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#ECigTruths from Chicago Deparument of Public Health)
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this study we foeus on how engaging different rypes o
Dashtags are and consider relations with communicy metsics,
‘We find that hashiags that have a stronger resemblance 10
seal world communities are more engaging.
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Our second contribution is a set of ana

of engagement between hashtag types. Our
‘analyses iake steps i the direction of undersianding engage-
‘ment of hashtag types. This understanding is importar, not
just as a retrospective analysis, but as an actionable way for
finding, connecting, and supporting communities.
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Hashtag Engagement

e Contributions
o Temporal usage of hashtags

o Categorizing hashtag types and analyzing the implications for engagement and
communities

o Aframework for clustering hashtags based on temporal usage

o Proposing a metric of engagement

m compare this metric of engagement between the hashtag types



Categorizing Hashtag Usage: Features

h: hashtag

T(h) : set of Tweets contain h

Vol, popularity: V(h) = log( | T(h)| )
f(h,t) : % of tweets that were made
with h during a given time, t

Features:

Max( f(h,t) ) in an hour

t= 24h centered around peak

#Tweets in 4h around peak / #Tweets in 24h centered around peak

Max( f(h, t)) , t=each day of the week

An indicator of whether every hour of the study period had a low percentage of the volume
An indicator of whether every day of the week had a low percentage of the total volume

#Clusters: using silhouette metric 3
S



Community Metrics

e TwoO measures:
o Engagement E(h)
m To quantify how engaging is a hashtag
m hhas“received an engagement” if it has been either Retweeted or Favoured
m E(h)is the proportion of Tweets with a hashtag that have received an engagement

m itis robustto the phenomena of a hyper popular Tweet receiving thousands or
millions of engagements.

5 ]I[—,- has Retweet or Favouring]
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o Diversity D(h) E(h) - IT(h)]




Community Metrics I

e TWO measures:
o Diversity D(h)
m To quantify how broadly a hashtag is adopted

U(R)]
D() = T

m isthe reciprocal of the average number of times a user Tweets with the hashtag

m  Abnormally low diversity is indicative of a spammer or bot driving the hashtag usage



Dataset

e All Tweets that:

o have English language
o are from users in the United States

o Using a hashtag at least once during the 30 day study

Users 19,197,367

e Study period starting Tweets 2,529,886,239
Tweets with # 437,167,710

January 15, 2015 Hashtag occurrences 801,850,909
Unique hashtags 18,149,314

Popular hashtags 34,500




Dataset : Removing spammers and bots

e Minimal adoption

o hwith extremely low diversity (D(h) <.02)
o 1,581 hashtags

o mostly represented advertisers of pornography

e /ero engagement
o E(h)=0
o 1,745 hashtags

o mostly represented by Islamic propaganda



Dynamic Types

Using K-means clustering
The clusters were validated by extensive manual inspection of a randomly selected subset of hashtags.
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Refined periodically recurring subtypes

The clusters were validated by extensive manual inspection of a randomly selected subset of hashtags.

I all hashtags
60 e most engaging (5%)
[E28 most engaging (1%)

50
E 40 / e All day events (#¥monday)
T 30
& 20 e Weekly events (TV shows)
10 L L e Periodic events with strong imbalance
0 between events or less than weekly
stochastic event stable

e Events more frequent than weekly, or
significant support on some days of a
\ week (daily chats)




Engagement varies between dynamic types

e Comparing distributions of hashtag engagement

(@)

(@)

(@)

The dynamics of how a hashtag is being used is related to how engaging the hashtag is
Periodically recurring hashtags cluster is the most engaging
Cluster of event hashtags is least engaging

B all hashtags
60 mmm most engaging (5%)
50 B most engaging (1%)

LL N

stochastic event stable  periodic

periodic content could be leveraged to connect -
. . @
users with more engaging content §
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Volume and diversity

e There is alack of positive correlation of engagement with popularity for

all dynamic hashtag types
o Volume does not increase engagement

o Lower diversity can be more engaging

[ coeff.

Cluster; Event

Measures: V(h)
o 9% tweets with Link and Mention D(h)
o Average number of hashtags in tweets % links
% mentions
# hashtags

-0.0113
-0.0541
-0.0704
-0.0408
-0.0138
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Subclusters of periodically recurring

e Low diversity implies a concentrated user group.

e Hashtags for weekly events with low diversity are the most engaging

o Lower diversity with higher engagement
hints at focused community structure.

o  This result shows that to find engaging
weekly event hashtags, looking at the
size of the user base or # Tweets is
insufficient.
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Community-oriented “chats” are more engaging

e Chat hashtags: hashtags contain "chat", e.g., #dadChat , #phdChat

(@)

(@)

Engagement is higher for chats even though they do not have a relatively large volume

These observations support the broader
observation that community-oriented
hashtags are more engaging.

They also indicate that different types
of periodically occurring hashtags exist

Cluster chat # non-chat y
event 0.213 0.095
stochastic | 0.240 0.134
stable 0.223 0.185
periodic 0.414 0.179

Probability of Engagement Within Clusters
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The End




