
1
CIS 422/522

CIS 422/522 © S. Faulk 1

CIS 422/522

Project Planning

CIS 422/522 © S. Faulk 2

Review: Need to Organize the Work

• Nature of a software project
– Software development produces a set of interlocking,

interdependent work products
• E.g. Requirements -> Design -> Code -> Test

– Implies dependencies between tasks
– Implies dependencies between people

• Must organize the work such that:
– Every task gets done
– Tasks get done in the right order
– Tasks are done by the right people
– The product has the desired qualities
– The end product is produced on time

2
CIS 422/522

CIS 422/522 © S. Faulk 3

Use Iterative Process Model

• Process viewed as a sequence of iterations
• Addresses key risks

– Have something to deliver
– Feedback loop built in

• Each team will implement the abstract model differently

CIS 422/522 © S. Faulk 4

From Process to Plan

• Process manifests itself in the project plan
– Process definition is an abstraction
– Many possible ways of implementing the same process

• Project plan makes process concrete, it assigns
– People to roles
– Artifacts to deliverables and milestones
– Activities to tasks over time

• Project plan is itself a product of the process
– Activity: project planning
– Artifact: the Project Plan
– Roles: Project Manager (owner), team members

• Evolves as the project proceeds

3
CIS 422/522

CIS 422/522 © S. Faulk 5

Project Plan

• Purpose: specifies how project resources will be
organized to:
– Create each deliverable
– Meet quality goals
– Address developmental goals (e.g., mitigate risk)

• Audience: answers specific kinds of questions
for specific types of users, e.g.:
– General stakeholders: What is the development

approach? How does it address project risks?
– Customers: When will the product be delivered?
– Managers: When will tasks be completed? What is the

current progress against the plan?
– Developers: What should I be working on and when?

CIS 422/522 © S. Faulk 6

Plan Outline

• Plan contents (template in Assembla workspace)
– Purpose and audience (who will use the document?)
– Project background (from requirements)
– Team roles and responsibilities
– Risks and risk mitigation

• What are the key risks? (Team should brainstorm this)
• Which mitigation strategies will the project deploy

– Process: development process, how its tailored, rationale
– Mechanisms, methods, and techniques

• What kinds of methods and tools will be used?
• E.g., planning tools, design methods, IDEs, etc.

– Detailed schedule and milestones
– Resources and references

4
CIS 422/522

CIS 422/522 © S. Faulk 7

Your Project Plans

• This is not an abstract, hypothetical
exercise!

• Your projects have real
– Resources (people, time)
– Risks (schedule, quality, etc.)
– Process, schedule, etc.

• These must be reflected in your meetings,
plans, schedules, and other work products

• This is how you demonstrate mastery of class
concepts

CIS 422/522 © S. Faulk 8

Detailed Schedule and Milestones

• Maps people to tasks over time such that
– Personnel are fully engaged (time is not wasted)
– Delivery meets schedule

• Answers: “Who is working on which tasks, what is their
progress, and when will they be finished?”

• Inputs
– Set of artifacts to be created (superset of deliverables)
– Dependencies/precedence between tasks
– People filling roles that perform tasks
– Time budget for each task

• Output
– Current project schedule
– Deadline for each task
– Sequencing among tasks
– Allocation of people to tasks

5
CIS 422/522

CIS 422/522 © S. Faulk 9

Project Plan Template

• Use the template provided in your Assembla
team workspace

• This should be a living document
– Changed as the project progresses
– Ideally, always gives a current view of the

progress against the plan
• Shows planned activities
• Gives snapshot of the current project state
• This is what I am looking for (or any manager)

CIS 422/522 © S. Faulk 10

Project Planning Tools

Work Breakdown Structure (WBS)
PERT Chart
Gantt Chart

6
CIS 422/522

CIS 422/522 © S. Faulk 11

Work Breakdown Structure

• Structured technique for decomposing work into individual
tasks with the goals:
– Identify the complete set of tasks in the project
– Provide units of work (for individuals or teams)
– Provide units of work for scheduling and costing

• Identify hierarchy of tasks and subtasks
– Identify major tasks in project
– Decomposing each element into component parts
– Continuing to decompose until manageable work packages can

be mapped to roles
• Works best when:

– Tasks correspond to key deliverables
– Sum of tasks is 100% of the work
– Tasks do not overlap
– Each leaf task takes about the same amount of time

CIS 422/522 © S. Faulk 12

Work Breakdown Structure

1. Software Development
1. Project Management
2. Analysis

1. Glossary
2. Requirements Specification

1. Use Cases
2. Supplementary Specs…

12

Equivalent list format

7
CIS 422/522

CIS 422/522 © S. Faulk 13

Pert Chart

• Network analysis or PERT is used to identify
dependencies between the tasks in the work
breakdown structure

• Helps identify where ordering of tasks may
cause problems because of precedence or
resource constraints
– Where task B cannot begin before task A ends
– Where one person cannot do two tasks at the

same time
– Where adding a person can allow tasks to be

done in parallel, shortening the project

CIS 422/522 © S. Faulk 14
http://www.conceptdraw.com/samples/project-chart

• Which tasks can we start on?
• Which tasks can be done concurrently?
• Which tasks depend on which other tasks?
• Critical Path: dependency path with the longest duration

– Gives minimum length of project

8
CIS 422/522

CIS 422/522 © S. Faulk 15

Gantt Charts

• Method for visualizing a project schedule in
one chart showing
– The set of tasks
– Start and completion times
– Task dependencies
– Responsibilities

• PERT charts can be reformatted as Gantt
charts

• Typically requires a tool, e.g.,
http://www.ganttproject.biz/, smartchart

CIS 422/522 © S. Faulk 16

Example Gantt Chart

9
CIS 422/522

CIS 422/522 © S. Faulk 17

Project Milestone Planning

• Milestone planning is used to show the major
steps that are needed to reach the goal on time

• Milestones typically mark completion of key
deliverables or establishment of baselines
– Baseline: when a work product is put under

configuration management and all changes are
controlled

• Often associated with management review points
– E.g., Requirements baseline, project plan complete,

code ready to test
• Can use Gantt or PERT charts to show

milestones
• Begin with project events in Schedule

CIS 422/522 © S. Faulk 18

A Simple Alternative

10
CIS 422/522

CIS 422/522 © S. Faulk 19

How much planning?

• Planning itself consumes resources; how much
planning is enough?

• Enough that:
– Everyone knows what they should be doing
– Everyone knows what other people are supposed to be

doing
– Everyone knows when specific deliverables should be

finished
• Can track dependencies between their tasks and others
• Know when task inputs will be available

– It is easy to determine the current status of the project
against plan

• In practice, detail decreases with distance

CIS 422/522 © S. Faulk 20

Summary

• Project plan makes process concrete
– People to roles
– Artifacts to deliverables and milestones
– Activities to tasks over time

• Plan is key to organizing the work but expect
it to change
– The plan is nothing, the planning is everything –

D. Eisenhower
• Should understand the use of common

planning tools (WBS, Pert, Gantt)

11
CIS 422/522

CIS 422/522 © S. Faulk 21

Questions?

1
CIS 422/522

CIS 422/522 © S. Faulk 1

CIS 422/522

Software Requirements 1

Stuart Faulk
Computer and Information Science

CIS 422/522 © S. Faulk 2

Understanding Software Requirements
(and why we get it wrong so often)

2
CIS 422/522

CIS 422/522 © S. Faulk 3

10,000 ft. View

Business
Goals and

Customer Needs

Product
(Software) Development

Products

What should the development process accomplish?

CIS 422/522 © S. Faulk 4

Product Development Cycle

Business Goals
Hardware
Software
Marketing

Product Planning
Development &
Marketing Strategy

Requirements
Functionality
Qualities

Design
Goals/
tradeoffs

Code

Test &
Validate

Problem: maintaining vision across
development activities and artifacts
Feedback control: goal is to keep system
capabilities and business goals in synch! Deploy

Intersection of business
and development sides
of organization

3
CIS 422/522

CIS 422/522 © S. Faulk 5

What is a “software requirement?”

• Definition: A description of something the
software must do or property it must have

• The set of system requirements denote the
problem to be solved and any constraints on
the solution
– Ideally, requirements specify precisely what the

software must do without describing how to do it
– Any system that meets requirements should be an

acceptable implementation

CIS 422/522 © S. Faulk 6

Importance of Getting Requirements Right

2. The later that software errors are
detected, the more costly they are

to correct

1. The majority of software errors
are introduced early in software

development

1

2

5

10

20

50

100

design unit test,
integration operation

requirements code
debug

acceptance initial
test

Phase in which error detected

0

10

20

30

40

50

requirements
and

functional
analysis

design construction and
system

development test

acceptance
testing and
operation

Development Phase

$1 error
$100 error

4
CIS 422/522

CIS 422/522 © S. Faulk 7

Requirements Phase Goals

• What does “getting the requirements right” mean
in the systems development context?

• Only three goals
1. Understand precisely what is required of the software
2. Communicate that understanding to all of the parties

involved in the development (stakeholders)
3. Control production to ensure the final system satisfies

the requirements
• Sounds easy but hard to do in practice
• Understanding what makes these goals difficult

to accomplish helps us understand how to
mitigate the risks

CIS 422/522 © S. Faulk 8

“The hardest single part of building a software system is deciding
precisely what to build. No other part of the conceptual work is

as difficult as establishing the detailed technical
requirements...No other part of the work so cripples the resulting
system if done wrong. No other part is as difficult to rectify later.”

F.P. Brooks, “No Silver Bullet: Essence and Accidents of Software
Engineering”

5
CIS 422/522

CIS 422/522 © S. Faulk 9

What makes requirements difficult?

• Comprehension (understanding)
– People don’t (really) know what they want (…until they see it)
– Superficial grasp is insufficient to build correct software

• Communication
– People work best with regular structures, conceptual coherence, and

visualization
– Software’s conceptual structures are complex, arbitrary, and difficult to

visualize
• Control (predictability, manageability)

– Difficult to predict which requirements will be hard to meet
– Requirements change all the time
– Together can make planning unreliable, cost and schedule

unpredictable
• Inseparable Concerns

– Many requirements issues cannot be cleanly separated (I.e., decisions
about one necessarily impact another)

– Difficult to apply “divide and conquer”
– Must make tradeoffs where requirements conflict

CIS 422/522 © S. Faulk 10

Requirements Phase Goals

• What does “getting the requirements right” mean
in the systems development context?

• Only three goals
1. Understand precisely what is required of the software
2. Communicate that understanding to all of the parties

involved in the development (stakeholders)
3. Control production to ensure the final system satisfies

the requirements
• All three goals are inherently difficult
• Must be managed as risks

6
CIS 422/522

CIS 422/522 © S. Faulk 11

Requirements Process

CIS 422/522 © S. Faulk 12

Understand, Communicate & Control

A good process helps manage requirements difficulties
requires having
1.Requirements Understanding (Understand)

– Elicitation - How do we establish “what people want?”
– Negotiation - How do we resolve stakeholder conflicts?

2.Requirements Specification (Communicate)
– Concept of Operations (ConOps) - How do we communicate

with non-programmer audiences?
– Software Requirements Specification (SRS)- How do we

specify precisely what the software must do?
3.Requirements V&V (Control)

– Validation- How do we establish that we have the right
requirements?

– Verification - How do we establish that the implementation is
consistent with the specification?

7
CIS 422/522

CIS 422/522 © S. Faulk 13

Related Products

Business Goals
Hardware
Software
Marketing

Product Planning
Development &
Marketing Strategy

Requirements
Functionality
Qualities

Design
Goals/
tradeoffs

Code

Test &
Validate

Deploy

ConOps (BRD)
Business Spec
Use Cases

SRS
Technical
Spec

Test Plans
Customer
acceptance
tests

V&V
Reviews

Prototypes
Mock-ups

CIS 422/522 © S. Faulk 14

1.1 Elicitation

• Goal: Understand precisely what is required of the
software
– Answer the question, “What do the stakeholders want?”
– Stakeholder: anyone with a valid interest in the outcome of a

software development
• Inherently open-ended, ambiguous question
• Addressed by a number of elicitation methods

– Interview – traditional standard
– Focus groups
– Prototyping
– Use cases

• All have differing costs, strengths, and weaknesses. None
is a complete solution
– Use more than one approach
– Check the results early and often

8
CIS 422/522

CIS 422/522 © S. Faulk 15

1.2 Requirements Negotiation

or “Why the customer is not always right!”
•Stakeholders’ requirements often conflict

– Needs of different customers/users may conflict
• E.g., Salesmen want convenience and speed, management

wants security and accountability
– Developer’s needs may conflict with customer’s

• E.g., development cost vs. customer desires

•Choosing which requirements should be addressed
and their relative importance requires negotiation and
tradeoffs among stakeholders

CIS 422/522 © S. Faulk 16

2. Requirements Specification

• Goal: Communicate requirements understanding
to all system stakeholders

• Q: What kinds of information need to be
communicated?
– System context (link to business objectives)

• System stakeholders
• Product business goals
• System purpose
• Interfacing systems (if any)

– System detailed requirements
• Behavioral requirements
• Quality requirements

9
CIS 422/522

CIS 422/522 © S. Faulk 17

SRS Purposes and Stakeholders

• Sits at business/development intersection
• Many potential stakeholders using requirements

for different purposes
– Customers: document what should be delivered
– Marketing: capabilities to be delivered
– Managers: provides a basis for scheduling and a

yardstick for measuring progress
– Software Designers: provides the “design-to”

specification
– Coders: defines the range of acceptable

implementations and is the final authority on the
outputs that must be produced

– Quality Assurance: basis for validation, test planning,
and verification

CIS 422/522 © S. Faulk 18

Needs of Different Audiences

• Customer/User
– Focus on problem

understanding
– Use language of problem

domain
– Technical if problem space

is technical

Developer

Customer

Requirements
Analyst

Problem Understanding/
Business Needs

Detailed technical
Requirements

• Development organization
– Focus on system/software

solutions
– Use language of solution

space (software)
– Precise and detailed enough

to write code, test cases,
etc.

10
CIS 422/522

CIS 422/522 © S. Faulk 19

Two Kinds of Requirements Documentation

• Communicate with stakeholders who understand the
problem domain but not necessarily programming:
– e.g. customers, users, marketing
– Must develop understanding in common language
– Role of ConOps (Concept of Operations)

• Communicate with developers
– Stated in the developer’s terminology
– Sufficiently precise and detailed to code-to, test-to, etc.
– Addresses properties like completeness, consistency, precision,

lack of ambiguity
– Role of SRS (Software Requirements Specification)

• For businesses, these may be two separate documents

CIS 422/522 © S. Faulk 20

SRS Template

Informal, user
centric

Formal, technical

11
CIS 422/522

CIS 422/522 © S. Faulk 21

Documentation Approaches

• Informal requirements to describe the system’s
capabilities from the customer/user point of view
– Purpose is to answer the questions, “What is the system

for?” and “How will the user use it?”
– Tells a story: “What does this system do for me?”
– Focus on communication over rigor

• More formal, technical requirements for development
team (architect, coders, testers, etc.)
– Purpose is to answer specific technical questions about the

requirements quickly and precisely
• “What should the system output for this set of inputs?”
• Reference, not a narrative, does not “tell a story”

– Goal is to develop requirements that are precise,
unambiguous, complete, and consistent

– Focus on precision and rigor (may use formal languages)
– We will only do a little of this

CIS 422/522 © S. Faulk 22

Informal Specification Techniques

• Most requirements specification methods are informal
– Natural language specification
– Use cases
– Mock-ups (pictures)
– Story boards

• Benefits
– Requires little technical expertise to read/write
– Useful for communicating with a broad audience
– Useful for capturing intent (e.g., how does the planned system

address customer needs, business goals?)
• Drawbacks

– Inherently ambiguous, imprecise
– Cannot effectively establish completeness, consistency

• However, can add rigor with standards, templates, etc.

12
CIS 422/522

CIS 422/522 © S. Faulk 23

Example: Use Cases

• Informal specification requirements in terms
of system capabilities provided to a user

• Each Use Case describes how the system
and a user interact to accomplish a user task
– Specifies (only) functional behavior
– Captures the “business logic” of the application

• Inherently ambiguous, incomplete
– Can add rigor with consistent templates, good

process, reviews

CIS 422/522 © S. Faulk 24

Example Use Case

• Avoids design decisions
• References other use

cases
• References more

precise definitions
where necessary

• Some terms need
further definition (e.g.
PIN)

13
CIS 422/522

CIS 422/522 © S. Faulk 25

Supports Requirements Goals

Applying Use Cases in the requirements process
• Requirements Elicitation

– Identify which capabilities the system should provide to each
class of users

– Collect in terms of problem domain goals
– Provides basis for prototypes, mockups

• Requirements Communication (ConOps)
– Record as use-cases with standard format
– Easy to read and understand for wide audience

• Requirements verification and validation
– Review use-cases for consistency, completeness, user

acceptance
– Create test cases consistent with use cases
– Verify against code (e.g., use-case based testing)

CIS 422/522 © S. Faulk 26

Summary

• Requirements characterize “correct” system
behavior

• Being in control of development requires:
– Getting the right requirements
– Communicating them to the stakeholders
– Using them to guide development

• Requirements activities must be incorporated in
the project plan
– Elicitation and validation activities
– Specification activities
– Verification and validation activities
– Requirements change management

14
CIS 422/522

CIS 422/522 © S. Faulk 27

End

1
CIS 422/522

CIS 422/522 ©S. Faulk 1

CIS 422/522
Use Case Summary

In-class Exercise

CIS 422/522 ©S. Faulk 2

Project Planning Notes

• Work assignments
– Tendency to be vague about what must be done

• Tasks open to interpretation
• Results often not what is wanted

– Should tie to specific deliverables, quality goals
• Use grading rubric, examples

• Use scheduling to make sure:
– Every task is owned and tracked
– Key milestones accounted for
– Every team member is adding to progress

• Together make sure all tasks are accounted for
(especially non-coding tasks)

2
CIS 422/522

CIS 422/522 ©S. Faulk 3

Exercise: Plan to Bake a Cake

• How many cooks does
it take to bake a cake?
– Can more people

produce a cake faster?
– Is there a limit to how

fast?
– If you want the cake

ready for a party at 4:00
PM, how late can you
start?

CIS 422/522 ©S. Faulk 4

USE CASES

3
CIS 422/522

CIS 422/522 ©S. Faulk 5

Problems

• How to convey typical usage scenarios to
stakeholders in a way that all can understand
– Customers, marketers, architects, developers, testers
– Provide a lightweight means for exploring requirements

• How to quickly express key requirements for
users in a standardized way

• How to provide a basis for system testing
• How to identify issues for prototyping
• How to start thinking about traceability from

requirements to architecture

“Use Cases” can be an effective technique

CIS 422/522 ©S. Faulk 6

Use Cases

• Use Case: a narrative describing how the
system and a user interact to accomplish a
user task

• A form of User Centered Analysis – capturing
requirements from the user’s point of view
– Identify capabilities required by different types of

users (customer, administrator, etc.)
– Includes only user-visible functional requirements

4
CIS 422/522

CIS 422/522 ©S. Faulk 7

Identifying Actors

• Actors – identifies the roles different users play
with respect to the system
– Roles represent classes of users with different goals
– Actors carry out use cases

• Helps identify requirements for different kinds of
users
– “How would depositors use the system?”
– “How would a library patron use the system?”

• Diverse classes of users may require different
interfaces
– E.g., users vs. administrators vs. content providers

CIS 422/522 ©S. Faulk 8

Scenario Elicitation

• Each class of actor is interviewed and/or
observed
– How do you do task T?
– How will the user interact with the system to do X?

• Collect in the form of use cases
– Document in loose text or standard format
– Identify relative priorities of tasks
– Resolve conflicts, tradeoffs

5
CIS 422/522

CIS 422/522 ©S. Faulk 9

Creating Use Cases (Basic)

• Identify a key actor and purpose
– The purpose informs the use case title and description

• Identify the main flow (ideal path) from the
starting point to the result
– Preconditions: anything that must be true to initiate the

Use Case
– Trigger: event, if any, initiating the Use Case
– Basic Flow: sequence of interactions from the trigger

event to the result
– Alternative Flows: identify sequences branching off the

Basic Flow
– Exceptions: identify responses to error conditions

CIS 422/522 ©S. Faulk 10

Example Use Case

• Avoids design decisions
• References other use

cases
• References more

precise definitions
where necessary

• Some terms need
further definition (e.g.
PIN)

6
CIS 422/522

CIS 422/522 ©S. Faulk 11

Guidelines for Good Use Cases

• Use Cases should express requirements, not
design or implementation
– Focus on important results that provide value to

specific actors
• I.e., if nobody really cares about the outcome, it is not a

good use case
– Focus on what the actor is doing, not the details of how

• Not: “The user left-clicks on the radio button labeled
Balance and presses the Enter button”

• “The user elects the option to view the balance.”
• Looking for a small number of use cases that

capture the most important interactions
– Read the IBM Use Case paper

CIS 422/522 ©S. Faulk 12

Scenario Analysis Process

Applying scenario analysis in the requirements process
•Requirements Elicitation

– Identify stakeholders who interact with the system (actors)
– Collect “user stories” - how people would interact with the

system to perform specific tasks
•Requirements Communication (ConOps)

– Record as use-cases with standard format
– Use templates to standardize, drive elicitation

•Requirements verification and validation
– Review use-cases for consistency, completeness, user

acceptance
– Combine with mock-ups or prototypes
– Verify against code (e.g., use-case based testing)

7
CIS 422/522

CIS 422/522 ©S. Faulk 13

Questions?

CIS 422/522 ©S. Faulk 14

Deliverables Walkthrough

• Consider: What kinds of questions should your documents
answer?
– Assume a manager unfamiliar with the project is reviewing your

status
– Would your documents answer key questions about the project

goals and current status?
• Team page: Who is on the team and what are their skills?
• Project plan

– Who is responsible for which tasks?
– What are the anticipated risks and what are you doing to

mitigate them?
– What is your development process and how does it help

address the risks?
– Detailed Schedule & Milestones

• What is the project schedule of tasks and deliverables?
• What is the current status relative to schedule?

8
CIS 422/522

CIS 422/522 ©S. Faulk 15

Walkthrough (2)

• Software Requirements
– 2. ConOps: What capabilities will the software provide the

user or customer?
– 3. Behavioral Requirements: What are the detailed technical

requirements?
• Specific inputs accepted & outputs generated
• Detailed behavior of any computation (e.g., sort, error responses)

– 4. Quality Requirements: objective requirements for software
qualities (e.g., reliability, performance)

• Software Design
– Architecture: How is the software organized into

components? How does it work (function)? Where is each
requirement implemented (traceability)?

– Module Interfaces: What are the component interfaces?

CIS 422/522 ©S. Faulk 16

Walkthrough (3)

• Quality Assurance: How will you check whether the
software satisfies functional and quality
requirements?
– Reviews: Which artifacts/properties will be checked by

review?
– Test Plans: How will you test the software?

• User Documentation: How will users understand how
to install and use the application?

• Code Documentation: What do I need to know to find
parts of the code responsible for implementing any
given requirement or part of the design?
– How is the code organized in the repository?
– What does this code component do?

1
CIS 422/522

CIS 422/522 © S. Faulk 1

CIS 422/522  

Technical Requirements (SRS)
Quality Requirements

CIS 422/522 © S. Faulk 2

Review: Use Cases

•  Natural language narrative describing how a
user interacts with the system to accomplish a
specific task

•  Defines a subset of functional requirements
–  Captures requirements visible to the user
–  Focuses on most important user tasks

•  Missing specifications of quality requirements
(performance, security, etc.)

2
CIS 422/522

CIS 422/522 © S. Faulk 3

Requirements Documentation

•  Is a more formal, detailed requirements specification
necessary?

•  How do we know what “correct” means?
–  How do we decide exactly what capabilities code should

provide?
–  How do we know which test cases to write and how to

interpret the results?
–  How do we know when we are done implementing?
–  How do we know if we’ve built what the customer asked for

(may be distinct from “want” or “need”)?
–  Etc…

•  Correctness is a relation between a spec and an
implementation (M. Young)

•  Implication: until you have a spec, you have no
standard for “correctness”

CIS 422/522 © S. Faulk 4

Technical Requirements

•  Focuses on developing a rigorous specification
–  Should be straight-forward to determine acceptable

inputs and outputs
–  Preferably, can systematically check completeness

consistency
•  Use cases are not sufficient
•  Generally accomplished by modeling required

behavior
–  Formal model: models based on formal languages
–  Partial and semi-formal models

3
CIS 422/522

CIS 422/522 © S. Faulk 5

Formal Models

•  Requirements modeling methods based on formal
languages, e.g.
–  SCR: finite state machines
–  Z: formal logic
–  Statecharts: concurrent automata

•  Advantages: allows users to
–  Derive the set of acceptable outputs for given inputs
–  Prove properties like consistency, completeness, safety,

liveness
•  Disadvantages

–  Requires rare skills
–  Expensive to produce and change

•  Used seldom except where mission/safety critical
(e.g., Intel fab after $475M FDIV error)

CIS 422/522 © S. Faulk 6

Semi-formal Modeling

•  Many semi-formal methods used
–  Structured but non-mathematical models
–  Formal but partial models

•  E.g. UML models add some rigor to Use Cases
–  Activity diagrams
–  Sequence diagrams
–  Disadvantage: tends to model design and implementation

•  Modeling critical parts of the requirements
–  Use predicates (i.e., basic Boolean expressions)
–  Use mathematical expressions
–  Use tables

•  A little rigor in the right places can help a lot
–  Adding formality is not an all-or-none decision
–  Use it where it matters most to start
–  Often easier, less time consuming than trying to say the same

thing in prose

4
CIS 422/522

CIS 422/522 © S. Faulk 7

SE, Modeling, Hans van Vliet, ©2008

Example state transition diagram

Does the Address Book have stateful behavior?
What are the states? Transitions?

CIS 422/522 © S. Faulk 8

Formal Specification Example

•  SCR formal model
–  Define explicit types
–  Variables monitored or controlled

5
CIS 422/522

CIS 422/522 © S. Faulk 9

For Your Projects

•  Inputs and outputs
–  Be explicit about value types and ranges for each input

variable (e.g. Name, Zip, phone)
•  How many digits? Other characters?

–  Be explicit about acceptable outputs
•  Export values and formats
•  Values displayed or printed

–  Easiest to define the inputs and outputs as abstract
variables

•  Detailed behavioral requirements
–  Specify acceptable results for a sort
–  Specify acceptable search results
–  Specify state changes (if applicable)

CIS 422/522 © S. Faulk 10

Quality Requirements

6
CIS 422/522

CIS 422/522 © S. Faulk 11

Terminology

•  Avoid “functional” and non-functional" classification
•  Behavioral Requirements – any information

necessary to determine if the run-time behavior of a
given implementation constitutes an acceptable
system
–  All quantitative constraints on the system's run-time behavior
–  Other objective measures (safety, performance, fault-

tolerance)
–  In theory all can be validated by observing the running

system and measuring the results
•  Developmental Quality Requirements- any

constraints on the system's static construction
–  Maintainability, reusability, ease of change (mutability)
–  Measures of these qualities are necessarily relative (I.e., in

comparison to something else)

CIS 422/522 © S. Faulk 12

Behavioral vs. Developmental
Behavioral (observable)

•  Performance
•  Security
•  Availability
•  Reliability
•  Usability 

 
Properties resulting from the
behavior of components,
connectors and interfaces
that exist at run time.

Developmental Qualities
•  Modifiability(ease of change)
•  Portability
•  Reusability
•  Ease of integration
•  Understandability
•  Support concurrent

development 

Properties resulting from the
structure of components,
connectors and interfaces
that exist at design time
whether or not they have any
distinct run-time
manifestation.

7
CIS 422/522

CIS 422/522 © S. Faulk 13

Specifying Quality Requirements

•  Is it important to specify the quality
requirements explicitly? Unambiguously?
–  Hint: what role would quality requirements play in

customer acceptance?
•  Are these kinds of specifications adequate?

–  “The system interface shall be easy to use.”
–  “The system shall support the maximum possible

number of simultaneous users”

CIS 422/522 © S. Faulk 14

Specifying Quality Requirements

•  When using natural language, write objectively
verifiable requirements when possible
–  Load handling: “The system will support up to 100

concurrent users while while maintaining a response time
under 15 ms.”

–  Maintainability: “The following kinds of requirements
changes will require changes in no more than one module of
the system…”

–  Performance:
•  “System output X has a deadline of 5 ms from the triggering input

event.”
•  “System output Y must be updated at a frequency of no less than

20 ms.”
•  Provides unambiguous requirement even if it is not

practical to test for compliance

8
CIS 422/522

CIS 422/522 © S. Faulk 15

Example Timing Requirements

CIS 422/522 © S. Faulk 16

Summary

•  Requirements characterize “correct” system
behavior

•  Being in control of development requires:
–  Getting the right requirements
–  Communicating them to the stakeholders
–  Using them to guide development
–  Using them to check the quality of the

implemented system

9
CIS 422/522

CIS 422/522 © S. Faulk 17

Questions?

CIS 422/522 © S. Faulk 18

Midway Review: Expected Progress

•  Look for progress against plan (limited evaluation
of quality)

•  Home page: name, logo, directory
•  Plan and schedule:

–  Up-to-date plan: risks, process, etc.
–  Schedule tracking progress
–  Meeting notes and Developer Logs

•  Requirements
–  Use cases to current iteration or beyond
–  Some detailed requirements

•  Design: initial design (up to iteration)
•  QA Plan: planned reviews and test cases

10
CIS 422/522

CIS 422/522 © S. Faulk 19

Grading Rubric

•  For final deliverables: evaluate extent team
demonstrates control?

•  Managerial
–  How well does the team establish then follow a plan?
–  Does the team effectively use resources to 1) meet

deadlines or 2) re-plan when needed?
•  Intellectual

–  Does the team effectively establish what they intend to
build?

•  To what extent is it consistent with customer?
–  Does the team build to the specifications?
–  How well does the team demonstrate correctness?

•  Individual: to what extent did you contribute?

	4-Requirements_QA Recorded
	4.1-UseCases
	5-Requirements_QA_2

