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lnteract
Design

Doors let people into spaces. That's what people are looking for when they come up to
a door, whether it's made of wood, metal, glass, or some unknown material: Where is

the handle, and how do I use it to unlatch and push open the door? As Don Norman
has pointed out in his book lhe Design of Everyday Things (1988), even such an obvi-
ous and simple user need is easily defeated by poor design.

Norman (1988,3-4) illustrates his pointwith an amusing anecdote of a friend
"trapped" in the doorway of a European post office. The door in question was part of
an outside entryway (a row of six glass doors), with an identical internal entrance
beyond. As the man entered through the leftmost pair of doors, he was briefly dis-
tracted and turned around. The rotation caused him to slightly shift his position to the
right. When he moved forward and pushed a door in the next row, it didn't move. He
assumed it must be locked, so he moved to the next pair of doors. He pushed another
door; it also refused to move. Beginning to feel confused, he decided to go outside and
try again. But now when he pushed the door leading back outside, it also didn't move.
His confusion turned to mild panic . . . he was trappedl Just then a group of people
entered at the other end of the doorways. Norman's friend hurried over and followed
them, and was successful this time.

The problem was a simple one and would have been easy to avoid. Swinging doors
come in pairs, one side containing a supporting pillar and hinge, the other one free to
swing. To get through, you must push against the swinging side. For these doors, the
designers went for elegance and beauty. Each panel was identical, so there were no
visual clues as to which side was movable. When Normanb friend accidentally changed

his position, he became out of sync with the "functional" panels within the row of
glass. The result was an entryway that looked nice but provided poor support for use.

The goal of interaction design is to specify the mechanisms for accessing and
manipulating task information. Whereas information design focuses on deter-
mining which task objects and actions to show and how to represent them, an
interaction design tries to make sure that people can do the rtght things at the right
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Making sense,' I see the
equation and it looks
OK, so I will move on.

Interpretation: I opened an Excel
file and selected the cell that
should contain a sum equation.

Perception; Pointer over icon, icon
highlighted, rectangle with text appears,
pointer at bottom of column, highlighted
symbols appear in box above column.

Execution: Grasp mouse, move
cursor to icon, click twice rapidly,
move pointer to new position,
click once.

Chapter 5 Interaction Design

time. T}:re scope of possible action is broad-for instance, from selecting and
opening a spreadsheet, to pressing and holding a mouse button while dragging
it, to specifying a range of cells in the spreadsheet.

Interaction design focuses on the Gulf of Execution in Norman's (1986)
analysis of human-computer interaction (Figure 5.1). The user begins with a task
goal, such as the desire to investigate an irregularity in last month's budget. To
pursue this goal, the real-world obiective is translated into an appropriate system
goal-a computer-based task such as examining an Excel spreadsheet. The system
goal is elaborated as an action plan that specifies the steps needed to achieve the
system goal: point at an Excel icon, double-click to open it, point at the first cell
containing a sum, and so on. Finally, the plan is executed: The mouse is grasped
and moved until the cursor is over the icon, a double-click is performed to
launch Excel, and the pointer is moved to the bottom of the first column.

The example in the figure continues through the cycle to emphasize the
important role of system feedback. While the execution takes place, some visual
changes appear; for instance, when the file is opened, a new figure (the window)
is seen. These changes are interpreted with respect to the spreadsheet context,
and ultimately with respect to the budget question.

This is a deliberately simple example, but even a trivial interaction such as
opening a spreadsheet can be undermined by usability problems. Suppose that

Task goal: There is a
problem with last
month's budget. I

better check the System goal: I need
column sums. to open that Excel

file to check the
equations.

Gulf of Evaluation

Action plan: Point at the
Excel icon, double-click to
open, point to cell at
bottom of first column,
click to highlight,
read equation.

Figure 5.1 stages of action in a budget problem: choosing, planning, and executing an
action, and then perceiving, interpreting, and making sense of the computer,s response.

Gulf of Execution
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the spreadsheet is very large and only a portion of it shows when it is opened,
making it difficult to determine its status; or suppose that it is has links to other
files that are not present, resulting in warning or error messages. And, of course,
opening the spreadsheet is just the beginning. As the task progresses, the com-
puter responds with changing information displays that must be perceived, inter-
preted, and understood in order to plan and carry out the next set of steps.

As in Chapter 4, we have used Norman's (1986) framework to organize our
discussion of interaction design. Here we are concemed with the three stages
making up the Gulf of Execution-selecting a system goal, creating an action
plan, and executing the action plan. For the sake of simplicity, we limit our dis-
cussion to standard user interaction techniques-the WIMP user interface style
(windows, icons, menus, pointers), the default on most PCs and workstations.

As in all aspects of system development, designers have many options to
choose from in designing a user interaction. Their goal is to compose and se-
quence user-system exchanges in a way that is intuitive, fluid, and pleasant for
the task at hand. Doing this depends on understanding the details of the usage
situation. There are no simple right or wrong answen; as usual, interaction
design is peppered with tradeoffs.

5.1 Selecting a System Goal
To pursue a task with computer support, a user must first translate his or her real-
world goal into a software-oriented goal, also known as a system goal. The sim-
plest case is one where the system object or action is identical to the real-world
concept-perhaps in our example above, the accountant sees an object named
"last month's budget." This is a very close match to what is wanted; deciding to
open it is trivial. The system goal in this case has high semantic directness, in
that the user's task goal is mapped very easily onto an appropriate system feature.
Of course, the names or pictures of system objects and actions do not usually
match task goals exactly, so some amount of processing and inference is required.
One goal of interaction design is to minimize this cognitive effort as much as
possible.

5.1.1 lnteractionStyle

A powerful technique for helping people tmnslate their task goals into system
goals is direct manipulation (Shneiderman 1983). A direct-manipulation user
interface is built from objects and actions that are direct analogs of objects and
actions in the real world: User interface controls look like buttons that can be
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pressed; and data containers look like folders that are grabbed, dragged, or
stacked. An active application looks like a window that has been opened for the
user to see inside. Choices are shown as menus to be opened and browsed so that
items can be selected.

User interface controls that look or sound like familiar objects in the real
world simplify the problem of choosing a system goal (Hutchins, Hollan, & Nor-
man 1986). If a user wants to put something away, there are folders waiting to be
used. When a user wants to organize information, the objects are on the screen
waiting for action. Of course, direct-manipulation techniques require that the
right objects and controls are present at the right time--displaying a large set
of folders on a screen will be of little help if the goal involves navigation to a
Web page.

Even this simple example makes it clear that direct manipulation is not a
universal interaction technique (Tradeoff 5.1). Persistent visibility of objects and
actions is essential, but a large number of display elements will lead to visual
clutter. People must decide which of their many tasks are frequent or important
enough to "leave out in the open."

TRA DEOFF
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5.1

Visible user interface controls that are analogs to real-world objects simplify the
mapping from task to system goals, BUT not all task goals have visual analogs.

Direct manipulation also requires that objects can be represented visually,
and that the operations on these visual entities are analogs to physical actions
(e.g., pointing, selecting, and dragging). But there are many system concepts that
have no obvious visual representation. In the accountant example, how could a
system visually represent "the two managers who did not yet turn in their budget
numbers"?

Direct-manipulation user interfaces are often complemented with some
form of a command language. A command language consists of a vocabulary
and composition rules (syntax) used to identify and manipulate task objects indi-
rectly. Instead of pointing at a file or a piece of data, a user types or says its name,
or specifies it through a logical expression, a mathematical equation, or some
other symbolic description. In these cases, the distance from a task goal to a sys-
tem goal can be substantial-the user must remember and produce the right
vocabulary words in the right order.

Expressing system goals with commands is economical and flexible. Text
requires minimal display space, and simple commands can often be combined to
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create more complex expressions. This makes it possible to satisfy many different
system goals with a relatively small vocabulary. But even for small vocabularies,
learning the rules for specifying and ordering commands (the command syntax)
can be difficult (Tradeoff 5.2). Many common objects and actions have mul-
tiple names in natural language (e.g., copy/ duplicate, move/relocate, and table/
matrix). If these concepts represent possible system goals, users must remember
which of the synonyms to use.

TRA DEOFF
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5.2

Expressing system goals indirectly with names or symbols is flexible and economical,
BUT learning a command vocabulary can be difficult or tedious,

Buttons and menus offer an interesting compromise between direct
manipulation and command-based interaction. They are persistent visible
objects that users can point at and select. But the content that they represent is
usually a command. In a menu system, complex command expressions may be
constructed through a sequence of choices. For example, the procedure for open-
ing a new browser in Netscape might be summarized as "Execute the File com-
mand New with an argument of Navigator." Indeed, one reason that menus are
so pervasive in WIMP user interfaces is that they have a flexibility and economy
similar to command languages, while offering the advantage of recognition over
recall.

5.1.2 OpportunisticGoals

Sometimes a person has no particular task goal in mind. For instance, someone
first starting up a computer in the morning may have no specific agenda, and
instead relies on the computer display to remember what needs doing. In such
situations, attractive or convenient system goals may be adopted in an oppor-
tunistic fashion.

Opportunistic behavior is evoked by perceptually salient or engaging ele-
ments in the user interface display. An interesting possibility is detected, which
causes the user to remember a task or to adopt a new goal. A familiar example is
the response often exhibited on arrival of new mail, where users drop whatever
task they are engaged in to check out a new message. Opportunism is also com-
mon when novice users are confused or distracted, and seek guidance from the
system about what to do next. In these cases, any obiect or control that looks
intriguing or helpful may be accepted as the right thing to do.
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5.3

lntriguing task options encourage flexible goal
lead to inappropriate, confusing, or frustrating

switching, BUT opportunism may
experiences.

In most cases, opporfunism is not a serious usability problem. Setting aside
one task to pursue another can enhance feelings of flexibility and increase the
spontaneity of one's activities. However, designers should analyze sources of
opportunism in their user interfaces, and seekways to minimize it when it would
interfere with task goals (Tradeoff 5.3). Novices become seriously derailed when
they are drawn into complex or exotic functionality (Carroll 1990). People may
want to know when new email arrives, but they should be able to deactivate such
alerts when concentration is important.

5.2 Planning an Action Sequence
The steps needed to achieve a system goal comprise an action plan. With experi-
ence, many such plans will be leamed and automated, such that they require lit-
tle conscious thought (Anderson 1983). Most users do not consciously plan the
steps for accessing and making a selection from the bookmark list in their Web
browserl opening a spreadsheet may well happen without conscious attention.
However, for more complex tasks, or for people working with a new application,
the user interface is a critical resource in determining what steps to take (Payne
19e1).

The concept of a plan is related to the task analysis techniques discussed in
Chapter 2. Thsk analysis specifies the steps and decision rules needed to carry out
a task; this can be seen as an idealized action plan for the analyzed task. Plans can
be decomposed and analyzed at many levels of detail, depending on the inter-
action concern in focus (e.g., making a selection from a list box versus construct-
ing a piechart). First-time or occasional users may need to think about the details
of selecting or manipulating individual user interface controls, but experienced
users will operate at a much higher task-oriented level of abstraction.

Action planning is an active process. People retrieve what they know about
a system from their mental models. They use the system information available
and make inferences to fill the gaps, often relying on experiences with other sys-
tems. As a result, the plan guiding the behavior of any one user may overlap only
partially with the action plan intended by the designer. People are not machines.
Even if we could somehow be taught every possible plan for every possible con-
tingency, we would be unable (or unwilling!) to ceaselessly retrieve and execute
these plans in rote fashion.
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5.2.1 Making Actions Obvious

How do users know what to do at all? To a great extent, they learn by experience.
Users rely on their current mental models and on their reasoning ability to
decide what to do. As execution takes place, system feedback may lead them to
revise or elaborate their action plan (i.e., through perception, interpretation, and
making sense). The success and failure of such episodes results in learning about
what works and what does not work; mental models are updated and plans are
reinforced or revised.

One way to help users learn what to do is to make it easy to predict, by try-
ing to emulate real-world tasks (Moran 1983). For example, people editing a
report will circle or underline a piece of text, and then write an editing mark or
comment near it. A word processor that follows this scheme will be easier to
understand than one that expects users to first enter their comment and then
point to the text it describes. Thus, one design strategy is to document existing
procedures, and then define action plans that build on these procedures. The
problem with this is that most software projects seek to enhance or improve cur-
rent tasks. This means that there will always be computer-based tasks that have
no real-world analogs (Tradeoff 5.4).

TRA 5.4
Action plans that correspond to real-world tasks and manipulations are intuitive and
easy to learn, BUT many computer functions extend real-world tasks.
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An effective direct-manipulation interface can also simplify action plan-
ning. The same physical analogies that aid selection of system goals (recognizing
a folder as a place to put things) also help to suggest what actions to take (grab
and open the folder). This effect on action planning is related to the concept of
affordances discussed in Chapter 4. People need not memorize "press a button to
activate it"; a screen button affords pressing because it looks like a real-world but-
ton. Dimming choices on a menu makes the grayed-out items look inactive, dis-
couraging inappropriate selections; even a relatively subtle affordance like this
can be important in ensuring smooth interaction.

As pointed out earlier, it is impossible to support all user tasks with direct
manipulation interfaces. Physical analogies work well for simple actions, such as
identification, selection, movement, interconnection, and duplication opera-
tions. But how do you carry out a search by direct manipulation or apply a global
substitution? Researchers working with programming languages have spent dec-
ades exploring direct-manipulation techniques for writing programs, but support
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for logic, abstraction, and reuse continue to challenge these efforts (Cypher L983;
Lieberman 20O1; Rosson & Seals 2001).

5.2.2 Simplifying Complex Plans

In WIMP user interfaces, people rely on icons, buttons, dialog boxes, or other
user interface controls to guide them through action sequences. The user looks at
a menu bar, and one set of choices is offered; he or she opens the menu and
another set appears. A menu item is selected, and another set of more specific
choices is presented via a dialog box. And so on. This simplifies planning, be-
cause users only need to know the next step. What would otherwise be learned as

the command words and parameters of a command language is implicit in a

sequence of menus, or in the input fields, check boxes, and other controls of a
dialog box.

Nonetheless, plan complexity is still a major design concern. People are
always trying new things, and as applications become more powerful, the usage
possibilities become more complex. Problems are likely to arise when users
attempt tasks with many steps-for example, many levels of nested menus, sev-
eral interconnected dialog boxes, or many links leading to a Web page. A long
sequence of interdependent actions is hard to keep in mind, and users can lose
track of where they are. This can lead to omission or duplication of steps, or
other errors (see "Designing for Errors" sidebar).

Studies of human memory have shown that people have a limited capacity
to hold information in mind (Miller 1,956). We can hold more information if it is
possible to chunk it-that is, organize several interrelated bits of information
into a single unit. Chunking often is a natural consequence of use; the more
times certain bits of information occur together, the more likely they are to
become a chunk. Information that naturally occurs together may be chunked
even without previous exposure. Common examples of information chunking
are people's names, phone numbers, dates, and so on.

User interface controls help to chunk interaction sequences. Figure 5.2
illustrates this for the task of using Microsoft Word to indent a paragraph. From
the perspective of the system soffware, this task requires seven inputs from the
user: specification of beginning and end points identifying the text, selection of
the Format menu, and of the Paragraph option within that menu, selection of
the First line indentation option, typing an indentation amount, and select-
ing or. But from the user perspective, the plan includes three chunks: paragraph
selection, accessing the paragraph settings, and setting the indentation.

Defining the chunks of an action plan is a critical aspect of interaction
design, but chunking that is arbitrary or that ignores implicit task boundaries is
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2. Open Paragraph settings

1 . Select text

1. Specify text selection start

2. Specify text selection end

3. Select Format menu

4. Select Paragraph option 
---+5. Set Special to First Line

6. Type value for First Line

7. Accept new settings

Figure 5.2 User interface controls organize complex plans into smaller; more manageable sequences
of actions.

worse than no chunks at all (Tladeoff 5.5). Steps that naturally go together should
not be placed in separate chunks. And steps that are very different should not be
squeezed into the same chunk. Suppose that in the indentation example above,
the line to be indented is identified by pointing at the text (step #5). This would
disrupt the third chunk, resulting in a disjointed and awkward interaction.

3. Set indentation

TRADEOFF
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5.5

Decomposing complex plans into chunks aids learning and
plans, BUT the sequence may create arbitrary or unnatural

application of action
step boundaries.

Action planning is also simplified by internal and external consistency
(Chapter 4). For example, if some tasks require users to first identify an action
and then indicate the object to which it applies, while others require the oppo-
site order, people will almost certainly make errors in learning these procedures.



168 Chapter 5 Interaction Design

The memory phenomenon responsible for conflicts of this sort is interference.
Interference is the inverse of transfer of learning; in these cases prior knowledge
leads users to do the wrong thing.

5.2.3 Flexibility

People are good at multithreaded activities, that is, pursuing multiple goals at
once. We often intemrpt ourselves, set aside our current goals, and take on new
goals (see Section 5.1.2 on opportunistic goals). This makes us responsive to our
environment; we can rearrange task priorities as a function of new information,
or even as a function of what seems more or less rewarding at the moment. It
also increases our feelings of control-we see ourselves as people who make deci-
sions about and manage our own behavior.

Designing for Errors

Problematic interactions with computer
software are usually reported as errors, but
this term may not really reflect what is hap-
pening in most cases. The term " error" im-
plies that someone is to blame. But most
user interaction errors arise without any in-
tent, and so should be analyzed as misun-
derstandings or confusions (Lewis & Nor-
man 1936). But regardless of terminology,
such problems are inevitable and designing
for error is an important piece of inter-
action design.

Norman (1981a) makes a basic distinc-
tion between mistakes and slips. lf an in-
appropriate intention is established and
pursued, a mistake is made; if the right
thing is intended but a problem comes up
along the way, a slip occurs. ln HCl, mistakes
are common for novice users, because their
mental models are relatively incomplete.
Slips are common among experts, who have
many overlearned action sequences and
who often execute plans with little or no at-
tention. Lewis and Norman (1986) expand
on this analysis, giving examples and design
approaches for minimizing errors. The table

on the facing page names and exemplifies
several error types, along with general de-
sign advice for minimizing them.

Lewis and Norman also discuss tech-
niques for helping users detect or recover
from errors (see also Carroll 1990). A gen-
eral technique is to provide a forcing
function that prevents the user from con-
tinuing down an error path. Specific exam-
ples include:
o gags (e.g., locking the keyboard);
o warning (e.9., oh alert explaining that

you cannot copy a file to a locked
d iskette);

o do nothing (e.g., simply ignoring a
request to change the color of an im-
ported graphic);

o auto-correct (also sometimes called
DWIM or do-what-l-mean, e.9., the
auto-formatting and spelling correction
common in modern word processors);

o let's talk about it (initiating a dialog,
e .9., as when a file name is not recog-
nized); and

. teach me (e.9., letting the user add
words to a spelling dictionary).
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As the power and sophistication of personal computers has increased,
multithreaded interaction has become pervasive. Most machines can easily run
three or four different applications simultaneously with little or no impact on
processing speed. The implications for interaction design are strong: People must
keep track of where they are in one plan while they pick up on anotherl when
they return to a deferred plan, they need to remember where they were, so that
they can resume. For complex plans with many embedded activities, people will
put a plan on hold but expect to maintain the current task context. A user filling
out a complex Web order form should be able to leave the form temporarily (e.g.,
to investigate another product) and return to it later without losing the data
already entered.

Multiple overlapping windows are commonly provided to increase the
flexibility and control of user interactions. Each window holds the status and

Designing for Errors (continued)

Type of Error

Mistake.' asking for
nonexistent f u nction
or object

Mistake.'over-
generalizing an earlier
experience

Slip: doing something
that is appropriate, but
not for the current
interaction mode

Slip: making a request
that is interpreted as
something else

Slip: completing an
automated (but
inappropriate) action

Example Situation

Mistyping the name of a
command so that its function
cannot be executed

ln a listserve, using " reply"
when intending to reply
only to the sender of a
message

Trying to input text into a
document while the Font
dialog box is open

Using a keyboard shortcut
to turn off underline before
adding a space (in Microsoft
PowerPoi nt this reverses
the existing underline)

Deleting a text selection
before the selection has
been correctly specified

Design Approach

Represent (e.9., in lists,
icons) what is available

Present through trai ni ng
or documentation a more
complete set of examples

Minimize modes and when
necessary mark well with
status and feedback cues

lmprove consistency of
low-level controls within
and across applications

Predict locus of such errors
and increase the amount of
feedback (or alerts) provided
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data relevant to an ongoing plan. Property sheets are special cases of this general
technique; they are opened to investigate or set task-relevant characteristics such
as the preferences defined for a Web browser or email program. Users can put
aside one task and continue another simply by clicking on a window to bring it
(along with its status information) into focus.

An obvious cost of multiple windows is an increase in plan complexity
(Tradeoff 5.6). When multiple tasks are underway, people often are forced to take
on an extra task-finding and activating windows. They may end up spending
valuable time on housekeeping chores such as minimizing, resizing, ot rearrang-
ing windows. They may also be drawn into tasks that have low priority (oppor-
tunism). Providing clear indications of task identity and status (e.9., title bars, the
current state of contained data or processes) can help to address this problem.

TRADEOFF
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5.6
Allowing plan interruption and resumption enhances feelings of control, BUT
management of simultaneous plans is demanding and may increase errors.

A variant of multiple windows is a tiled display. This style can now be seen
in the many Web applications that use frames. Different categories of informa-
tion are presented in persistent subareas of the display. An important difference
between overlapping and tiled window displays is that users see all of the tiled
presentations all the time. In fact, this is a key design consideration: If a task in-
volves multiple related goals and information sets, designing a coordinated tiled
display can encourage dynamic construction and switching among plans. Our
work on programming tools for Smalltalk demonstrates this-a tiled display sup-
ports simultaneous interaction with complementary views of an example appli-
cation (Carroll, Singer, et al. 1990; Carroll & Rosson 1991).

In order to work on two tasks at once, individual plans must be interrupt-
ible. User interaction modes work against flexible task-switching and activity
management. A mode is a restricted interaction state, where only certain actions
are possible. Common examples are an "insert mode" that only accepts text
input; an alert box that must be dismissed in order to continue workl or a dialog
box whose settings must be accepted or canceled before returning to the main
window.

Modes are sometimes necessary-for example, when an urgent system
event has taken place and the user must acknowledge this or take some action
before continuing. However, in general, designers should avoid putting users into
situations where they are forced to complete a plan before continuing. The ever-
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present cancel button on dialog boxes is a compromise solution-users may not
be able to continue work on their data while a dialog box is open, but at least
they can quickly leave the mode.

5.3 Executing an Action Sequence
The final phase of an action cycle is execution of plan steps. In some sense, exe-
cution is an inconvenience-what users really want is to accomplish their goals
directly, but they must do this by carrying out a sequence of physical actions.
On occasion, though, the execution process itself may be rewarding. Video game
experts probably feel a sense of accomplishment and reward when they push a
joystick just the right amount. In either case, the design of simple and fluid ac-
tion sequences will greatly impact people's competence and satisfaction in plan
execution.

The most important actions to get right are those that are repeated over
and over: pervasive actions such as selection, opening, moving, control keys,
menu navigation, and so on. Not surprisingly, these are the sorts of interactions
addressed by many user interface style guides (Apple Computer 1992; IBNd t99l;
Sun Microsystems 1990). From a design perspective, pervasive controls are also
the elements that developers have least control over; the look and feel of these
controls is usually inherited or highly constrained by a windowing system and
associated code libraries. Nonetheless, careful examination of these primitive
operations can be important in selecting user interface software tools.

5.3.1 Directness

The choice of input device for a task should consider how well it meets the task's
performance requirements. The mapping of a physical movement with a device
to a task's input requirements is referred to as articulatory directness. Twisting
a device is a direct technique for adjusting rotation, and typing a number to
specify rotation angle is an indirect mechanism for providing this input. Pressing
a mouse button while dragging corresponds closely to grabbing and holding on
to something as it is relocated; clicking on an object, and then moving the
mouse and clicking again to reposition it, is less direct. Table 5.1 lists a number
of common input devices, along with their physical characteristics and likely
applications.

The term pragmatics is sometimes used to refer to the physical behaviors
required by a user interface (Buxton 1983). User interface pragmatics is a concern
for user engineering and refinement in the same way that the perceptual and
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better choice for the more complex task, because push-
are easy to combine.

execute. The joystick is a
ing and twisting motions
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5.7

Physical movements that reinforce task
actions most natural for individual task

goals enhance ease and pleasure, BUT
goals may combine poorly or conflict.

5.3.2 Feedback and Undo

One of the most crucial elements of interaction design is feedback-the system-
generated information that lets users know that their input is being processed or
that a result has been produced. If people cannot see how fast they are moving
in a space, they cannot adiust their speed to increase accuracy. If they cannot
see that a target has been selected, they will not know to manipulate it. If they
cannot see what text they have typed, they will not be able to detect and correct
mistakes.

The need for feedback is obvious, yet from a software construction perspec-
tive, it is easy to ignore: Tracking and reacting to low-level actions require signif-
icant testing and code development, so user interface developers may be tempted
to minimize their attention to such details. One important responsibility of
usability engineers is to make sure that this does not happen.

Of course, constant and complete feedback is an idealization. Every bit of
feedback requires computation; input events must be handled, and display
updates calculated and rendered (Tradeoff 5.8). As feedback events become more
frequent, or as the updates become more complex, system responsiveness will
deteriorate. Thus, a challenge for interaction design is determining which aspects
of an action sequence are most dependent on feedback, and what level of accu-
racy is adequate at these points (Johnson 2000).
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5.8

lmmediate and continuing feedback during
adjust behaviol BUT frequent or elaborate

execution helps to track progress and
updates can introduce irritating delays.

An example is window manipulation-early systems animated the move-
ment or resizing of the entire window contents as feedback. However, this made
the interactions sluggish. Modern windowing systems demonstrate that a sim-
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ple frame is sufficient in most cases to convey size or location changes. (As an
exercise, see if you can think of cases where this would not be a good solution.)

Designing task-appropriate feedback requires a careful analysis of a task's
physical demands. Speed and accuracy trade off in motor behavior: A task that
must be done quickly will be done less accurately (Fitts & Posner 1967). Thus,
dynamic feedback is important for a sequence of actions that must be carried out
rapidly. Similarly, if accurary has high priority (e.g., positioning a medical instru-
ment under computer control, or deleting a data archive), extensive and accurate
feedback should be provided.

Even with high-quality feedback, execution errors will be made. Frequent
action sequences will be overleamed and automated; automated sequences may
then intrude on less frequent but similar behaviors. Time and accuracy of point-
ing depend on target size and distance (Fitts's Law; Fitts 1954; Fitts & Peterson
1964). Thus, from a performance perspective, an information design should make
objects as large as possible and as close as possible to the current pointer location.
But this is not always feasible, and pointing latency and accuracy will suffer. Users
also make anticipatory errors-for example, pressing Delete before verifying that
the right obiect is selected. And, of course, many execution errors have nothing
to do with motor performance, but rather result from distraction or lapses of con-
centration, as when a user mistakenly presses cancel instead of save at the end
of an extensive editing session (see "Designing for Errors" sidebar).

Sometimes execution errors are easy to correct. A mistyped character is eas-
ily deleted and replaced with another. In a direct-manipulation system, a mouse
that overshoots its target can quickly be adjusted and clicked again. But when
errors result in substantial changes to task data, the opportunity to reverse the
action-i.e., to undo-is essential. Indeed, this is a key advantage afforded by
work within a digital (versus real world) task environment: If the system is de-
signed correctly, we can say "oops, that isn't what I meant to do," with very little
cost in time or energy.

Although some degree of reversibility is needed in interactive systems,
many issues arise in the design of undo schemes (Tradeoff 5.9). It is not always
possible to anticipate which goal a user wants to reverse-for example, during
paragraph editing, do users want to undo the last character typed, the last menu
command, or all revisions to the paragraph so far? Another concern is undo his-
tory the length of the sequence that can be reversed. A third is the status of the
undo command: Can it also be undone and, if so, how is this interpreted? Most
interactive systems support a restricted undo; users can reverse simple events in-
volving data input (i.e., typing or menu choices) but not more significant events



L76 Chapter 5 Interaction Design

(e.9., saving or copying a file). unao is often paired with Redo, a special function
provided iust for reversing undo events.
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5.9

Easy reversibility of actions aids confidence and
come to rely on undo and be frustrated when it

encourages speed, BUT users will
"undoes" the wrong thing.

Of course, even simple undo schemes will do the wrong thing at times. In
Microsoft Word the autoFormat feature can be used to correct keyboard input as

it is typed, such as changing straight quotes to curly quotes. But unbeknownst to
most users, these automatic corrections are also added to the undo stack-typing
a quote mark causes fwo user actions to be stacked, including the ASCII key code
for the straight quote, plus its automatic correction. A request for undo first
reverts to a straight quote, a character the user will have never seen while typing!

Feedback and undo are broad issues in user interface design. Although our
focus here is on their role in plan execution, feedback contributes to all levels of
planning and action. The order summary in an online store helps the buyer
make sense of the transaction thus far. Being allowed to go back a step and fix
just one problem with the order data will have a big impact on satisfaction.
Reminding a user that he or she is about to commit $450 to the order on submis-
sion may be irritating at the time, but it forces the important step of verifying an
action with important (perhaps not undoable) consequences in the real world.

5.3.3 OptimizingPerformance

An obvious design goal for execution is efficiency. Users asked to input long or
clumsy sequences of events will make errors, they will take longer, and they will
be unhappy. For routine and frequent interactions, time lost to inefficient action
sequences may be estimated and valued in hundreds of thousands of dollars
(Gray, John, & Atwood 1992). Thus, it should come as no surprise that much
work on user interface design and evaluation techniques has focused on perfor-
mance optimization (Card, Moran, & Newell 1983).

Perhaps the biggest challenge in optimizing performance is the inherent
tradeoff between power and ease of learning. In most cases, a command language
is more efficient than a graphical user interface (GUI), simply because users can
keep their hands in one position (on the keyboard) and refer indirectly to every-
thing in the system. An experienced UNIX system administrator is a classic image
of a power user. In a GUI, users point and click to access objects and actions; this
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takes considerable time and effort, especially when objects or actions are deeply
nested. However, a GUI is much easier to leam-users recognize rather than
recall the available objects and actions, and careful visual design can create affor-
dances to guide goal selection and plan execution.

Most user interfaces support a combination of graphical and text-based
interaction. System obiects and actions are presented visually as window con-
tents, buttons and menus, icons, and so on. At the same time, frequent functions
may be accessed via keyboard shortcuts-keyboard equivalents for one or more
levels of menu navigation. Particularly for text-intensive activities such as word
processing, such shortcuts have substantial impacts on input efficiency and on
satisfaction. Comparable techniques using keystroke+mouse combinations can
be equally effective in drawing or other graphics-intensive applications. Simple
macros that chunk and execute frequent action combinations provide a cus-
tomizable fast-path mechanism.

Whether or not a user interface includes special actions for optimizing per-
formance, careful attention to a sequence of actions can improve execution effi-
ciency. Consider the design of a menu system. The time to make a menu selection
depends on where the menu is relative to the selection pointer, how long it takes
to reveal the menu, and how long it takes to find and drag the pointer down to
the desired item. A design optimized for efficiency would seek to minimize exe-
cution time at all these points (while still maintaining accuracy). For example, a
context-sensitive, pop-up menu reduces time to point at and open a menu. Dia-
log boxes that are organized by usage patterns optimize time to interact with the
controls. (See Sears [1993] for detailed discussions of layout appropriateness.)

Providing good defaults (choices or input suggested by the system) is an-
other valuable technique for optimizing performance. Dialog boxes display the
current values of required settings, but if a setting is optional or has not been
specified yet, a most-likely value should be offered. It may not always be possible
to guess at a good default (e.g., when users enter personal information for the
first time), but even if a partial guess can be made (e.g., that they live in the U.S.,
or that their travel will take place this month), people will appreciate the input
assistance, as long as it is not difficult to reset or replace suggestions that do not
match task needs. Defaults also help in planning, by suggesting what is normal
behavior at this point in a task.

The problem with optimizing an interface for frequent action sequences is
that it is difficult to optimize one execution path without interfering with others
(Tradeoff 5.10). More conceptual issues arise as well. For example, ordering
menu items by frequency of selection may compete with a task-based rationale
(e.g., editing operations versus file manipulation). If a frequently used button on
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a dialog box is positioned near the starting position of the pointer, the resulting
layout may be inconsistent with the visual design program in place. If some
menu functions are accessed directly via a cascaded menu tree, while others are
accessed by opening and interacting with dialog boxes, inconsistencies in the
overall dialog structure can result (e.g., compare rnsert Picture versus rnsert
object in Microsoft Word.)

TRA DEOFF
tLu

sqE--

5.10
Optimized action paths and good defaults for frequent tasks improve task efficiency,
BUT may introduce inconsistencies or intrusion errors into less frequent tasks.

There is no easy solution to these tradeoffs, but working through detailed
use scenarios can uncover possible performance issues. For example, the key-
strokes of alternate action sequences can be modeled mathematically to compare
their efficiency (see, e.g., the keystroke-level model of Card, Moran, & Newell
L980). Current research is aimed at automating this sort of low-level modeling
and comparison. For example, Hudson et al. (1999) describe a user interface tool
kit in which user input events are recorded by the user interface controls that
handle them (e.g., a menu that is opened, or text that is entered into a field).
When a usability engineer demonstrates a task, an automatic record of user input
can be created and used as the basis of performance modeling.

An important application of performance optimization techniques is users
with special needs. A blind user can use a screen reader to hear descriptions of
items in a visual display, but careful attention to where and how task objects are
displayed can have significant impacts on how long it takes to describe them.
Users with motor disabilities can benefit immensely from customization facilities
supporting the flexible definition of keyboard macros, speech commands, or
other substitutes for tedious pointer-based navigation and selection.

5.4 Science Fair Case Study: lnteraction Design
Interaction design continues the design of user interaction details. A fully elabo-
rated interaction scenario should describe user input and system responses in
enough detail that it can serve as a partial specification for software design. Inter-
action design is sometimes referred to as dialog design, because it is concerned
with the step-by-step exchange between humans and the system. Whereas infor-
mation design concentrates on what users see and understand, interaction design
considers how users will select or manipulate system information.
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interaction design narratives, careful consideration should be directed to the
available options for input and output devices and user interface controls.

Detailed Design

To implement an interaction scenario, the system's input and output devices
must be specified. It is not enough to say that Alicia clicks on a map; this clicking
action must be mapped to a particular device, cursor image, and so on. Different
devices have different implications for physical behavior (recall Table 5.1). The
interaction designers should carefully examine the devices supported by the
selected development platform (indeed, sometimes such concerns will help de-
termine the appropriate platform). For the virtual science fair, we simply adopted
the default input and output mechanisms used in MOOsburg-a mouse for
pointing and selection, keyboard for text input, and a single screen for output-
although we may eventually support speech input and output.

Another aspect of detailed design addresses the user interface controls
(often called widgets). In the science fair project, many of these details were
fixed by the Java user interface libraries used by MOOsburg (Isenhour, Rosson, &
Carroll, in press). However, we ask the questions in Thble 5.5 to think about user
actions and feedback. For example, MOOsburg displays generic system menus
(e.g.,rile) in a fixed menu bar, but context-specific menus (e.g., for moving or
opening an exhibit) appear as pop-up menus near the selected obiect. This
emphasizes the connection between selected objects and their behaviors, and
reduces the execution time for evoking the object-specific functions. However,
the technique hides initial view of the options, and requires the infrequent be-
havior of clicking the right mouse button. Because of this we revetsed the "right
click for options" convention and displayed the options in response to the left
click normally used for object selection.

lnteraction Storyboards

SBD adapts Wirfs-Brock's notion of user-system conversations (Wirfs-Brock
1995) to examine short interaction sequences in depth. Wirfs-Brock uses this
technique to elaborate use cases in object-oriented design-a user interaction is
modeled as a two-sided conversation, with the user's input events making up one
side, and the system response the other. A point-by-point analysis of this sort can
help to force out otherwise hidden issues.

Wirfs-Brock generates textual descriptions for each side of the conversation.
We used instead a simple sketch of the screen at each point during the dialog,
annotated with information about what the user sees and does. The result is a
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Table 5.5 Qustions used to raise user action and feedback concerns about user-interface input devices

and controls.

Ul Control

Pointing/selection

Menus

Text input field

Undo

Buttons

lcons

Dialog boxes

Alerts

Windows

Sample Questions about Specific lnteraction Mechanisms

How many pointer shapes are available? What is the relation between
pointer and insertion point? What keys can be used to position the pointer
and how? What selection shortcuts are available, and how do these vary
across tasks?

How are they opened? Where do they appear? How are submenus
accessed? How are inappropriate items indicated? What shortcuts or fast
paths are supported?

How is the insertion pointer positioned? How is unacceptable input
signaled? How are defaults initialized and removed?

What is the unit of change? How does it vary across tasks? How far back
can you go? What is the undo/redo relationship?

How is pressing signaled? How are active and inactive buttons
distinguished? What happens when a window is resized?

How is selection indicated? How does the icon draw itself when its referent
is moved or copied? Are multiple images supported and, if so, how?

Are they modal or not (or either)? How are they positioned? Can they be
repositioned? How is embedding indicated? How is navigation among
f ields supported? How are defaults set and reset?

Where do they appear? Do they include sound? Are they modal? Do they
have a time-out mechanism?

How are they opened and positioned? How are they moved and resized?
How are hidden (but active) windows surfaced? What window relationships
can be signaled?

rough storyboard, a graphical event-by-event enactment of a complex or crucial
sequence of user-system interactions. (A storyboard is an example of a low-fidelity
prototype; see Chapter 6. Note that we have developed this one in a graphical
editor to make it more legible, but often a rough sketch would be sufficient.)

Figure 5.7 shows a storyboard developed during the detailed design of the
visit scenario. It does not represent the full narrative, but focuses on a portion of
the episode that raised special interaction concerns-the actions on miniature
windows that either update the main view or open a separate window to the side
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the data files Sally has provided; Delia
works with Excel independently of
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4. An animated demo of stars
forming and repositioning is
displayed.

5. The exhibit window surfaces,
with the star model still selected,
and the final frame of the
animation in view.

1. Alicia and Delia look at the
Excel charts Sally has prepared.

3. The exhibit window surfaces,
with the Excel miniature
still selected.

5. Alicia and Delia see Sally's
instructions about how to run her
star simulation.

Delia double-clicks on the
Excel miniature...

Alicia clicks the miniature
for the slide show of the
start model...

They take a look, then use
the close box to dismiss the
star simulation...

Delia clicks on any part
of the exhibit to
reactivate it...
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Alicia double-clicks on
the star model
miniature to see
what will
happen...
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Figure 5.7 A simple storyboard sketching interactions with the miniature windows.
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of the exhibit. We took the case where there is already an Excel window open to
the side and Alicia and Delia go on to explore the star simulation. This level of
interaction seemed reasonable in a visit situation, and we wanted to see if the
general scheme of view selection and application launching would work.

In Figure 5.7, the dark borders signify the currently active window and con-
trols. The brief episode shows how Alicia and Delia open first the Excel applica-
tion, work with it overlaid on the exhibit, and then go back to the exhibit and
open another source application. At this point, there are three windows on the
display: the overall exhibit view, and the two source applications (in fact, there
would also be the original science fair view, which we have ignored in this story-
board for simplicity; it would be a second complex window in the background).
The complexity would multiply even more if visitors opened more source appli-
cations. By walking through the details of this interaction sequence, we obtained
a more concrete feel of what it would be like to click on a control to view its con-
tent, and to double-click for more extensive interaction. We persuaded ourselves
that the two forms of interaction would be distinct for users (single-click versus
double-click) and that they offered a natural mapping to the task goals (the more
intense action of double-clicking produces a more intense result of activation).

This storyboarding activity also had a pervasive side effect: We decided that
clicking on any window that was part of a set (e.g., an exhibit with several sec-
ondary windows open) would cause all of the windows in the set to surface
together. The related windows provide a context for interpretation, and so they
should be managed as a group.

The virtual science fair envisioned to this point has raised many questions
that are best addressed through prototyping and user testing. It is not enough for
us to convince ourselves that we have made the right decisions-ultimately, the
users will decide. For instance, the techniques iust described for exhibit viewing
and application launching are in need of empirical evaluation; the creation and
access of nested components is another good example. In Chapters 6 and 7 we
will show how design scenarios and claims are used in prototyping and usability
evaluation.

Summary and Review

This chapter has discussed issues relevant in designing interaction sequences for
interactive systems. we elaborated the science fair design to demonstrate how
interaction issues can be envisioned and discussed. The use of storyboards as
a detailed analysis technique was also illustrated. central points to remember
include:



CHAFJ'TER Usa
Eva I

ln the mid-1980s, Digital Equipment Corporation was among the first software compa-
nies to define methods for usability engineering. During development of the MicroVMS
Workstation Software for the VAXstation l, the usability professionals on the team
defined a set of measurable user performance objectives to guide the development
process. A central benchmark task was designed in which representative users created,
manipulated, and printed the contents of windows. The usability objective was to
reduce performance time on the benchmark task by 20o/o between version 1 and ver-
sion 2 of the system. As development proceeded, measurements of users' performance
on several related subtasks were made to identify areas of greatest usability concern in
the design of version 1. The usability problems having the largest impacts on perfor-
mance were used to prioritize changes and guide the redesign of version 2. ln the end
the team exceeded their objective, improving performance time on the benchmark task
by 37o/o, while staying within the originally allocated development resources. lnterest-
ingly, however, measured user satisfaction for version 2 declined by 25o/o relative to
version 1. (See Good, et al. 1986).

A usability evaluation is any analysis or empirical study of the usability of a pro-
totype or system. The goal of the evaluation is to provide feedback in software
development, supporting an iterative development process (Carroll & Rosson
1985; Gould & Lewis 1985). Insightful requirements and inspired designs create
new possibilities for humans and for their organizations. But there are many
ways that goals and plans for new technology can go awry. Despite best efforts
and sound practices, the original goals for the system may not in fact be
achieved. The system may not be sufficiently useful, it may be too difficult to use

or to learn, or using it may not be satisfying. More profoundly, the original
proiect goals may have been successfully achieved, but they may turn out to be
the wrong goals. Usability evaluation helps designers recognize that there is a
problem, understand the problem and its underlying causes in the software, and
plan changes to corect the problem.

bility
uation

227
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Table 7.1 Examples of empirical and analytic usability methods.

Type of Method

Analytic evaluation:
I nvestigations that involve
modeling and analysis of a

system's features and their
implications for use

Example Methods

Claims analysis: system features are analyzed with
respect to positive and negative impacts

Usability inspection: a set of guidelines or an
expert's general knowledge is used as a basis for
identifying or predicting usability problems

User models: a representation of the mental
structures and activities assumed during use is
developed and analyzed for complexity,
consistency, and so on.

Empirical evaluation:
lnvestigations that involve
observation or other data
collection from system users

Controlled experiment: one or more system
features are manipulated to see effects on use

Think-aloud experiment: users think out loud
about their goals, plans, and reactions as they
work with a system

Field study: surveys or other types of user feedback
are collected from real-world usage settings

7.1 Usability Specifications for Evaluation
Mediated evaluation is a key idea behind usability specifications (Carroll &
Rosson 1985; Whiteside, Bennett, & Holtzblatt 1988), which are precise and
testable statements of the usability characteristics required of a system. The
intention is to specify and manage usability goals in parallel with the functional
goals for the system. Thus, at every step in the development process, as system
functions are designed and specified, their consequences for users and their activ-
ities are also analyzed and specified. This parallel specification process ensures
that usability concerns will always be considered and assessed as new features are
proposed and incorporated into the design. In scenario-based development, the
usability specifications are derived directly from design scenarios.

Usability specifications rely on a task analysis similar to the methods of
hierarchical task analysis described in chapter 2. A user interaction scenario de-
scribes work activities that are typical, critical, or novel. Thsk analysis breaks these
activities into subtasks that provide a more precise specification of what users are
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of a library helps when leaming to use a digital archive). A metaphor-based
analysis is similar to a task-action grammar, but it highlights the extent to which
significant objects, actions, and relationships in the system match or mismatch
the structures of the metaphor domain. This leads to predictions about which
tasks will be more or less easy to learn or perform, where and what kinds of errors
may occur, and so on.

7.3 Empirical Methods
The gold standard for usability evaluation is empirical data. Heuristic evaluation
produces a list of possible problems, but they are really no more than suggestions.
Claims analysis produces a set of design tradeoffs, but the designers must decide
whether the tradeoffs are really dilemmas, and if so, which are most problematic.
A model-based approach such as GOMS leads to precise predictions about user
performance, but has limited application. What usability evaluaton really need to
know is what happens when people use the system in real situations.

Unfortunately, empirical evaluation is not simple. If we wait to study users
until they have the finished system in their workplace, we will maximize the
chance for a real disaster. Finding significant problems at that stage means start-
ing over. The whole point of formative evaluation is to support parallel develop-
ment and evaluation, so as to avoid such disasters. On the other hand, any
compromise we make-such as asking users to work with an incomplete proto-
type in a laboratory-raises issues concerning the validity of the evaluation (i.e.,
do laboratory tasks adequately represent realistic use?).

The validity of the testing situation is just one problem. Rarely do empirical
results point to a single obvious conclusion. A feature that confuses one user in
one circumstance might save another user in a different situation. What should
we do? What conclusion can we draw? There are technical tools to help manage
these problems. For example, we can calculate the mean number of users who
experience a problem with some feature, or contrast the proportion who like the
feature to the proportion who dislike it. However, the interpretation of descrip-
tive statistics such as these depends very much on the number and characteristics
of the users who are studied.

7.3.1 Field Studies

One way to ensure the validity of empirical evaluation is to use field study meth-
ods, where normal work activities are studied in a normal work environment. As
we emphasized in Chapters 2 and 3, people often adapt new technology in un-



7.3 Empirical Methods 239

expected ways to their existing work practices. The adaptations that they invent
and their descriptions of how and why they use the technology in these ways can
provide detailed guidance to designers trying to refine a system's basic functions
and user interface. Thus, field studies can be valuable in formative evaluation,
just as they are in requirements analysis. A field study is often the only way to
carry out a longitudinal study of a computer system in use, where the emphasis
is on effects of the system over an extended period of time.

Suchman's (1.987) study of document copier systems is a classic example of
a field study. Suchman observed people using a sophisticated photocopier
equipped with sensors to track users' actions, and the system offers helpful
prompts and feedback. In one example, a person starts to copy a multipage doc-
ument by placing the first page in the document handler. The copier senses the
page and prompts the user to press Start. She does so, and four copies are pro-
duced. The user is then prompted to remove the original document from the
handler. She does this as well, then waits for further direction. However, the
copier next senses the pages in the output tray, and prompts the user to remove
them. At this point, the interaction breaks down: The prompt about the output
tray does not connect to the user's current goal. She ignores it and instead places
a second page into the document handler, triggering a repeat of the earlier
prompt to remove the originals. Tryrng to understand, she misinterprets: "Re-
move the original-Okay, I've re- . . . , I've moved the original. And put in the
second copy."

This simple example vividly shows how a photocopier designer's best ef-
forts to provide helpful and "smart" instructions backfired, actually misleading
and confusing the user. As is typical of field studies like this, the details of the
episode also suggest design remedies. In this case, providing less help via the
prompts led to a better design.

In a comprehensive field study, hundreds of such episodes might be col-
lected. The amount and richness of the data emphasize the key disadvantage of
fieldwork-the data obtained has high validity but can be extremely difficult to
condense and understand (Tradeoff 7.3). One approach to this is content analy-
sis-the evaluator organizes related observations or problems into categories. For
instance, one category might be problems with system prompts, another might
be button layout, another might be feedback indicators, and so forth. Data reduc-
tion of this sort helps to focus later redesign work.
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7.3

Field studies ensure validity of the usability problems discovered, BUT field study
results are extensive, qualitative, and difficult to summarize and interpret.

TRA
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Field study observations may also be rated for severity--each episode is
judged with respect to its significance for the user(s). These ratings help to prior-
itize the data, so that designers can direct most attention to issues of most impor-
tance. For example, episodes could be rated on a three-point scale: successful use,
inconvenience, and total breakdown. While breakdown episodes are clearly
most useful in identifying and guiding design changes, it is useful to also include
successful episodes in the data sample. Successful episodes may seem uninterest-
ing, but they help to establish a user interaction baseline (i.e., what can be
expected under normal conditions).

Ethnographic observation attends to actual user experiences in real-world
situations. Thus, it addresses many of the concerns about the validity of empirical
findings (although the presence of an ethnographer may also influence people's
behavior). But this style of work is costly. Collecting field data is very time con-
suming, and analyzing many pages of notes and observations can be laborious.

A compromise is retrospective interviews, where people are asked to recall
use episodes that they remember as particularly successful or unsuccessful. This
method is based on Flanagan's (1954) original work with critical incidents-he
asked test pilots to report incidents that stood out in their memory of a recent
flight. The critical incidents reported by users should not be considered represen-
tative or typical; the point is to identify what seems to be important. However,
this makes retrospective interviews an extremely efficient method for producing
a collection of problem reports.

Unfortunately, self-reported incidents have their own validity problems. It
is well known that people reconstruct their memories of events (Bartlett 1964;
Tradeoff 7.4). For example, someone might remember a task goal that makes
more sense given the result they obtained. The tendency to reconstruct memo-
ries becomes stronger as time elapses, so it is best to gather critical incident
reports immediately after an activity. Even then, users are often just mistaken
about what happened and what caused what, making thet retrospective reports
difficult to interpret (Carroll 1990). Self-reported critical incidents should never
be taken at face value.
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7.4
Users often possess valuable insight into their own usability problems, BUT humans
often reconstruct rather than recall experiences.

Just as users can contribute to requirements analysis and design, they can
participate in evaluation. In field studies and retrospective interviewing, they
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participate as actors or reporters. But they can also become analysts themselves
through self-reflection-a person is asked to interpret his or her own behaviors.
In such a situation, the evaluator ends up with two sorts of data-the original
episode and the actors'thoughts about what it means. We are currently exploring
this approach with a collaborative critical incident tool, in which a community
ofusers and designers post and discuss usage episodes (Neale, et al. 2000).

7 .3.2 Usability Testing in a Laboratory

A significant obstacle for field studies is that systems are often not fielded until
development is complete. Even if a preliminary field trial is conducted, it may be
costly to travel to the site to collect observational data. There are also specific
technical reasons for evaluating usability in a laboratory setting: Laboratory stud-
ies can be small in scope and scale, and they can be controlled to focus on partic-
ular tasks, features, and user consequences. Laboratory studies do not have the
overhead of installing or updating a system in a real work site, so they permit
rapid cycles of user feedback and prototyping. In fact, laboratory tests can be use-
ful well before any design work has been done-for example, by studying users'
performance on comparable systems using standardized benchmark tasks.

Because laboratory studies can only simulate real-world usage situations,
test validity becomes a maior concern (Tradeoff 7.5). For example, it is important
that the users be representative-they should be similar to the target users in
terms of background, age, abiliry and so on (Figure 7.3). A team may inadver-
tently recruit test participants who know a lot about spreadsheet programs but
very little about Web browsers, relative to the intended user population.

TRA 7.5
Laboratory studies enable focused attention on specific usage concerns, BUTthe
settings observed may be unrepresentative and thus misleading.
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It is also important to recognize and interpret differences among individu-
als. For example, a novice user may like a system with extensive support for
direct manipulation, but an expert user may be ftustrated and critical. This is the
general problem of variability in test results; dealing with variability is a chal-
lenge for all empirical work. Evaluators can address these concerns by studying a
large enough set of users that general patterns emerge, or by carefully document-
ing user characteristics and restricting their conclusions to people who have
these characteristics.
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ls the prototype missing
any important features?

Will people be more
distracted in their offices?

ls this really the kind of
person who will use our system?

Test participant working
on a task in a usability lab

Chapter 7 Usability Evaluation

How much of what I see is
specific to this user?

Will our actual users do
tasks like these?

Figure 7.3 Validity concerns that arise in usability testing done in a laboratory.

The prototype or mock-up tested in a laboratory study may also differ from
the final system in key respects. The IBM PCir failed in part because of the rub-
bery feel of its keyboard. Studies of keyboard prototypes focusing only on the
small size of the miniature keyboard would have missed this critical element. The
printed graphics pasted onto a cardboard mock-up may have a higher resolution
than the resolution real users will experience with cheap displays. What if users
working with such displays cannot see the critical cues?

The tasks tested in the laboratory may not be the ones that people will ulti-
mately undertake with the system. Initially, the significance of the World Wide
Web was thought to be its improved user interface for transferring files over the
network. Spreadsheets were thought to be tools for arithmetic calculation; only
later did it become clear that users would also use spreadsheets for planning,
reporting, and communication tasks (Nielsen, et al. 1986).

Ironically, another concern for usability testing is the usability laboratory
itself! A usability lab is a specially constructed observation room that is set up
to simulate a work environment (e.g., an office), and instrumented with various
data collection devices (e.g., video, one-way observation windows, and screen
capture). Users are brought into the lab to perform and comment about care-
fully constructed test tasks. However, the participants in these studies are in-
sulated from normal work distractions and deprived of many of their daily
workplace resources. For example, most work environments involve significant
interaction among employees, but this is very difficult to simulate in a labora-
tory environment.
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Sometimes a usability test can approximate a field study. Gould, et al.
(1987) describe storefront testing, in which a prototype is placed in a semi-pub-
lic place, such as a hallway near the developers'workroom. Colleagues passing by
are invited to try out the prototype and provide feedback. Such user interactions
are not examples of real work. The passersby do not have realistic user goals; they
are iust curious or are trying to be helpful. The usage context may also not be
realistic. Gould, et al. were designing a system for a noisy environment, but
tested it in the relatively quiet halls of an industrial research laboratory. None-
theless, a storefront prototype can literally be wheeled out of the developers' lab-
oratory and into a usage setting. The method generates user feedback instantly
and supports very rapid prototype refinement and iterative testing.

An important issue for laboratory studies is deciding what data to collect.
Most studies gather task performance times, videotapes of user actions, screen
displays, and so on. But much of a user's experience is unobservable, taking place
inside his or her head as information is interpreted and plans are constructed.
Thus, it is also common for usability evaluators to gather think-aloud protocols:
Users narrate their goals, plans, reactions, and concerns as they work through the
test tasks (Ericsson & Simon 1993). The think-aloud protocol can then be ana-
lyzed to determine when the person became confused or experienced usage diffi-
culties; the narration before and after a problem often provides insight into the
causes and consequences of usability problems.

Usability testing is often conducted in usability labs designed to look like
workplace settings (e.g., an office), and evaluators seek to make test participants
feel as comfortable as possible. At the same time, it is important to realize that
thinking out loud while working is not natural behavior for most computer
users! Tracking and narrating mental activity are tasks in and of themselves, and
they compete with the application task the user is trying to perform (Tradeoff
7.6). Task performance times and errors are much less meaningful in think-aloud
studies. The reporting process also leads users to pay careful attention to their
actions and to system responses, which may influence how they plan or execute
their tasks.

TRADEOFF
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7.6

Externalizing one's goals, plans, and reactions reveals unobservable cognitive
sources of usability problems, BUT self-reflection may alter what people do.

Think-aloud studies produce a lot of data, iust like field observations. In
making sense of the data, evaluators use some of the same techniques they would
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apply to field data. For example, they may identify critical incidents directly from
the data record (e.g., Mack, Lewis, & Carroll 1983). A more systematic analysis
might produce behavior graphs, in which each user action is indicated, along
with comments revealing associated mental states (Rosson & Carroll 1996). Be-
cause the evaluator controls the requirements of the test tasks, this method can
be used to carry out very detailed investigations of how users plan, execute, and
make sense of their own behavior.

Almost all usability studies measure time and errors for users performing
tasks. To ensure that the times collected are meaningful, evaluators must specify
the test tasks precisely enough so that all participants will try to accomplish the
same goal. For example, an email task might be "searching for a message received
in spring 1997 fuomKanazan Lebole that may have mentioned ACM SIGCHI."
Discovering that such a task is difficult or error prone would cause designers to
think about how to better support message retrieval in this email system.
(Remember that task times and errors collected during think-aloud studies are
influenced by the demands of the reporting task.)

Most usability tests also gather users' subiective reactions to a system.
Users may be queried in a general fashion (e.g., "What did you [dis]like most?")
or they may be asked to rate the usability of specific tasks or features. An interest-
ing and challenging aspect of user testing is that subjective reactions do not
always correspond to performance data. A feature may improve efficiency but
also annoy users, or it may slow users down but make them feel more comfort-
able. For example, early formative evaluation of the Xerox Star revealed that
users spent a considerable time adjusting window location-they tried to keep
their windows arranged so as to not overlap (Miller &Johnson 1996). As a result,
designers decided to not allow overlapping windows. Soon after, however, it
became clear that overlapping windows are preferred by most users; this is now
the default for most windowing systems. The Star was perhaps so far in front of
user and designer experience that it was impossible to make reliable formative
inferences ftom time and error measures.

7.3.3 Controlled Experiments

Most usability evaluation examines performance or satisfaction with the current
version of the system or prototype. It tries to answer questions about what is
working well or poorly, what parts of the system need attention, and how close
developers are to meeting overall usability obiectives. On occasion, howeveq a
more controlled study may be used to investigate a specific question. For exam-
ple, suppose a team needs to understand the performance implications of three
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different joystick designs. A controlled experiment can be designed to compare
and contrast the devices.

The first step in planning an experiment is to identify the variables that
will be manipulated or measured. An independent variable is a characteristic
that is manipulated to create different experimental conditions. It is very impor-
tant to think carefully about how each variable will be manipulated or opera-
tionalized, to form a set of different test conditions. Participants (subjects) are
then exposed to these varying conditions to see if different conditions lead to dif-
ferent behavior. In our example, the independent variable is joystick design. The
three different designs represent three different levels of this variable. Attributes
of study participants-for example, degree of experience with video games-
could also be measured and incorporated as independent variables.

A dependent variable is an experiment outcome; it is chosen to reveal ef-
fects of one or more independent variables. In our example, a likely dependent
variable is time to carry out a set of navigation tasks. Experimenters often in-
clude multiple independent and dependent variables in an experiment, so that
they can learn as much as possible. For instance, task complexity might be
manipulated as a second independent variable, so that the effects of joystick de-
sign can be examined over a broad range of user behavior. Other dependent vari-
ables could be performance accuracy or users' subjective reactions. For complex
tasks requiring many steps, an evaluator may implement some form of software
logging, where user input events are captured automatically for later review
(Rosson L983).

Experimenters must specify how a dependent variable will be measured.
Some cases are straightforward. Performance time is measured simply by decid-
ing when to start and stop a timer, and choosing a level of timing precision.
Other cases are less obvious. If task errors are to be measured, advance planning
will be needed to decide what will count as an error. If subjective reactions are
being assessed, questionnaires or rating scales must be developed to measure par-
ticipants' feelings about a system.

The independent and dependent variables of an experiment are logically
connected through hypotheses that predict what causal effects the independent
variables will have on dependent variables. In our example, the experimenter
might predict faster performance times for one joystick but no performance dif-
ferences for the other two. As the number of variables increases, the experimen-
tal hypotheses can become quite complex: For example, one ioystick might be
predicted to improve performance for simple tasks, while a second is predicted to
improve complex tasks. Hypothesis testing requires the use of inferential statis-
tics (see Appendix).
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Once the experiment variables have been identified, experimenters must
choose how participants will be exposed to the different experimental conditions.
In a within-subiects design (also called repeated measures), the same partici-
pants are exposed to all levels of an independent variable. In contrast, a between-
subjects design uses independent groups of participants for each test condition.
In our example, we might have one group of users who work with all three joy-
sticks (within subjects), or we might bring in different groups for each device.

A within-subjects design has the advantage that the variability in data due
to differences among users (e.g., some people respond more quickly in general)
can be statistically removed (controlled for). This makes it easier to detect effects
of the independent variable(s). However, exposure to one level of an indepen-
dent variable may influence people's reactions to another (Tradeoff 7.7). For ex-
ample, it is quite possible that experience with one joystick will cause people to
leam physical strategies that would influence their success with a second.

TRADEO FF

@L'

s=qts-

7.7
Using the same participants in multiple testing conditions helps to control for
individual differences, BUT may lead to task ordering or other unwanted effects.

Such concerns are often addressed by a mixed design, where some inde-
pendent variables are manipulated within subjects and others are manipulated
between subiects. For example, the different ioysticks could be used by different
groups of people, but task complexity could be left as a within-subjects variable.

Within-subjects designs are popular and convenient-fewer participants
are required, and potentially large effects of individual variability are controlled.
Exposing the same participants to two different conditions also allows for direct
comparison (e.g., in a series of rating scales). However, experimenters must antic-
ipate nuisance effects, such as task order, and counterbalance the testing condi-
tions as necessary. In complex designs having many independent variables with
multiple levels of each, preventing nuisance effects can be challenging.

In any usability evaluation, it is important to recruit subiects who are rep-
resentative of the target population. But for experimental studies, there are also
important questions of how participants are assigned to different conditions, and
how many participants will be needed to measure the expected differences
among conditions.

The simplest method is random assignment: Each participant is placed
randomly in a group, with the constraint that groups end up being the same size
(or as close as possible to equal sizes; unequal group sizes reduce the sensitivity of
statistical tests). Under this strategy, nuisance variables such as age, background,
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or general motivation are randomly distributed across the different experimental
conditions. Randomization increases the "noisiness" of the data but does not
bias the results.

Random assignment is most effective when the number of participants is
large; a rule of thumb is to have at least ten individuals in each condition. As the
number of participants (the sample, or n) increases, the statistical estimate of ran-
dom variation is more accurate, creating a more sensitive test of the independent
variables. However, this can lead to a dilemma-an experiment with results of
borderline significance can often be repeated with a larger number of participants
to create a more powerful test, but results may not be worth the extra cost and
effort (Tradeoff 7.8). Usability practitioners must carefully balance the needs of
their work setting with the lure of reporting a "statistically significant" result.
Ironically, a very large experiment may produce statistically significant differ-
ences that account for a very small portion of the overall variance in the data.
Experimenters should be careful to report not only the statistical tests of differ-
ences, but also the proportion of the overall variability accounted for by these
differences (see Appendix).
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The sensitivity of a statistical test is enhanced
obtaining a statistically significant result may
running a very large experiment.

by increasing sample size, BUT
not be worth the cost and effort of

Another assignment strategy is to combine random assignment with con-
trol of one or more participant variables. For example, experimenters often ran-
domly assign an equal number of men and women to each group because they
worry that gender will influence the results. This helps to ensure that any effects
of this particular nuisance variable will be equally distdbuted across the condi-
tions of interest.

7.4 Science Fair Case Study: Usability Evaluation
Evaluation is central and continuous in SBD. From the first step of activity design,
the use context provided by the scenarios serves as an implicit test of the emerg-
ing design ideas. The "what-if" reasoning used in analyzing claims expands and
generalizes the situations that are envisioned and considered. The focus on design
feature impacts is an ongoing source of formative evaluation feedback.

Evaluation becomes more systematic when usability specifications are cre-
ated from design scenarios and their associated claims (Figure 7.4).The scenarios
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Activity, information, a nd
interaction claims:

identify key design features
to be tested.

Design scenarios:
extract motivation and context

for subtasks to be tested.

Estimates of behavior:
published or pilot data of
expected user behavior.

Chapter 7 Usability Evaluation

U sa b i I ity specifi cati o ns:
a list of subtasks with

performance and
satisfaction parameters.

Figure 7.4 Developing usability specifications for formative evaluation.

provide the motivation and activity context for a set of sequential subtasks that
will be evaluated repeatedly as benchmarks of the system's usability. The claims
analyses are used to identify the subtasks to be tested-recall that claims have
been used throughout to track design features with important usability implica-
tions. For each subtask, outcome measures of users' performance and satisfaction
are defined, creating a testable set of usability specifications (Canoll & Rosson
198s).

The high-level goal of any usability evaluation is to determine to what
extent a design is easy or hard to learn and use, and is more or less satisfying.
Usability specifications make this highJevel goal more precise, transforming it
into a set of empirically testable questions. The repeated testing of these tasks
ascertains whether the project is meeting its usability goals, and if not, which
design features are most in need of attention.

7.4.1 Usabilitylnspection

As we have seen, analytic evaluation takes place constantly in SBD when writing
scenarios and claims. This ongoing analytic work forms a skeleton for empirical
studies. Other analytic evaluation methods can be useful as well. For example,
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Table 7.3 VSF usability problems identified through heuristic evaluation.

249

Guideline

Use simple and natural
dialog

Speak the user's
language

Minimize user memory load

Be consistent

Provide feedback

Provide clearly marked exits

Provide shortcuts

Provide good error
messages

Prevent errors

lnclude good help
and documentation

Potential VSF Usability Problems

Control+F used to synchronize views; Control+l to query activity

Young or inexperienced students may not understand "Nested
Components"

Chat bubbles stay on the screen only for 20 seconds

People appear as avatars in exhibit space, but as a text list at
exhibit; map is replaced by miniaturized windows in exhibit
display

lnformation on others' activities only available with extra efforU
chat bubbles in room overlap for large groups; red color used
for alerts will not be detectable by color-blind individuals

Relationship between exhibit and nested components not clear;
when you change view what happens to nested component?

Must open each nested component individually, i.e., no
"display all"

"File type not recognized" doesn't indicate how to fix problem
when Excel or other source applications are not installed on
client machine

Multiple independent windows are difficult to distinguish and
manage

Help information on how to extend file types assumes
familiarity with similar dialogs in Web browsers

we carried out an informal usability inspection using the guidelines suggested
by Nielsen (1999; Table 7.3 summarizes usability issues raised during this
inspection.

The inspection was carried out as an informal "walk-through" of the design
scenarios. We stepped through each scenario and considered whether the actors
might have problems in any of the ten areas identified by Nielsen's (1'994) guide-
lines (left column). We did not worry about the severity of the problems at this
point, so some of the problems listed in the table may be unlikely or have little
impact. For example, few people will have difficulty recognizing that avatars and
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text names are different views of the same individuals. However, a visitor forced
to carry out many selections and double-clicks to open many nested components
may become very frustrated.

A usability inspection such as in Table 7.3 provides an early indication of
possible problems, similar to that provided by a claims analysis. Even if no
empirical studies were carried out, this list of problems could be prioritized and
handed back to the design team for their consideration and possible redesign. Of
course, as for any inspection technique, the list of problems identified is mean-
ingful only to the extent the problems will arise in actual use, and without
empirical data these judgments can only be based on opinion.

7 .4.2 Developing Usability Specifications

In parallel with ongoing inspection and claims analysis, usability specifications
were developed for each of the science fair design scenarios. Table 7.4 illustrates
the first step in developing usability specifications (we have focused on the two
interaction design scenarios presented in Chapter 5; see Figures 5.5 and 5.6).

Each scenario was decomposed into critical subtasks-the key features of
the system that are influencing people's experience. The claims analyzed during
design were used as a guide in identifying the subtasks. The list is not exhaustive,
but rather highlights the system functionality most likely to affect system useful-
ness, ease of leaming or use, or satisfaction. Thus, the subtasks cover a number of
the open issues discussed during design (e.g., nested components and use of the
control-key commands). This is the sense in which usability specifications sup-
port mediated evaluation-the results of analytic evaluation are used to set up an
empirical evaluation plan.

Table 7.4 Subtasks analyzed from the VSF design scenarios.

lnteraction
Design Scenario

Mr. King coaches Sally

Alicia and Delia visit
the fa ir

Subtasks ldentified from Claims Analysis

ldentify and synchronize views; Upload local file; Open
and work with source application; Create nested
component
Find location of specified visitor; Join an exhibit; View
specified exhibit elemen! Open and work with source
application; Review and modify FAQ; Access and view
nested component



7.4 Science Fair Case Study: Usability Evaluation 25L

Table 7.5 presents two fully elaborated usability specifications. Each sce-
nario has been broken into subtasks, and target levels for users'performance and
subjective reactions have been specified. The performance measures are based on
time to perform a subtask and the number of errors made. Satisfaction is mea-
sured on a S-point attitude scale. For example, "confusion" after the first subtask
is rated on a scale from 1 = "not at all confusing" to 5 = "extremely confusing."

Table 7.5 Detailed usability specifications for two scenario contexts.

Scenario and Subtasks

lnteraction Scenario:
Mr. King coaches Sally

1. ldentify Sally's view
and synchronize

2. Upload file from
the PC

3. Open, modify, attempt
to save Excel file

4. Create nested exhibit
component

lnteraction Scenario:
Alicia and Delia visit
the fa ir

5. Find Marge at the VSF

6. Open Sally's exhibit

7. View data analysis

8. Open and manipulate
Excel charts

9. Review and contribute
to FAQs

10. Access and view
Martin's experiment

Worst Case

2.5 on usefulness,
ease of use, and
satisfaction

1 minute, 1 error
3 on confusion

3 minutes, 2 errors
3 on familiarity
2 minutes, 1 error
3 on confidence

5 minutes, 3 errors
3 on complexity

3 on usefulness
and ease of use

15 seconds, 1 error
3 on awareness

60 seconds, 1 error
3 on directness

30 seconds, 2 errors
3 on predictability

5 minutes, 2 errors
3 on engagement

2 minutes, 2 errors
3 on tedium

1.5 minutes, 2 errors
3 on obscurity

Planned

4 on usefulness,
ease of use, and
satisfaction

30 seconds, 0 errors
2 on confusion

1 minute, 1 error
4 on familiarity
1 minute, 0 errors
4.5 on confidence

1 minute, 1 error
2 on complexity

4 on usefulness
and ease of use

5 seconds, 0 errors
4 on awareness

15 seconds, 1 error
4 on directness

15 seconds, 1 error
4.5 on predictability

1 minute, 0 errors
4 on engagement

1 minute, 0 errors
2 on tedium

45 seconds, 0 errors
2 on obscurity

Best Case

5 on usefulness,
ease of use, and
satisf a ct io n

10 seconds, 0 errors
1 on confusion

30 seconds, 0 errors
5 on familiarity
30 seconds, 0 errors
5 on confidence

30 seconds, 0 errors
1 on complexity

5 on usefulness
and ease of use

1 second, 0 errors
5 on awareness

5 seconds, 0 errors
5 on directness

3 seconds, 0 errors
5 on predictability

30 seconds, 0 errors
5 on engagement

30 seconds, 0 errors
1 on tedium

20 seconds, 0 errors
1 on obscurity
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Some scales are written so that a higher number means a more positive rating,
while some are reversed. In all cases, the target levels are interpreted as an aver-
age across all test participants.

It is important that the usability outcomes in the specification are concrete
and testable. Each subtask names a test task that will be observed; the target per-
formance and satisfaction levels specify exactly what measures should be col-
lected. These subtasks are evaluated over and over during development as a
benchmark of progress toward agreed usability objectives.

The three levels of outcomes bound the iterative development process:
"Best case" is determined by having an expert carry out the task; anything below
"worst case" indicates failure. "Planned level" is the actual target, and should be
a feasible and realistic statement of usability objectives. Initially, these usability
outcomes reflect an educated guess and are based on the design team's experi-
ence with the prototype or with other systems having similar functionality. It is
possible that these levels will change slightly as users' actual performance and
reactions are studied, but it is crucial that a team (and its management) take the
numbers seriously as targets to be achieved.

Notice that along \ rith time, errors, and satisfaction measures for each sub-
task, Table 7.5 specifies satisfaction judgments for the interaction design scenario
itself. A full scenario includes so many features that it would be difficult to pre-
dict precise performance measures. However, the team can certainly ask test users
to try out the functionality described in a scenario, and measure subjective reac-
tions to this experience. Measures like these can be used to specify usability out-
comes even for a rather open-ended scenario exploration.

Testing Usability Specif ications

Usability testing should not be restricted to the design scenarios. Early in devel-
opment, if a scenario machine is the only available prototype, empirical evalua-
tion may necessarily be limited to these tasks. But when a more general-purpose
prototype is ready, new activities and subtasks should be introduced into the
evaluation. This is important in SBD, because exclusive attention to a small set of
design scenarios can lead to a system that has been optimized for these situations
at the expense of others.

Figure 7.5 shows one technique for generating new activity scenarios. The
left column summarizes the five design scenarios developed in Chapters 3
through 5. The scenarios on the right were created by bringing in actors with dif-
fering backgrounds and motivations, but with overlapping system functionality
and user interface features. This strategy works well early in a system's lifecycle,
when only some of a system's features are available (i.e., that specified in the

7.4.3
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Original Scenario

Sally plans her exhibit on black holes; An
experienced science fair participant organizes
her many diverse elements using the tem-
plate. She pays special attention to com-
ponents that will make her exhibit more
interactive because she knows this will give
her points with the judges.

Mr. King coaches Sally: An experienced
science fair advisor coaches Sally from home
in the evening. He goes over each piece of
the exhibit, then helps her make it less

complex by finding a way to nest materials.

Alicia and Delia go to the fair: A busy mother
and her daughter log into the fair after
school. They see other people there and join
an old friend at Sally's exhibit. They see Sally's
exhibit, and Delia gets interested and asks
questions.

Ralph judges the high school physics projects:
Ralph is an experienced judge with well-
developed strategies. He has enough expe-
rience with judging and with technology to
propose and provide the rationale for a

modification to the judges' ratings form.

Rachel prepares a summary for Carlisle: The
superintendent wants an impressive summary

Extension or Generalization

Ben and Marissa collaborate on a project: Two
students participate in the science fair for the
first time. They work independently, and then
come together to organize and integrate
their sections. Neither is familiar with how to
organize or present a science project, so they
rely a lot on the templates and help infor-
mation, and they revise their project a lot as
they work.

Cheryl makes some suggestions: Cheryl is a
retired biochemist who is part of the online
seniors group. She sees the VSF advertised in
MOOsburg and visits several weeks before the
exhibits are done. She browses several biology
exhibits under construction and leaves com-
ments on the message boards.

Delia brings her friend Stacy back to Sally's
exhibit: ln school the next day, Delia takes her
lab partner Stacy to Sally's exhibit. Sally isn't
there, so Delia shows the stored discussion to
Stacy, and demonstrates how to use the
spreadsheet and the black hole simulation.

Mark judges for the first time: Because this
is his first yeaI Mark is unsure how to
proceed. He spends most of one day on the
task, sending out a number of emails for
guidance. At certain points he chats online
with his peers. Because of his uncertainty, he
edits his ratings and comments many times,
and prints them out for final review before
he submits them.

School board member Jenkins thinks about
resources; Jim Jenkins thinks the VSF has

Figure 7.5 User interaction scenarios form the basis of usability evaluations.

(continued)
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Figure 7.5 (continued)

Chapter 7 Usability Evaluation

to use in asking for more science fair
resources. Rachel first takes him on a virtual
toun then goes back herself to select and copy
out visuals from winning projects.

plenty of resources based on Superintendent
Carlisle's presentation. But he goes back to
study the site more carefully. He is not very
familiar with MOOsburg, so it takes him a
while to find and browse just a few exhibits,
but he confirms to himself that the fair needs
no further support for next year.

design scenarios), but the team wants to evaluate multiple use contexts. Later on,
test scenarios representing more radical extensions of the core design (e.9., a
teacher who takes her students on a "virtual tour" of the fair) can be developed
and evaluated.

The scenarios in Figure 7.5 were used in two sorts of usability testing. Early
on, we simply asked test participants to adopt the penpective of an actor (e.g.,
Sally or Mr. King), and to simulate the scenario activity. For example, a simple
introduction such as the following was given:

Imagine that you are Alicia Sampson, owner of a hardware store in
Blacksburg. You are already familiar with MOOsburg, but have not
visited the Virtual Science Fair. You are busy and somewhat ambivalent
about attending science fairs in general, but this year your neighbor
Jeff is a participant and your daughter Delia has shown some interest.
One aftemoon Delia shows you a URL and the two of you decide to log
on and visit together. Go to the fair, locate your friend Marge who is
already there, join her, and explore the exhibit she is browsing.

The test participants then explored the system with these instructions in mind.
We asked the participants to think out loud as they used the system, and we
observed their actions with the system. After each scenario we asked them to rate
their experience with respect to usefulness, ease of use, and satisfaction (see Table
7.5). The goals of these early tests were very informal-we tried to understand
whether the system supported the scenarios as intended, and if not, the major
problem areas. In the rest of this section, we describe the more careful testing we
conducted on individual subtasks.

Recruiting Test Participants

The participants in usability studies represent the population the system is
designed to support. This often means that evaluators will need to recruit indi-
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viduals from multiple stakeholder groups. For example, our science fair scenarios
include students, parents, teachers, community members, and school adminis-
trators as actors. The scenarios also assume certain experience and knowledge
(recall the stakeholder profiles in Chapter 2). Sometimes it is difficult to recruit
participants from each of these groups (e.g., there are not very many school
administrators to draw from). A compromise is to ask individuals from one group
to role play the perspective and concerns of another group.

Even when a team can identify representative users, persuading them to
participate in a usability session can be challenging. Sometimes a system is novel
enough that users will agree to work with it just for the experience. More typi-
cally, spending time evaluating a system means taking time away from some-
thing else (e.g., work or leisure time). Offering a small stipend will attract some
individuals, but ironically, the most appropriate users are often those who are
least available-they are busy doing just the tasks your system is designed to
enhance! Participatory design addresses some of these problems, because stake-
holders are involved in a variety of analysis and design activities. Unfortunately,
end users who contribute to design are no longer good representatives of their
peers; they are members of the design team.

Regardless of how participants are recruited, it is important to remember
that they are iust a sample of the entire population of users. Personality, experi-
ence, socioeconomic background, or other factors will naturally influence users'
behavior and reactions. Gathering relevant background information can demon-
strate that a test group is (or is not) a representative sample of the target popula-
tion. It also aids in interpretation of observed differences among individuals.

Developing Test Materials

Prior to beginning a usability test, the team must develop the instructions, sur-
veys, and data collection forms that will be used to coordinate the test sessions.
In this section, we illustrate the test materials developed for the science fair
usability tests.

An important concern in any test with human participants is that they be
treated fairly. The guidelines for ethical treatment of human subiects developed
by the American Psychiatric Association emphasize informed consent: The
study's goals and procedures are summarized for each participant, questions if
any are answered, and the person is asked to siSn a form affirming that he or she
is participating voluntarily and can withdraw at any time without penalty (Figure
7 .6).ln practice, this agreement often reads like a legal document-for example,
it may promise that videotapes will not be used for commercial pu{poses' or that
the participant will not disclose details of the prototype systems to other people.


