H. Huang and H. Liu, “Big data machine learning and graph
analytics: Current state and future challenges,” in Proc. IEEE Int.
Conf. Big Data, 2014, pp. 16–17.

[11] C. Yang, C. Liu, X. Zhang, S. Nepal, and J. Chen, “A time efficient
approach for detecting errors in big sensor data on cloud,” IEEE
Trans. Parallel Distrib. Syst., vol. 26, no. 2, pp. 329–339, Feb. 2015.

[12] X. Zhu, X. Qin, and M. Qiu, “QoS-aware fault-tolerant scheduling
for real-time tasks on heterogeneous clusters,” IEEE Trans. Com-
put., vol. 60, no. 6, pp. 800–812, Jun. 2011.

[13] A. S. Prasad and S. Rao, “A mechanism design approach to
resource procurement in cloud computing,” IEEE Trans. Comput.,
vol. 63, no. 1, pp. 17–30, Jan. 2014.

[14] S. M. Kwang, “Agent-based cloud computing,” IEEE Trans. Serv.
Comput., vol. 5, no. 4, pp. 564–577, Oct.-Dec. 2012.

[15] N. Jones, “Computer science: The learning machines,” Nature,
vol. 505, no. 7482, pp. 146–148, 2014.

[16] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer,
and D. H. J. Epema, “Performance analysis of cloud computing
services for many-tasks scientific computing,” IEEE Trans. Parallel
Distrib. Syst., vol. 22, no. 6, pp. 931–945, Jun. 2011.

[17] X. Zhu, C. Chen, Laurence T. Yang, and Y. Xiang, “ANGEL:
Agent-based scheduling for real-time tasks in virtualized clouds,”
IEEE Trans. Comput., [Online]. Available: http://ieeexplore.ieee.
org/stamp/stamp.jsp?tp=&arnumber=7054494, 2015.

[18] Q. Zhang and Z. Chen, “A weighted kernel possibilistic C-means
algorithm based on cloud computing for clustering big data,” Int.
J. Commun. Syst., vol. 27, no. 9, pp. 1378–1391, 2014.

[19] A. Smola and S. Narayanamurthy, “An architecture for parallel
topic models,” Proc. VLDB Endowment, vol. 3, no. 1–2, pp. 703–
710, 2010.

[20] J. Lin and A. Kolcz, “Large-scale machine learning at Twitter,” in
Proc. ACM Conf. Manage. Data, 2012, pp. 793–804.

[21] J. Yuan and S. Yu, “Privacy preserving back-propagation neural
network learning made practical with cloud computing,” IEEE
Trans. Parallel Distrib. Syst., vol. 25, no. 1, pp. 212–221, Jan. 2014.

[22] J. Bacon, D. Eyers, T. F. J. -M. Pasquier, J. Singh, J. I. Papagiannis,
and P. Pietzuch, “Information flow control for secure cloud
computing,” IEEE Trans. Netw. Serv. Manage., vol. 11, no. 1,
pp. 76–89, Apr. 2014.

[23] E. Z. Tragos, V. Angelakis, A. Fragkiadakis, D. Gundlegard, C.-S.
Nechifor, G. Oikonomou, H. C. Pohls, and A. Gavras, “Enabling
reliable and secure IoT-based smart city applications,” in Proc. Int.
Conf. Pervasive Comput. Commun., 2014, pp. 111–116.

[24] (2013). The health insurance portability and accountability act of
privacy and security rules [Online]. Available: http://www.hhs.
gov/ocr/privacy

[25] Y. Lindelland B. Pinkas, “Privacy preserving data mining,” J.
Cryptol., vol. 15, no. 3, pp. 177–206, 2002.

[26] W. Du and Z. Zhan, “Using randomized response techniques for
privacy preserving data mining,” in Proc. ACM Int. Conf. Knowl.
Discovery Data Mining, 2003, pp. 505–510.

[27] R. Wright and Z. Yang, “Privacy-preserving Bayesian network
structure computation on distributed heterogeneous data,” in
Proc. ACM Int. Conf. Knowl. Discovery Data Mining, 2004, pp. 713–
718.

[28] J. Vaidya and C. Clifton, “Privacy preserving naive Bayes classi-
fier for vertically partitioned data,” in Proc. SIAM Int. Conf. Data
Mining, 2004, pp. 522–526.

[29] S. Laur, H. Lipmaa, and T. Mielikaihen, “Cryptographically
private support vector machines,” in Proc. ACM Int. Conf. Knowl.
Discovery Data Mining, 2006, pp. 618–624.

[30] J. Vaidya and C. Clifton, “Privacy-preserving K-means clustering
over vertically partitioned data,” in Proc. ACM Int. Conf. Knowl.
Discovery Data Mining, 2003, pp. 206–215.

[31] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully
homomorphic encryption without bootstrapping,” in Proc. ACM
Innovations Theoretical Comput. Sci. Conf., 2012 pp. 309–325.

[32] L. Kuang, F. Hao, L. T. Yang, M. Lin, C. Luo, and G. Min, “A
tensor-based approach for big data representation and dimension-
ality reduction,” IEEE Trans. Emerging Topics Comput., vol. 2, no. 3,
pp. 280–291, Sep. 2014.

[33] A. Cichocki, “Era of big data processing: A new approach via ten-
sor networks and tensor decompositions,” arXiv preprint
arXiv:1403.2048, 2014.

[34] Y. Bengio, A. Courville, and P. Vincent, “Representation learning:
A review and new perspectives,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 35, no. 8, pp. 1798–1828, Aug. 2013.

[35] Y. Liu, Y. Liu, and K. Chan, “Tensor distance based multilinear
locality-preserved maximum information embedding,” IEEE
Trans. Neural Netw., vol. 21, no. 11, pp. 1848–1854, Nov. 2010.

[36] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data banks
and privacy homomorphisms,” Found. Secure Comput., vol. 4, no.
11, pp. 169–180, 1978.

[37] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Commun. ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[38] D. Boneh, E. -J. Goh, and K. Nissim, “Evaluating 2-DNF formulas
on ciphertexts,” in Proc. Int. Conf. Theory Cryptography, 2005,
pp. 325–341.

[39] C. Gentry, “Fully homomorphic encryption using ideal lattices,”
in Proc. ACM Symp. Theory Comput., 2009, pp. 169–178.

[40] T. Okamoto and S. Uchiyama, “A new public-key cryptosystem as
secure as factoring,” in Proc. Int. Conf. Theory Appl. Cryptol. Inf.
Security, 1998, pp. 308–318.

[41] P. Paillier, “Public-key cryptosystems based on composite degree
residuosity classes,” in Proc. Int. Conf. Theory Appl. Cryptographic
Techn., 1999, pp. 223–238.

[42] I. Damgard and M. Jurik, “A length-flexible threshold cryptosys-
tem with applications,” in Proc. Australasian Conf. Inf. Security Pri-
vacy, 2001, pp. 350–364.

[43] T. ElGamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” in Proc. Int. Conf. Theory Appl. Cryp-
tographic Techn., 1985, pp. 10–18.

[44] Z. Brakerski, “Fully homomorphic encryption without modulus
switching from classical GapSVP,” in Proc. 32nd Annu. Cryptol.
Conf. Adv. Cryptol., 2012, pp. 868–886.

[45] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption
from learning with errors: Conceptually-simpler, asymptotically-
faster, attribute-based,” in Proc. 33rd Annu. Cryptol. Conf. Adv.
Cryptol., 2013, pp. 75–92.

[46] A. Coates, A. Y. Ng, and H. Lee, “An analysis of single-layer net-
works in unsupervised feature learning,” in Proc. Int. Conf. Artif.
Intell. Statist., 2011, pp. 215–223.

[47] T. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng,
“NUSWIDE: A real-world web image database from National
University of Singapore,” in Proc. ACM Int. Conf. Image Video
Retrieval, 2009, pp. 1–9.

[48] W. Huang, G. Song, H. Hong, and K. Xie, “Deep architecture for
traffic flow prediction: Deep belief networks with multitask
learning,” IEEE Trans. Intell. Transp. Syst., vol. 15, no. 5, pp. 2191–
2201, Oct. 2014.

[49] (2015). Performance Measurement System (PeMS) [Online]. Avail-
able: http://pems.dot.ca.gov

[50] D. Agrawal and R. Srikant, “Privacy-preserving data mining,” in
Proc. ACM Conf. Manage. Data, 2000, pp. 439–450.

[51] Y. Lindell and B. Pinkas, “Privacy preserving data mining,”
Lecture Notes Comput. Sci., vol. 1880, pp. 36–45, 2000.

[52] N. Schlitter, “A protocol for privacy preserving neural network
learning on horizontal partitioned data,” in Proc. Privacy Statist.
Databases, 2008, pp. 298–315.

[53] T. Chen and S. Zhong, “Privacy-preserving backpropagation
neural network learning,” IEEE Trans. Neural Netw., vol. 20,
no. 10, pp. 1554–1564, Oct. 2009.

[54] A. Bansal, T. Chen, and S. Zhong, “Privacy preserving back-
propagation neural network learning over arbitrarily partitioned
data,”Neural Comput. Appl., vol. 20, no. 1, pp. 143–150, Feb. 2011.

[55] M. Dong, H. Li, K. Ota, and H. Zhu, “HVSTO: Efficient privacy
preserving hybrid storage in cloud data center,” in Proc. IEEE
Conf. Comput. Commun. INFOCOM Workshop Security Privacy Big
Data, 2014, pp. 529–534.

[56] M. Barni, C. Orlandi, and A. Piva, “A privacy-preserving protocol
for neural-network-based computation,” in Proc. 8th Workshop
Multimedia Security, 2006, pp. 146–151.

Qingchen Zhang received the bachelor’s and
master’s degrees in Southwest University, China.
He is currently working toward the PhD degree at
the School of Software Technology in the Dalian
University of Technology (DLUT), China. His res-
earch interests include big data and deep learning.

ZHANG ETAL.: PRIVACY PRESERVING DEEP COMPUTATION MODELON CLOUD FOR BIG DATA FEATURE LEARNING 1361



Laurence T. Yang is a professor at the School of
Computer Science in the Huazhong University of
Science and Technology, China and at the Depart-
ment of Computer Science in St. Francis Xavier
University, Canada. His research interests include
parallel and distributed computing, embedded and
ubiquitous computing, and big data.

Zhikui Chen is a professor at the School of
Software Technology in the Dalian University of
Technology, China. He is leading the Institute of
Ubiquitous Networks and Computing of the
Dalian University of Technology. His research
area includes internet of things and big data
processing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1362 IEEE TRANSACTIONS ON COMPUTERS, VOL. 65, NO. 5, MAY 2016



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


