
Solution of CIS 452/552 Assignment Two
1. Explain the difference between data replication in a distributed system
to the maintenance of a remote backup site? Compare the advantages and
disadvantages of the data replication and data fragmentation approaches in a
distributed system. When is it useful to have replication or fragmentation of
data?

Answer:

Data	replication	provides	greater	availability	and	also	parallelism	as	multiple	sites	are	able	to	
cater	to	more	transactions.	But	there	is	a	reduction	in	data	transfer	as	more	systems	have	a	local	
copy.	Also,	there	is	an	update	overhead	as	all	replicas	need	to	remain	consistent.	
	
Remote	Backup	systems	carry	out	actions	such	as	concurrency	control	and	recovery	at	a	single	
site.	Also	remote	backup	systems	help	avoid	two	phase	commits	and	all	the	overhead	resulting	
from	it.	Since	transactions	contact	only	one	site,	the	overhead	of	running	transactions	at	
multiple	sites	are	avoided.	Therefore	remote	backup	sites	provide	a	lower	cost	approach.		
	
Replication	is	useful	when	the	data	is	required	at	multiple	sites	in	a	distributed	system.	
Fragmentation	is	useful,	as	the	data	is	made	available	only	at	sites	where	it	is	needed	and	will	be	
useful,	thus	reduces	redundancy.	Both	replication	and	fragmentation	facilitate	parallelism.

2. What is the major reason to cause false deadlock in the distributed databases? Please
provide an example of false deadlock which is different from the one shown in the lecture
slides.

Answer: The major reason for false deadlock in the distributed databases is the network
delay or the timestamps are not synchronized, therefore transaction coordinator may receive the
messages in wrong order. An earlier delete message may be received later than an adding
message for the wait-for graphs, then a false deadlock may be formed.

3. Consider the relations:

employee (name, address, salary, plant number)

machine (machine, number, type, plant number)

Assume that the employee relation is fragmented horizontally by plant number, and that
each fragment is stored locally at its corresponding plant site. Assume that the machine
relation is stored in its entirety at the Armonk site. Describe a good strategy for
processing each of the following queries.

a. Find all employees at the plant that contains machine number 1130.

b. Find all employees at plants that contain machines whose type is “milling machine.”

c. Find all machines at the Almaden plant.

d. Find employee machine.

Answer:

a. i. Perform Πplant number (σmachine number=1130 (machine)) at Armonk.

ii. Send the query Πname (employee) to all site(s) which are in the result of the
previous query.

iii. Those sites compute the answers.

iv. Union the answers at the destination site.

b. This strategy is the same as a), except the first step should be to perform

Πplant number (σtype=“milling machine” (machine)) at Armonk.

c. i. Perform σplant number = x (machine) at Armonk, where x is the plant

number for Almaden.

ii. Send the answers to the destination site.

d. Strategy 1:

i. Group machine at Armonk by plant number.

ii. Send the groups to the sites with the corresponding plant number.

iii. Perform a local join between the local data and the received data.

iv. Union the results at the destination site.

Strategy 2:

Send the machine relation at Armonk, and all the fragments of the employee
relation to the destination site. Then perform the join at the destination site.

There is parallelism in the join computation according to the first strategy but not
in the second. Nevertheless, in a WAN the amount of data to be shipped is the
main cost factor. We expect that each plant will have more than one machine,
hence the result of the local join at each site will be a cross-product of the
employee tuples and machines at that plant. This cross-product’s size is greater
than the size of the employee fragment at that site. As a result the second strategy

will result in less data shipping, and will be more efficient.

4. a) Depends on the site which the query was entered. b) Depends on the site which the
result was desired.

Answer: a) The	cost	of	transferring	the	query	itself	is	much	less	expensive	than	cost	of	
transferring	the	data.	The	site	at	which	the	query	was	entered	only	needs	to	transfer	the	
query	to	each	plant_number	site,	which	is	not	very	expensive.	Hence,	our	strategy	does	not	
depend	on	the	site	at	which	query	was	entered.	
	
b) For	the	first	query,	we	compute	the	plant_number	at	Armonk	site	and	then	compute	the	
employee	tuple	at	each	site	locally	which	are	then	transferred	to	the	destination	site.	Our	
strategy	is	relatively	independent	of	the	site	at	which	the	results	is	desired.	
	
	For	the	second	query,	we	again	compute	the	plant_number	at	Armonk	site	and	then	
compute	employee	tuple	at	each	site	locally	(based	on	plant_number	result)	which	are	then	
transferred	to	destination	site.	Again,	this	strategy	is	relatively	independent	of	the	site	at	
which	the	result	is	desired.	
	
For	the	third	query,	the	query	is	computed	at	Armonk	site	and	then	result	is	send	to	
destination	site,	which	means	that	the	strategy	is	dependent	of	the	site	at	which	the	result	is	
desired.	
	
For	the	fourth	query,	both	possible	strategies	involve	the	data	(or	result)	being	migrated	
from	each	local	site	to	the	destination	site	regardless	of	the	choice	of	destination.	Hence,	
again	this	strategy	is	independent	of	the	site	at	which	the	result	is	desired.	

5. In a mediator (data integration) system, the mediated schema is

Customer (ID, name, statecode)

State(statecode, statename)

There are two data resources:

S1:

Customer (ID, full_name, region)

S2:

Customer (ID, first_name, last_name, region_code)

Region (region_code, region_name)

Assume “name” in the mediated schema means “full_name” in S1. “Region” in data
resources means “state” in the mediated schema. For example, “state_code” or

“region_code” of “Oregon” is “OR.” Can you do schema mediation (mapping) in
Global-as-View or Local-as-View, or both? Write down your solution(s) in SQL views.

Write a query “List all customer names in ‘Oregon’” in SQL based on the mediated
schema. Can the query be answered with your views?

Answer:

Global-as-View

Create View Customer as

Select S1.Customer.ID AS ID, S1.Customer.full_name AS name, S2.Region.region_code
AS statecode

From S1.Customer, S2.Region

Where S1.Customer.region = S2.Region.region_name

Union

Select ID, CONCAT(first_name, “ “, last_name) AS name, region_code AS statecode

from S2.Customer

Create View State as

Select region_code AS statecode, region_name AS state_name

from S2.Region

However, if join across tables in different databases is hard to implement. Another way is:

Create State View first,

Create View State as

Select region_code AS statecode, region_name AS state_name

from S2.Region

Then use it in the Customer view definition.

Create View Customer as

Select S1.Customer.ID AS ID, S1.Customer.full_name AS name, State.statecode AS
statecode

From S1.Customer, State

Where S1.Customer.region = State.state_name

Union

Select ID, CONCAT(first_name, “ “, last_name) AS name, region_code AS statecode

from S2.Customer

Local-as-View

If we have a way extract first name and last name correctly from a full name, then we can
define that

Create Source S1.Customer AS

Select Customer.ID, Customer.name, State.statename

From Customer, State

Where Customer.statecode = State.statecode

Create Source S2.Customer AS

Select ID,

ExtractFirstName (name) AS first_name,

ExtractLastName (name) AS last_name,

statecode AS region_code

from Customer

Create Source S2.Region AS

Select statecode AS region_name, statename AS region_name

From State

However, it is hard to use existing functions in SQL to create ExtractFirstName and
ExtractLastName, considering there are different types full names, such as “Last, First”,
“First Middle Last”, or the names with “de”, “von” etc.

Query:

Select name

From Customer, State

Where Customer.statecode = State.statecode AND State.statename= “Oregon”

