
1
CIS 422/522

CIS 422/522 © S. Faulk 1

Midterm Review
CIS 422/522
Stuart Faulk

(with slight modifications by A. Hornof, 2018)

CIS 422/522 © S. Faulk 2

The “Software Crisis”

•  Have been in “crisis” since the advent of big software
(roughly 1965)

•  What we want for software development
–  Low risk, predictability
–  Lower costs and proportionate costs
–  Faster turnaround

•  What we have:
–  High risk, high failure rate
–  Poor delivered quality
–  Unpredictable schedule, cost, effort
–  Examples: Ariane 5, Therac 25, Mars Lander, DFW Airport, FAA

ATC, Cover Oregon
•  Characterized by lack of control

2
CIS 422/522

CIS 422/522 © S. Faulk 3

Large System Context

•  Discuss issues in terms of large, complex systems
–  Multi-person: many developers, many stakeholders
–  Multi-version: intentional and unintentional evolution

•  Quantitatively distinct from small developments
–  Complexity of software rises exponentially with size
–  Complexity of communication rises exponentially

•  Qualitatively distinct from small developments
–  Multi-person introduces need for organizational functions,

policies, oversight, etc.
–  More stakeholders and more kinds of stakeholders

•  We can only approximate this in our projects

CIS 422/522 © S. Faulk 4

Implications: the Large System Difference

•  Small system development is driven by technical issues
(I.e., programming)

•  Large system development is dominated by
organizational issues
–  Managing complexity, communication, coordination, etc.
–  Projects fail when these issues are inadequately addressed

•  Lesson #1: programming ≠ software engineering
–  Techniques that work for small systems often fail utterly when

scaled up
–  Programming alone won’t get you through real developments or

even this course

3
CIS 422/522

CIS 422/522 © S. Faulk 5

View of SE in this Course

•  The purpose of Software Engineering is to
gain and maintain intellectual and managerial
control over the products and processes of
software development.
–  Intellectual control: able to make rational

development decisions based on an
understanding of the downstream effects of those
choices.

–  Managerial control means we likewise control
development resources (budget, schedule,
personnel).

CIS 422/522 © S. Faulk 6

Course Approach

•  Learn methods for acquiring and maintaining
control of software projects (two threads)

•  Managerial control
–  Team organization and people management
–  Organizing people and tasks
–  Planning and guiding development

•  Intellectual control
–  Establishing and communicating exactly what should

be built
–  Making effective decisions about system properties

(behavioral and developmental)
–  Choosing appropriate order for decisions and ensuring

feedback/correction

4
CIS 422/522

CIS 422/522 © S. Faulk 7

The Software Lifecycle

CIS 422/522 © S. Faulk 8

Need to Organize the Work

•  Nature of a software project
–  Software development produces a set of interlocking,

interdependent work products
•  E.g. Requirements -> Design -> Code

–  Implies dependencies between tasks
–  Implies dependencies between people

•  Must organize the work such that:
–  Every task gets done
–  Tasks get done in the right order
–  Tasks are done by the right people
–  The product has the desired qualities
–  The end product is produced on time

5
CIS 422/522

CIS 422/522 © S. Faulk 9

Usefulness of Life Cycle Models

•  Application of “divide-and-conquer” to
software processes and products
–  Identify distinct process objectives
–  Can then address each somewhat separately

•  Intended use
–  Provide guidance to developers in what to produce

and when to produce it
–  Provide a basis for planning and assessing

development progress
•  Never an accurate representation of what

really goes on

CIS 422/522 © S. Faulk 10

A “Waterfall” Model

Design

System Integration
and Testing

Coding

Deployment

Maintenance and
Evolution

Requirements
Analysis

Architecture

1.  As a guide: does not address 
some common development risks
•  What happens if requirements 

are wrong?
•  Is scheduling or budget is wrong?

2.  As a model: unrealistic as a  
model of any real development

3.  Useful in identifying conceptually 
distinct activities

Problems of temporal
distance

6
CIS 422/522

CIS 422/522 © S. Faulk 11

Characteristic Processes:  
An Iterative Model...

•  Process is viewed as a sequence of iterations
–  Essentially, a series of waterfalls

•  Addresses some common waterfall risks
–  Risk that software cannot be completed – build incremental subsets
–  Risk of building the wrong system – stakeholder have opportunities to see the

software each increment
–  Also, can double check feasibility, schedule, budget and others issues

CIS 422/522 © S. Faulk 12

Characteristic Processes:  
The Spiral Model

•  Process viewed as
repeating cycles of
increasing scale

•  Identify risks and
determine (next set of)
requirements

•  Each cycle builds next
version by extension,
increasing scale each
time

•  Explicit Go/No-Go
decision points in process

7
CIS 422/522

CIS 422/522 © S. Faulk 13

Spiral Model

determine
goals Risk evaluation

and Mitigation

plan next
phase development

CIS 422/522 © S. Faulk 14

Characteristic Processes:  
Agile (e.g. scrum)

•  Process viewed as nested sequence of builds (sprints)
–  Each build adds very small feature set (one or two)
–  Nightly build/test, frequent customer validation
–  Focus on delivering code, little or no time spent on documentation

8
CIS 422/522

CIS 422/522 © S. Faulk 15

Process Objectives

•  Objective: proceed in a controlled manner from
stakeholder needs to a design that demonstrably
meets those needs, within design and resource
constraints
–  Understand that any process description is an abstraction
–  Always must compensate for deviation from the ideal
–  Still important to have a well-defined process to follow and

measure against
•  Choose process to provide an appropriate level of

control for the given product and context
–  Sufficient control to achieve results, address risks
–  No more than necessary to contain cost and effort

•  Question of control vs. cost: processes introduce
overhead

CIS 422/522 © S. Faulk 16

Example
•  Project 1 requirements and constraints

1.  Deadline and resources (time, personnel) are fixed
2.  Delivered functionality and quality can vary (though they affect the

grade)
3.  Risks:

1.  Missing the deadline
2.  Technology problems
3.  Inadequate requirements
4.  Learning while doing

•  Process model
–  All of these risks can be addressed to some extent by building

some version of the product, then improving on it as time allows
(software and docs.)

–  Technology risk requires building/finding software and trying it
(prototyping)

–  Most forms of incremental development will address these

9
CIS 422/522

CIS 422/522 © S. Faulk 17

Project Planning and Management

CIS 422/522 © S. Faulk 18

Document Types and Purposes

•  Management documents
–  Basis for managerial control of resources

•  Calendar time, skilled man-hours, budget
•  Other organizational resources

–  Project plan, WBS, Development schedule
–  Utility: supports resource allocation to meet time and budget

constraints
•  allows managers to track actual against expected use of resources

10
CIS 422/522

CIS 422/522 © S. Faulk 19

Project Plan

•  Purpose: specifies how project resources will be
organized to:
–  Create each deliverable
–  Meet quality goals
–  Address developmental goals (e.g., mitigate risk)

•  Audience: should answer specific kinds of
questions for different types of users, e.g.:
–  Customers: When will the product be delivered?
–  Stakeholders: What is the development approach?

How does it address project risks?
–  Managers: When will tasks be completed? What is the

current progress against the plan?
–  Developers: What should I be working on and when?

CIS 422/522 © S. Faulk 20

Planning Tools

•  Work Breakdown Structure: decompose tasks and
allocate responsibilities
–  If incomplete, some tasks may not be done
–  If imprecise, people do not know exactly what to do
–  Without a complete set of tasks, schedules are unrealistic

•  PERT charts: identify where ordering of tasks may
cause problems
–  Represent precedence or resource constraints
–  Identify critical path

•  Gantt Charts: method for visualizing project schedule
(tasks, dependencies, timing, persons)

•  Note that these help address problems our projects
have encountered

11
CIS 422/522

CIS 422/522 © S. Faulk 21

Intellectual Control

CIS 422/522 © S. Faulk 22

Product Development Cycle

Business Goals
 Hardware
 Software
 Marketing

Product Planning
 Development &
 Marketing Strategy

Requirements
 Functionality
 Qualities

Design
Goals/
tradeoffs

Code

Test &
Validate

Stakeholder goals

Intellectual control: delivery of
•  Functional capabilities
•  Software qualities

Deploy

12
CIS 422/522

CIS 422/522 © S. Faulk 23

Document Types and Purposes

•  Development documents
–  Basis for intellectual control

•  Used for making and communicating engineering decisions
(requirements, design, implementation, verification, etc.)

•  Allows developers to track decisions from stakeholder needs to
implementation

–  Basis for communicating decisions
–  Requirements, Architecture, Detail design, Reviews, Tests

CIS 422/522 © S. Faulk 24

What is a “software requirement?”

•  A description of something the software must
do or property it must have

•  The set of system requirements denote the
problem to be solved and any constraints on
the solution
–  Specifies “what” not “how”
–  Bounds the set of acceptable implementations

13
CIS 422/522

CIS 422/522 © S. Faulk 25

Importance of Getting Requirements Right

2. The later that software errors are
 detected, the more costly they are
 to correct

1. The majority of software errors
 are introduced early in software
 development

1

2

5

10

20

50

100

design unit test,
 integration operation

requirements code
 debug

acceptance initial
 test

Phase in which error detected

0

10

20

30

40

50

requirements
and

functional

analysis

design construction and
system

development test

acceptance
testing and
operation

Development Phase

$1 error
$100 error

CIS 422/522 © S. Faulk 26

Requirements Phase Goals

•  What does “getting the requirements right” mean
in the systems development context?

•  Only three goals
1.  Understand precisely what is required of the software
2.  Communicate that understanding to all of the parties

involved in the development (stakeholders)
3.  Control production to ensure the final system satisfies

the requirements
•  Sounds easy but hard to do in practice, observed

this and the resulting problems in projects
•  Understanding what makes these goals difficult

helps us understand how to mitigate the risks

14
CIS 422/522

CIS 422/522 © S. Faulk 27

What makes requirements difficult?

•  Comprehension (understanding)
–  People don’t (really) know what they want (…until they see it)
–  Superficial grasp is insufficient to build correct software

•  Communication
–  People work best with regular structures, coherence, and visualization
–  Software’s conceptual structures are complex, arbitrary, and difficult to

visualize
•  Control (predictability, manageability)

–  Difficult to predict which requirements will be hard to meet
–  Requirements change all the time
–  Together make planning unreliable, cost and schedule unpredictable

•  Inseparable Concerns
–  Many requirements issues cannot be cleanly separated
–  Difficult to apply “divide and conquer,” must make tradeoffs

•  Implication: all the requirements goals are difficult to
achieve, must be managed as a risks!

CIS 422/522 © S. Faulk 28

Requirements Communication  
(Specification)

•  Many potential stakeholders using requirements
for different purposes
–  Customers: the requirements document what should

be delivered
–  Managers: provides a basis for scheduling and a

yardstick for measuring progress
–  Software Designers: provides the “design-to”

specification
–  Coders: defines the range of acceptable

implementations
–  Quality Assurance: basis for validation, test planning,

and verification
–  Also: potentially Marketing, regulatory agencies, etc.

15
CIS 422/522

CIS 422/522 © S. Faulk 29

Documentation Approaches

•  ConOps: informal requirements to describe the
system’s capabilities from the customer/user
point of view
–  Answer the questions, “What is the system for?” and

“How will the user use it?”
–  Tells a story: “What does this system do for me?”
–  Helps to use a standard template

•  SRS: formal, technical requirements for
development team
–  Purpose is to answer specific technical questions about

the requirements quickly and precisely
–  Precise, unambiguous, complete, and consistent as

practical

CIS 422/522 © S. Faulk 30

Scenario Analysis and Use Cases

•  Common user-centered analysis method
•  Requirements Elicitation

–  Identify stakeholders who interact with the system
–  Collect “user stories” - how people would interact with the

system to perform specific tasks
•  Requirements Specification

–  Record as use-cases with standard format
–  Use templates to standardize, drive elicitation

•  Requirements verification and validation
–  Review use-cases for consistency, completeness, user

acceptance
–  Apply to support prototyping
–  Verify against code (e.g., use-case based testing)

16
CIS 422/522

CIS 422/522 © S. Faulk 31

Example Use Case

•  Avoids design decisions
•  References other use

cases
•  References more

precise definitions
where necessary

•  Some terms need
further definition (e.g.
PIN)

CIS 422/522 © S. Faulk 32

Benefits and Drawbacks

•  Use cases can be an effective tool for:
–  Eliciting user-group’s functional requirements
–  Communicating to non-technical stakeholders
–  Creating initial test cases
–  Verifying expected behavior

•  Generally inadequate for detailed technical
requirements
–  Difficult to find specific requirements
–  Inherently ambiguous and imprecise
–  Cannot establish completeness or consistency

•  True of all informal specification methods

17
CIS 422/522

CIS 422/522 © S. Faulk 33

Technical Specification

The SRS
The role of rigorous specification

CIS 422/522 © S. Faulk 34

Requirements Documentation

•  Is a detailed requirements specification necessary?
•  How do we know what “correct” means?

–  How do we decide exactly what capabilities the modules
should provide?

–  How do we know which test cases to write and how to
interpret the results?

–  How do we know when we are done implementing?
–  How do we know if we’ve built what the customer asked for

(may be distinct from “want” or “need”)?
–  Etc…

•  Correctness is a relation between a spec and an
implementation (M. Young)
–  Implication: until you have a spec, you have no standard for

“correctness”

18
CIS 422/522

CIS 422/522 © S. Faulk 35

Technical Requirements

•  Focus on developing a technical specification
–  Should be straight-forward to determine

acceptable inputs and outputs
–  Can systematically check completeness

consistency
•  Provides

–  Detailed specification of precisely what to build
–  Design-to specification
–  Build-to specification for coders
–  Characterizes expected outputs for testers

•  Little application in Project 1

CIS 422/522 © S. Faulk 36

Quality Requirements

19
CIS 422/522

CIS 422/522 © S. Faulk 37

Quality Requirement Types

•  Avoid “functional” and non-functional"
classification

•  Behavioral Requirements – any requirements or
constraints on the system's run-time behavior
–  Measurable qualities (safety, performance, fault-

tolerance)
–  In theory all can be validated by observing the running

system and measuring the results
•  Developmental Quality Attributes - any

constraints on the system's static construction
–  Maintainability, reusability, ease of change (mutability)
–  Measures of these qualities are necessarily relativistic

(I.e., in comparison to something else

CIS 422/522 © S. Faulk 38

Behavioral and Developmental  
Requirements

Behavioral (observable)
•  Performance
•  Security
•  Availability
•  Reliability
•  Usability 

 
Properties resulting from the
behavior of components,
connectors and interfaces
that exist at run time.

Developmental Qualities
•  Modifiability(ease of change)
•  Portability
•  Reusability
•  Ease of integration
•  Understandability
•  Support concurrent

development 

Properties resulting from the
structure of components,
connectors and interfaces
that exist at design time
whether or not they have any
distinct run-time
manifestation.

20
CIS 422/522

CIS 422/522 © S. Faulk 39

Importance

•  Quality requirements are as or more
important to user acceptance than functional
–  Every system has critical quality requirements
–  The most frequent reason for user dissatisfaction

•  Quality requirements are often implicit or
assumed
–  E.g., response time, data integrity

•  Must be explicit to be controlled
–  Implicit requirements cannot be communicated,

tracked, verified, etc.
–  Left out at crunch time

CIS 422/522 © S. Faulk 40

Specifying Quality Requirements

•  When using natural language, write
objectively verifiable requirements when
possible
–  Load handling: The system will support a minimum

of 15 concurrent users while staying with required
performance bounds.

–  Maintainability: “The following kinds of requirement
changes will require changes in no more than one
module of the system…”

–  Performance:
•  “System output X has a deadline of 5 ms from the input

event.”
•  “System output Y must be updated at a frequency of no

less than 20 ms.”

21
CIS 422/522

CIS 422/522 © S. Faulk 41

Requirements Validation and Verification

•  Feedback-control for requirements
•  Should answer two distinct questions:

–  Validation: “Are we building to the right requirements?”
–  Verification: “Are we building what we specified?”

•  Validation requires going back to the stakeholders:
can use many techniques
–  Review of specifications
–  Prototyping, software review
–  Use case walkthroughs

•  Verification requires checking work products against
specifications
–  Review
–  Testing
–  Formal modeling and analysis

CIS 422/522 © S. Faulk 42

Real meaning of “control”

•  What does “control” really mean?
•  Can we really get everything under control

then run on autopilot?
•  Rather control requires continuous feedback

loop
1.  Define ideal
2.  Make a step
3.  Evaluate deviation from idea
4.  Correct direction or redefine ideal and  

go back to 2

22
CIS 422/522

CIS 422/522 © S. Faulk 43

End

CIS 422/522 © S. Faulk 44

Work Breakdown Structure

1.  Software Development
1.  Project Management
2.  Analysis

1.  Glossary
2.  Requirements Specification

1.  Use Cases
2.  Supplementary Specs…

44

Equivalent list format

23
CIS 422/522

CIS 422/522 © S. Faulk 45
http://www.conceptdraw.com/samples/project-chart

•  Which tasks can we start on?
•  Which tasks can be done concurrently?
•  Which tasks depend on which other tasks?
•  Critical Path: which path has the longest duration?

–  Gives minimum length of project

CIS 422/522 © S. Faulk 46

Example Gantt Chart

24
CIS 422/522

CIS 422/522 © S. Faulk 47

Teamwork and  
Group Dynamics 

CIS 422/522 © S. Faulk 48

What do software developers do?

-Technical excellence is not enough
Must understand how to work effectively in teams

•  Most time is not spent coding
•  So how do they spend their time?
•  IBM study (McCue, 1978):

–  50% team interactions
–  30% working alone (coding & related)
–  20% not directly productive

25
CIS 422/522

CIS 422/522 © S. Faulk 49

Being a Good Team Member

•  Attributes most valued by other team
members
–  Dependability

•  When you say you’ll do something, you do it
•  Correctly
•  On time

–  Carrying your own weight (doing a fair share of the
work)

•  People will overlook almost everything else if
you do these

CIS 422/522 © S. Faulk 50

Consensus decision making

Consensus takes time and work, but is worthwhile

•  Consensus is not counting votes
–  Democracy is 51% agreement
–  Unanimity is 100% agreement

•  Consensus is neither
–  Everyone has their say
–  Everyone accepts the decision, even if they  

don't prefer it
–  It is "buying in" by group as a whole, including

those who disagree
•  Usually best approach for peer groups

26
CIS 422/522

CIS 422/522 © S. Faulk 51

CIS 422/522  
2nd Half Concept Review

Stuart Faulk

CIS 422/522 © S. Faulk 52

View of SE in this Course

•  The purpose of software engineering is to
gain and maintain intellectual and managerial
control over the products and processes of
software development.
–  “Intellectual control” means that we are able

make rational choices based on an understanding
of the downstream effects of those choices (e.g.,
on system properties)*

–  Managerial control means we control
development resources (budget, schedule,
personnel)

27
CIS 422/522

CIS 422/522 © S. Faulk 53

The Architectural Business Cycle

Business Goals
 Hardware
 Software
 Marketing
 other

Product Planning
 Economic Evaluation
 Development Strategy
 Marketing Strategy
 Prioritization

Requirements
 Capabilities
 Qualities
 Reusability

Architecture
 Tradeoffs of
 quality goals

Strategic
Plan

ConOps or BRD
Business

Requirements
Definition

SRS
Software

Requirements
Specification

Architecture
Design

Documents

Traceability

Detailed
Design

Internal
Design

Documentation

Code

Stakeholder goals

Design decisions,
tradeoffs and constraints

CIS 422/522 © S. Faulk 54

Fit in the Development Cycle

Detailed
Design

System Integration
and Testing

Coding

Deployment

Maintenance and
Evolution

Requirements
Analysis

Software
Architecture

“…The earliest artifact that enables the priorities
among competing concerns to be analyzed, and
it is the artifact that manifests the concerns as
system qualities.”

28
CIS 422/522

CIS 422/522 © S. Faulk 55

Implications of the Definition

“The software architecture of a program or computing system is
the structure or structures of the system, which comprise software
components, the externally visible properties of those
components, and the relationships among them.” - Bass, Clements,
Kazman  

•  Systems typically comprise more than one architecture
–  There is more than one useful decomposition into

components and relationships
–  Each addresses different system properties or design goals

•  It exists whether any thought goes into it or not!
–  Decisions are necessarily made if only implicitly
–  Control issue is who makes them and when
–  Being in control implies having the right person make each

decision at the appropriate time

CIS 422/522 © S. Faulk 56

Examples: These are architectures
•  An architecture comprises a set of

–  Software components
–  Component interfaces
–  Relationships among them

•  Partial Examples....

Structure Components Interfaces Relationships

Calls Structure Programs Program interface
and parameter
declarations.

Invokes with
parameters  
(A calls B)

Data Flow Functional tasks Data types or
structures

Sends-data-to

Process Sequential
program
(process, thread,
task)

Scheduling and
synchronization
constraints

Runs-concurrently-
with, excludes,
precedes

29
CIS 422/522

CIS 422/522 © S. Faulk 57

This is not
Control
Process

(CP)

Noise
Model

(MODN)

Reverb
Model

(MODR)

Prop Loss
Model

(MODP)

Typical (but uninformative) architectural diagram
•  What is the nature of the components?
•  What is the significance of the link?
•  What is the significance of the layout?

CIS 422/522 © S. Faulk 58

Effects of Architectural Decisions
•  What kinds of system and development properties

are and are not affected by architecture?
•  System run-time properties

–  Performance, Security, Availability, Usability
•  System static properties

–  Modifiability, Portability, Reusability, Testability
•  Production properties? (effects on project)

–  Work Breakdown Structure, Scheduling, time to market
•  Business/Organizational properties?

–  Lifespan, Versioning, Interoperability
•  But not functional behavior

30
CIS 422/522

CIS 422/522 © S. Faulk 59

Relation to Stakeholders

•  Many stakeholders have a vested interest in
the architectural design
–  Management, marketing, end users, maintenance,

IV&V, Customers, etc
•  Their interests often defy mutual satisfaction

–  There are inherently tradeoffs in most architectural
design choices

–  E.g. Performance vs. security, initial cost vs.
maintainability

•  Making successful tradeoffs requires
understanding the nature, source and priority
of quality requirements

CIS 422/522 © S. Faulk 60

Implications for the Development
Process

Goal: keep developmental goals and architectural
capabilities in synch:
•  Understand the goals for the system (e.g.,

business case or mission)
•  Understand/communicate the quality

requirements
•  Design architecture(s) that satisfy quality

requirements
•  Evaluate/correct the architecture
•  Implement the system based on the architecture

31
CIS 422/522

CIS 422/522 © S. Faulk 61

Designing Architectures

CIS 422/522 © S. Faulk 62

Elements of Architectural Design

•  Design goals
–  What are we trying to accomplish in the

decomposition?
•  Architectural Structures

–  How to we capture and communicate design
decisions?

–  What are the components, relations, interfaces?
•  Decomposition principles

–  How do we distinguish good design decisions?
–  What decomposition (design) principles support the

objectives?
•  Evaluation criteria

–  How do I tell a good design from a bad one?

32
CIS 422/522

CIS 422/522 © S. Faulk 63

Design Means…
•  Design Goals: the purpose of design is to solve

some problem in a context of assumptions and
constraints
–  Assumptions: what must be true of the design
–  Constraints: what should not be true

•  Process: design proceeds through a sequence of
decisions
–  A good decision brings us closer to the design goals
–  An idealized design process systematically makes

good decisions
–  Any real design process is chaotic

•  Good Design: by definition a good design is one
that satisfies the design goals

CIS 422/522 © S. Faulk 64

Which structures should we use?

•  Choice of structure depends the specific
design goals

•  Compare to architectural blueprints
–  Different view for load-bearing structures, electrical,

mechanical, plumbing

Structure Components Interfaces Relationships
Calls Structure Programs

(methods,
services)

Program interface and
parameter declarations

Invokes with
parameters  
(A calls B)

Data Flow Functional tasks Data types or
structures

Sends-data-to

Process Sequential
program (process,
thread, task)

Scheduling and
synchronization
constraints

Runs-concurrently-with,
excludes, precedes

33
CIS 422/522

CIS 422/522 © S. Faulk 65

Elevation/Structural

CIS 422/522 © S. Faulk 66

Models/Views

•  Different views answer different kinds of
questions

•  Designing for particular software qualities also
requires the right architectural model or “view”
–  Any model presents a subset of system structures and

properties
–  Different models answer different kinds of questions

about system properties
•  Goal is choose a set of views where

–  Structures determine key required qualities
–  Consequences of related design choices are made

visible

34
CIS 422/522

CIS 422/522 © S. Faulk 67

Example: 
Designing the Module Structure

CIS 422/522 © S. Faulk 68

Modularization

•  For large, complex software, must divide the
development into work assignments (WBS).
Work assignments can focus on “modules.”

•  Properties of a “good” module structure
–  Parts can be designed, understood, or

implemented independently
–  Parts can be tested independently
–  Parts can be changed independently
–  Integration goes smoothly

35
CIS 422/522

CIS 422/522 © S. Faulk 69

Module Hierarchy

•  For large systems,
organize modules such
that
–  Every requirement is

allocated to some module
–  Can easily find the module

providing a given
capability

–  When a change is
required, it is easy to
determine which modules
must be changed

•  The module hierarchy
defined by the
submodule-of relation

Problem

Interface

Encap-
sulated

Secrets

Submodule-of
relation

Secrets Secrets

Secrets Secrets

Interface

Encap-
sulated

Interface

Encap-
sulated

CIS 422/522 © S. Faulk 70

Modular Structure
•  Comprises components, relations, and interfaces
•  Components

–  Called modules
–  Leaf modules are work assignments
–  Non-leaf modules are the union of their submodules

•  Relations (connectors)
–  submodule-of => implements-secrets-of
–  The union of all submodules of a non-terminal module must

implement all of the parent module’s secrets
–  Constrained to be acyclic tree (hierarchy)

•  Interfaces (externally visible component behavior)
–  Defined in terms of access procedures (services or method)
–  Only external (exported) access to internal state

36
CIS 422/522

CIS 422/522 © S. Faulk 71

Design Approach

CIS 422/522 © S. Faulk 72

Decomposition Strategies Differ

•  How do we develop this structure so that we
know the leaf modules make independent work
assignments?

•  Many ways to decompose hierarchically
–  Functional: each module is a function
–  Steps in processing: each module is a step in a chain

of processing
–  Data: data transforming components
–  Client/server

•  But, these result in strong dependencies (strong
coupling)

37
CIS 422/522

CIS 422/522 © S. Faulk 73

Information Hiding Decomposition
•  Approach: divide the system into submodules according

to the kinds of design decisions they encapsulate
(secrets)
–  Put design decisions likely to change together in the same

module
–  Put design decisions likely to change independently in different

modules
•  Viewed top down, each module is decomposed into

submodules such that
–  Each design decision allocated to the parent module is allocated

to exactly one child module
–  Together the children implement all of the decisions of the parent

•  Stop decomposing when each module is
–  Simple enough to be understood fully
–  Small enough to re-write easily

•  This is called an information-hiding decomposition

CIS 422/522 © S. Faulk 74

Module Hierarchy
Problem

Interface

Encapsulated

“Secrets” “Secrets” “Secrets”

“Secrets” “Secrets”

Interface

Encapsulated

Interface

Encapsulated

Interface

Encapsulated

Submodule-of relation

Given a set of likely
changes
•  Things that change

together in same
module

•  Separately in
different modules

•  Meets design goals

38
CIS 422/522

CIS 422/522 © S. Faulk 75

Specifying Abstract Interfaces

CIS 422/522 © S. Faulk 76

Module Interface Specs
•  Documents all assumptions user’s can make

about the module’s externally visible behavior
–  Access programs, events, types, undesired events
–  Design issues, assumptions

•  Document purpose(s)
–  Provide all the information needed to write a module’s

programs or use the programs on a module’s interface
(programmer’s guide, user’s guide)

–  Specify required behavior by fully specifying behavior
of the module’s access programs

–  Define any constraints
–  Define any assumptions
–  Record design decisions

39
CIS 422/522

CIS 422/522 © S. Faulk 77

Why these properties?

Module Implementer
•  The specification tells me

exactly what capabilities my
module must provide to users

•  I am free to implement it any
way I want to

•  I am free to change the
implementation if needed as
long as I don’t change the
interface

Module User
•  The specification tells me how

to use the module’s services
correctly

•  I do not need to know anything
about the implementation
details to write my code

•  If the implementation changes,
my code stays the same

Key idea: the abstract interface specification defines
a contract between a module’s developer and its users  

that allows each to proceed independently

CIS 422/522 © S. Faulk 78

Design Principles

40
CIS 422/522

CIS 422/522 © S. Faulk 79

What are Principles?

•  Principle (n): a comprehensive and
fundamental rule, doctrine, or assumption

•  Design Principles – rules that guide
developers in making design decisions
consistent with overall design goals and
constraints
–  Guide the decision making process of design by

helping choose between alternatives
–  Embodied in methods and techniques (e.g., for

decompositions)

CIS 422/522 © S. Faulk 80

Key Design Principles

•  Three principles covered
–  Most solid first
–  Information hiding
–  Abstraction

•  Should understand
–  Design guidance provided by each principle
–  The result of applying the principle (e.g., from

examples covered in class)

41
CIS 422/522

CIS 422/522 © S. Faulk 81

QA Activities

Verification and Validation

CIS 422/522 © S. Faulk 82

Validation and Verification

•  Validation: activities to answer the question –
“Are we building a system the customer
wants?”
–  E.g. customer review of prototype

•  Verification: activities to answer the question –
“Are we building the system consistent with its
specifications?”
–  E.g., functional testing

42
CIS 422/522

CIS 422/522 © S. Faulk 83

V&V Methods

•  Most applied V&V uses one of two methods
•  Review: use of human skills to find defects

–  Pro: applies human understanding, skills. Good for
detecting logical errors, problem misunderstanding

–  Con: poor at detecting inconsistent assumptions,
details of consistency, completeness. Labor intensive

•  Testing: use of machine execution
–  Pro: can be automated, repeated. Good at detecting

detail errors, checking assumptions
–  Con: cannot establish correctness or quality

•  Tend to reinforce each other

CIS 422/522 © S. Faulk 84

Testing

43
CIS 422/522

CIS 422/522 © S. Faulk 85

Testing Fundamentals

•  Coding produces errors
–  Data show 30-85 errors are made per 1000 SLOC

•  Testing: processes of executing the code to
detect errors

•  In practice, it is impossible to check for all
possible errors by testing

•  Even checking a useful subset is expensive
–  40%-80% of development cost
–  Must be re-done when software changes
–  Potentially unbounded effort

CIS 422/522 © S. Faulk 86

Testing Fundamentals (2)

•  Reality: must settle for testing a subset of
possible inputs
–  Even extensively tested software contains 0.5-3 errors

per 1000 SLOC
•  Pesticide Paradox: every method used to prevent or find

bugs leaves a residue of subtler bugs against which those
methods are ineffectual [Beizer]

–  Always a tradeoff of cost vs. errors found
•  Fundamental cost/benefit questions

–  Which subsets of possible test cases will find the most
errors?

–  Which will find the most important errors?
–  How much testing is enough?

44
CIS 422/522

CIS 422/522 © S. Faulk 87

Ideal Testing Goal

•  Goal: choose a sufficiently small but adequate
set of test cases (input domain)
–  Small enough to economically run the complete

set and re-run when software changes
–  “Adequate” much harder to define, generally

means some combination of:
•  Acceptably close to required functional behavior
•  Contains no catastrophic faults
•  Reliable to an acceptable level (mean time to failure)
•  Within tolerance levels for qualities like performance,

security, etc.

CIS 422/522 © S. Faulk 88

Number of Approaches

•  Fault detection vs. Confidence building
•  White-box vs. Black Box
•  Different methods for choosing “adequate”

test set
–  Coverage, fault-detection, operational profiles

45
CIS 422/522

CIS 422/522 © S. Faulk 89

Experimental Results

•  There is no uniformly best technique
•  Different techniques tend to reveal different types

of faults
•  Multiple techniques reveal more faults (at a cost)
•  Cost-effectiveness of run-time testing is low,

particularly compared to inspections (vast
majority of tests find no errors)
–  Design review: 8.44
–  Code review: 1.38
–  Testing: 0.17

CIS 422/522 © S. Faulk 90

Interpretation

•  A combination of manual and automated
techniques is most cost effective
–  People are better at detecting many kinds of errors

than machines
–  Machines are better at repetitive checks and minute

details (comparing values)
•  Testing works best in a supporting role (checking

assumptions)
–  Activity of producing test cases and results double-

checks other artifacts
•  Is it well enough defined to write a good test case?
•  Are edge cases defined? Etc.

–  Gives feedback on assumptions and expectations:
does the system do what we expect?

46
CIS 422/522

CIS 422/522 © S. Faulk 91

Development Realities

CIS 422/522 © S. Faulk 92

Developer Realities

•  Nothing counts but delivery
–  Software product properties

•  Sufficient desired functionality
•  Acceptable qualities

–  Process properties
•  Timely
•  “low cost” (acceptable ROI)

•  But…
–  Delivery must be repeatable, usually building on legacy

systems
–  The target moves
–  The process is done largely in the dark

47
CIS 422/522

CIS 422/522 © S. Faulk 93

Issues

•  Balancing all these factors is difficult
•  Easiest to come up with partial, short-term

solutions
–  Acceptable solution but late, over cost
–  On time delivery but difficult to change, maintain
–  Deliver but is not what the customer wants
–  Quick fix, difficult to maintain, etc.

•  Results from complexity, shortsighted approach
–  Huge pressure to “code first, ask questions later”
–  Overall problem too complex to comprehend at once
–  Focus on parts of the problem, excluding others
–  Fail to look ahead (paint ourselves into a corner)

CIS 422/522 © S. Faulk 94

Software Engineering

•  Principles of Software Engineering provide an
antidote

•  Helps to foresee downstream problems of
poor decisions

•  Supports doing the right thing rather than only
the most “urgent”

•  Provides principles and tools to keep a project
in control

