
IEEE Network • January 201896 0890-8044/18/$25.00 © 2018 IEEE

Abstract
Deep learning is a promising approach for 

extracting accurate information from raw sen-
sor data from IoT devices deployed in complex 
environments. Because of its multilayer structure, 
deep learning is also appropriate for the edge 
computing environment. Therefore, in this article, 
we first introduce deep learning for IoTs into the 
edge computing environment. Since existing edge 
nodes have limited processing capability, we also 
design a novel offloading strategy to optimize the 
performance of IoT deep learning applications 
with edge computing. In the performance evalu-
ation, we test the performance of executing mul-
tiple deep learning tasks in an edge computing 
environment with our strategy. The evaluation 
results show that our method outperforms other 
optimization solutions on deep learning for IoT.

Introduction
In recent years, deep learning has become an 
important methodology in many informatics fields 
such as vision recognition, natural language pro-
cessing, and bioinformatics [1, 2]. Deep learning 
is also a strong analytic tool for huge volumes of 
data. In the Internet of Things (IoT), one open 
problem is how to reliably mine real-world IoT 
data from a noisy and complex environment that 
confuses conventional machine learning tech-
niques. Deep learning is considered as the most 
promising approach to solving this problem [3]. 
Deep learning has been introduced into many 
tasks related to IoT and mobile applications with 
encouraging early results. For example, deep 
learning can precisely predict the home electricity 
power consumption with the data collected by 
smart meters, which can improve the electricity 
supply of the smart grid [4]. Because of its high 
efficiency in studying complex data, deep learn-
ing will play a very important role in future IoT 
services.

Edge computing is another important tech-
nology for IoT services [5–7]. Due to data trans-
ferring with limited network performance, the 
centralized cloud computing structure is becom-
ing inefficient for processing and analyzing huge 
amounts of data collected from IoT devices [8, 
9]. As edge computing offloads computing tasks 
from the centralized cloud to the edge near IoT 
devices, transferred data are enormously reduced 
by the preprocessing procedures. The edge com-
puting can perform well when the intermediate 
data size is smaller than the input data size.

A typical deep learning model usually has 

many layers in the learning network. The inter-
mediate data size can be quickly scaled down 
by each network layer until enough features are 
found. Therefore, the deep learning model is very 
appropriate for the edge computing environment 
since it is possible to offload parts of learning 
layers in the edge and then transfer the reduced 
intermediate data to the centralized cloud server.

Another advantage of deep learning in edge 
computing is the privacy preserving in inter-
mediate data transferring. Intermediate data 
generated in traditional big data systems, such 
as MapReduce or Spark, contains the user pri-
vacy since the preprocessing remains as data 
semantics. The intermediate data in deep learn-
ing usually have different semantics compared to 
the source data. For example, it is very hard to 
understand the original information with the fea-
tures extracted by a convolutional neural network 
(CNN) filter in the intermediate CNN layer.

Thus, in this article, we introduce deep learn-
ing for IoT into the edge computing environment 
to improve learning performance as well as to 
reduce network traffic. We formulate an elas-
tic model that is compatible with different deep 
learning models. Thus, because of the different 
intermediate data size and preprocessing over-
head of different deep learning models, we state 
a scheduling problem to maximize the number 
of deep learning tasks with the limited network 
bandwidth and service capability of edge nodes. 
We also try to guarantee the quality of service 
(QoS) of each deep learning service for IoT in the 
scheduling. We design offline and online schedul-
ing algorithms to solve the problem. We perform 
extensive simulations with multiple deep learn-
ing tasks and given edge computing settings. The 
experimental results show that our solution out-
performs other optimization methods on deep 
learning for IoT.

The main contributions of this article are sum-
marized as follows. We first introduce deep learn-
ing for IoT into the edge computing environment. 
To the best of our knowledge, this is an innova-
tive work focusing on deep learning for IoT with 
edge computing. We formulate an elastic model 
for varying deep learning models for IoT in edge 
computing. We also design an efficient online 
algorithm to optimize the service capacity of the 
edge computing model. Finally, we test the deep 
learning model for IoT with extensive experiments 
in a given edge computing environment. We also 
compare our edge computing method to tradi-
tional solutions.

The remainder of this article can be outlined 

Learning IoT in Edge: Deep Learning for the Internet of Things with Edge Computing
He Li, Kaoru Ota, and Mianxiong Dong

EDGE COMPUTING FOR THE INTERNET OF THINGS 

Digital Object Identifier:
10.1109/MNET.2018.1700202 The authors are with Muroran Insitute of Technology



IEEE Network • January 2018 97

as follows. The next section introduces the deep 
learning technology for IoT and edge computing. 
Then we discuss the deep learning services for IoT 
in the edge computing environment. Following 
that, we describe the problem and solutions of 
scheduling IoT deep learning tasks in edge com-
puting. Then we present the performance eval-
uation results of deep learning for IoT through 
extensive experiments, followed by conclusions 
given in the final section.

Related Work
In this section, we first introduce related technol-
ogies on deep learning for IoT and then discuss 
edge computing and deep learning.

Deep Learning for IoT
Deep learning is becoming an emerging technol-
ogy for IoT applications and systems. The most 
important benefit of deep learning over machine 
learning is better performance with large data 
scale since many IoT applications generate a large 
amount of data for processing. Another benefit 
is that deep learning can extract new features 
automatically for different problems. In process-
ing multimedia information, the performance of 
traditional machine learning depends on the accu-
racy of the features identified and extracted. Since 
it can precisely learn high-level features such as 
human faces in images and language words in 
voices, deep learning can improve the efficiency 
of processing multimedia information. Meanwhile, 
deep learning takes much less time to inference 
information than traditional machine learning 
methods.

Therefore, the development of IoT devices and 
technologies brings preconditions for complex 
deep learning tasks. Because of limited energy 
and computing capability, an important issue is 
executing deep learning applications in IoT devic-
es. General commercial hardware and software 
fall short of supporting high-parallel computing 
in deep learning tasks. Lane et al. [10] proposed 
new acceleration engines, such as DeepEar and 
DeepX, to support different deep learning applica-
tions in the latest mobile systems on chips (SoCs). 
From the experimental results, mobile IoT devices 
with high-spec SoCs can support part of the learn-
ing process.

Introducing deep learning into more IoT appli-
cations is another important research issue [11]. 
The efficiency of deep learning for IoT has been 
evaluated in many important IoT applications. For 
example, some works focus on the applications 
in wearable IoT devices deployed in dynamic and 
complex environments that often confuse the tra-
ditional machine learning methods. Bhattacharya 
et al. [12] proposed a new deep learning model 
for wearable IoT devices that improves the accu-
racy of audio recognition tasks.

Most existing deep learning applications (e.g., 
speech recognition) still need to be cloud-assist-
ed. Alsheikh et al. [13] proposed a framework to 
combine deep learning algorithms and Apache 
Spark for IoT data analytics. The inference phase 
is executed on mobile devices, while Apache 
Spark is deployed in cloud servers for supporting 
data training. This two-layer design is very similar 
to edge computing, which shows that it is possi-
ble to offload processing tasks from the cloud.

Deep Learning and Edge Computing
Edge computing is proposed to move comput-
ing ability from centralized cloud servers to edge 
nodes near the user end. Edge computing brings 
two major improvements to the existing cloud 
computing. The first one is that edge nodes can 
preprocess large amounts of data before trans-
ferring them to the central servers in the cloud. 
The other one is that the cloud resources are opti-
mized by enabling edge nodes with computing 
ability [14]. Due to the potentiality brought by 
edge computing, the aforementioned problems 
of the cloud infrastructure can be well addressed.

Liu et al. [15] proposed the first work to intro-
duce deep learning into the edge computing 
environment. They proposed a deep-learning-
based food recognition application by employ-
ing edge-computing-based service infrastructure. 
Their work shows that edge computing can 
improve the performance of deep learning appli-
cations by reducing response time and lowering 
energy consumption. However, this work consid-
ered mobile phones as edge nodes, which is not 
appropriate for IoT services since most IoT devic-
es are equipped only with low-spec chips. Since 
we focus on general IoT devices without enough 
energy supplement and high-spec chips, the edge 
servers are deployed in IoT gateways, which have 
enough service capacity for executing deep learn-
ing algorithms.

Deep Learning for IoT in Edge Computing
In this section, we first introduce the scenario of 
deep learning for IoT and then present the edge 
computing framework of deep learning for IoT.

Usually, IoT devices generate large amounts 
of data and transfer data to the cloud for further 
processing. These data include multimedia infor-
mation, such as video, images, and sounds, or 
structured data, such as temperature, vibration, 
and luminous flux information. There are many 
mature technologies for processing structured 
data and then automatically controlling IoT devic-
es. Traditional multimedia processing technolo-
gies, which need complex computations, are not 
appropriate for IoT services. Since the deep learn-
ing technology improves the efficiency of pro-
cessing multimedia information, more and more 
works have begun to introduce deep learning into 
multimedia IoT services.

Video sensing is an important IoT application, 
which integrates image processing and comput-
er vision in IoT networks. It is still a challenge to 
recognize objects from low-quality video data 
recorded by IoT devices. Since deep learning 
shows very promising accuracy in video recog-
nition, we consider it as a typical IoT application 
with deep learning. Thus, as shown in Fig. 1, we 
use a video recognition IoT application as the 
example to introduce deep learning for IoT.

There are several wireless video cameras mon-
itoring the environment and recognizing objects. 
The wireless cameras collect 720p video data 

The most important benefit of deep learning over machine learning is the better performance with 
large data scale since many IoT applications generate a large amount of data for processing. Another 

benefit is that deep learning can extract new features automatically for different problems.



IEEE Network • January 201898

with a bit rate of 3000 kb/s. Then the cameras 
transfer the collected data to the IoT gateway 
through general WiFi connections. IoT gateways 
forward all collected data to the cloud service 
through Internet communications after coding 
and compressing the raw video data. The cloud 
service recognizes the objects in the collected 
video data through a deep learning network.

A deep learning network usually has multiple 
layers. The input data will be processed in these 
layers. Each layer processes the intermediate fea-
tures generated by the previous layer and then 
generates new features. Finally, the extracted 
features generated by the last deep learning net-
work layer will be processed by a classifier and 
recognized as the output. In deep learning net-
works, we consider the layers near input data to 
be lower layers; others are higher layers.

In the example, we use AlexNet to identify the 
object in the collected video data. AlexNet has 
eight layers in which the first five layers are con-
volutional layers, and the following three layers 
are fully connected layers. We first train the deep 
learning network with an open dataset from Kag-
gle, which is comprised of 25,000 dog and cat 
images. The deep learning application wants to 
detect the correct animal in the corrected video 
data. We use a transfer learning technique to 
build the classifier, which outputs the text “cat” or 
“dog” after processing all extracted features.

Deep learning improves the efficiency of mul-
timedia processing for IoT services since features 
are extracted by multiple layers instead of tra-
ditional complex preprocessing. However, the 
communication performance will be the bottle-
neck with improved processing efficiency. The 
collected multimedia data size is much larger 
than traditional structured data size, but it is hard 
to improve the performance of the network for 

transferring collected data from IoT devices to the 
cloud service. In the example, each camera needs 
a bandwidth of 3 Mb/s for upgrading video data, 
while the IoT gateway needs 9 Mb/s.

Edge computing is a possible solution to the 
problem of transferring collected data from IoT 
devices to the cloud. In the IoT network, there 
are two layers, the edge layer and the cloud 
layer, for connecting IoT devices and the cloud 
service. The edge layer usually consists of IoT 
devices, an IoT  gateway, and network access 
points in local area networks. The cloud layer 
includes the Internet connections and cloud 
servers. Edge computing means the processing is 
performed in the edge layer instead of the cloud 
layer. In the edge computing environment, since 
only the intermediate data or results need to be 
transferred from the devices to the cloud service, 
the pressure on the network is relieved with less 
transferring data.

Edge computing is very suitable for the tasks 
in which the size of intermediate data is smaller 
than the input data. Therefore, edge computing 
is efficient for deep learning tasks, since the size 
of extracted features is scaled down by the filters 
in deep learning network layers. In the example, 
the intermediate data size generated by the first 
layer is 134  89  1 B/frame and 2300 kb/s 
if we want to recognize each frame. If we only 
want to process keyframes in the video data, the 
size of the generated intermediate data is only 
95 kb/s.

As shown in Fig. 2, we present an edge com-
puting structure for IoT deep learning tasks. The 
structure consists of two layers as well as a typical 
edge computing structure. In the edge layer, edge 
servers are deployed in IoT gateways for process-
ing collected data. We first train the deep learning 
networks in the cloud server. After the training 
phase, we divide the learning networks into two 
parts. One part includes the lower layers near the 
input data, while another part includes the higher 
layers near the output data.

We deploy the part with lower layers into edge 
servers and the part with higher layers into the 
cloud for offloading processing. Thus, the collect-
ed data are input into the first layer in the edge 
servers. The edge servers load the intermediate 
data from the lower layers and then transferred 
data to the cloud server as the input data for the 
higher layers. In the example, if we deploy the 
first layer in the IoT gateway, the intermediate 
data with the size of 134 × 89 × 1 B/frame will 
be sent to the second layer in the cloud server for 
further processing.

A problem is how to divide each deep learn-
ing network. Usually, the size of the intermediate 
data generated by the higher layers is smaller than 
that generated by the lower layers. Deploying 
more layers into edge servers can reduce more 
network traffic. However, the server capacity of 
edge servers is limited compared to cloud servers. 
It is impossible to process infinite tasks in edge 
servers. Every layer in a deep learning network 
will bring additional computational overhead to 
the server. We can only deploy part of the deep 
learning network into edge servers. Meanwhile, as 
different deep learning networks and tasks have 
different sizes of intermediate data and computa-
tional overhead, efficient scheduling is needed to 

FIGURE 1. Deep learning for video recognition with IoT devices.

“CAT”

Video IoT
device

Video
data Video IoT

device

Video IoT
device

IoT gateway

Cloud service

Output

Features

Input

Deep learning network



IEEE Network • January 2018 99

optimize deep learning for IoT in the edge com-
puting structure. We design an efficient schedul-
ing strategy for this problem and discuss it in the 
next section.

Scheduling Problem and Solution
In this section, we first state the scheduling prob-
lem in the edge computing structure for IoT deep 
learning and then present the solution.

In a given edge computing environment, we 
use a set E to denote all edge servers and ei to 
denote an edge server in set E. From edge server 
ei to the cloud server, we use a value ci to denote 
the service capacity and bi to denote the net-
work bandwidth. We also add a threshold value 
denoted by V to avoid network congestion since 
there is some interaction traffic between the edge 
servers and the cloud servers. Thus, the maximum 
available bandwidth between edge server ei and 
the cloud server is denoted by bi · V. 

Let set T denote all deep learning tasks and tj 
denote a deep learning task in set T. The number 
of task tj’s deep learning network layers is Nj. We 
assume the reduced data size is near an average 
value for each task with different input data. The 
average ratio of the intermediate data size gen-
erated by the kth layer (k  [1, Nj]) to the total 
input data size is denoted by rkj. For task tj and 
edge server ei, assigned bandwidth is denoted by 
bij. Let dij denote the input data size per time unit 
of task tj in edge server ei. Thus, the transferring 
latency of task tj in edge server ei can be denoted 
dij · rkj/bij, if k layers of task tj are placed in edge 
server ei. For guaranteeing QoS, the transferring 
latency should be smaller than a maximum value 
denoted by Qj. For task tj, the computational 
overhead of a unit of input data after the kth layer 
is denoted by lkj. Therefore, for task tj, the compu-
tational overhead in edge server ei is lkj · dij.

The Problem of Scheduling IoT Deep Learn-
ing Network Layers in Edge Computing: Given 
an edge computing structure, the scheduling 
problem attempts to assign maximum tasks in 
the edge computing structure by deploying deep 
learning layers in IoT edge servers such that the 
required transferring latency of each task can be 
guaranteed, denoted by

 

max Xijj=1
|T |∑i=1

|E|∑
s.t., bij ≤ bi ⋅Vi=1

|E|∑
Xij ⋅dij ⋅rkj bij ≤Qj

lkjj=1
|T |∑ ⋅dij ⋅Xij ≤ ci

 
where Xij = 1 if task tj is deployed in edge server 
ei; otherwise, Xij = 0.

We propose an offline algorithm and an online 
algorithm to solve the scheduling problem. The 
offline scheduling algorithm first finds out kj

m, 
which maximizes the value of rkj · lkj, and edge 
server ijm, which has the largest input data of task 
tj. Then the algorithm sorts all tasks in ascending 
order of the largest input data size. The schedul-
ing first deploys task tj with minimum input data 
size to edge servers. The algorithm traverses all 
edge servers to check whether an edge server has 
enough service capability and network bandwidth 
to deploy task tj. If all edge servers have enough 

service capacity and bandwidth, the algorithm 
deploys task tj into all edge servers. If an edge 
server does not have enough uploading band-
width or service capacity, the algorithm changes 
the value of k and find out an appropriate k for 
deploying task tj in all edge servers. If the edge 
server does not have enough service capacity 
or network bandwidth even after varying k, the 
scheduling algorithm will not deploy task tj in 
edge servers. 

In the worst case, the complexity of the offline 
algorithm is O(|T|· |E|2 · K) where K is the max-
imum number of deep learning network layers 
of each task. Since the number of tasks is much 
larger than the number of edge servers and 
deep learning network layers, the complexity of 
the proposed algorithm is O(|T|), which is good 
enough for practical scheduling. We also analyze 
the efficiency of the algorithm and find that the 
approximate ratio is 2/V.

Meanwhile, we design an online scheduling 
algorithm that decides the deployment when 
task tj is coming. As the task scheduling has little 
information about feature tasks, the deployment 
decision is based on the historical tasks. We use 
Bmax and Bmin to denote the maximum and min-
imum required bandwidth of a task, respectively. 
Thus, for task tj, we first calculate the kj

m and ijm. 
Then we define a value F(cijm) ← (Bmin · e/Bmax)cijm 
· (Bmax · e), where the remaining service capacity 
of edge server eijm is cijm and e is the mathemati-
cal constant. If (bijm – dijmj · rijmj/Qj)) · (cijm – dijmj · 
lijmj) ≤ F(cijm) and other edge servers have enough 
bandwidth and service capacity, the scheduling 
algorithm deploys task tj into edge servers. The 
approximate ratio of the online algorithm is 

1
ln Bmax Bmin( ) +1( ) ⋅V .

Performance Evaluation
In this section, we first describe the experiment 
settings and then discuss the performance evalu-
ation result.

In the experiments, we have two environ-
ments, one for collecting data from deep learning 
tasks and another for simulations. For executing 
deep learning applications, we use a workstation 
equipped with an Intel Core i7 7770 CPU and 
NVIDIA Geforce GTX 1080 graphic card. We use 
Caffe as the CNN framework and define 10 dif-
ferent CNN networks. We execute 10 CNN tasks 

FIGURE 2. Edge computing structure for IoT deep learning.

Cloud service

Cloud layer

IoT
device

IoT
device

Edge layer

Edge server
Edge
server

Deep learning
network
layers

Deep learning
network
layers

Deep learning
network layers

IoT
device

IoT
device

IoT
device

IoT
device

Edge
server

Deep learning
network
layers



IEEE Network • January 2018100

with different CNN networks and record the num-
ber of operations and intermediate data generat-
ed in each CNN layer.

As shown in Fig. 3, we choose two deep learn-
ing networks, CNN1 and CNN2, as the example 
for illustration of the reduced data size ratio (blue 
plots) and computational overhead (red plots). 
These two deep learning networks have five lay-
ers and different neuron settings. From the plots, 
the input data can be reduced by the deep learn-
ing networks, and more intermediate data are 
reduced by lower layers. Meanwhile, the compu-
tational overhead is increased quickly with more 
layers.

We use Python 2.7 and networkx to develop 
the simulator and use the reduced ratio of the 
intermediate data from executing CNN tasks. 
In the simulations, we set the number of deep 
learning tasks to 1000. The service capability of 
each edge server is set to 290 Gflops according 
to NVIDIA Tegra K1. We set the number of edge 
servers in the network from 20 to 90. The input 
data size of each task is set from 100 kB to 1 MB. 
The layer number of all CNN networks is set from 
5 to 10. The bandwidth of each edge server is 
uniformly distributed from 10 Mb/s to 1 Gb/s. 
The required latency is set to 0.2 s.

We first test the performance of the layer 
scheduling algorithm. We set the number of edge 
servers from 20 to 90 and increase the number 
by 10 in each step. We compare the performance 
with the fixed mode that deploys a fixed num-
ber of deep learning layers in edge servers. We 
set the number of deep learning layers in the 
fixed mode from 1 to 5. As shown in Fig. 4a, the 
scheduling algorithm outperforms the fixed mode 
with a different number of layers. Meanwhile, 
with more edge servers, more deep learning 
tasks can be deployed in the network. We find 
that the fixed mode with two layers deployed in 
edge servers performs better than other settings. 
For most deep learning networks in our simula-

tion, deploying two layers in the edge servers can 
leverage the computational overhead and upload-
ing bandwidth.

Then we test the performance of the online 
algorithm. We also compare the performance 
of the online algorithm with two popular online 
scheduling algorithms, first in first out (FIFO) and 
low bandwidth first deployment (LBF). We input 
a random sequence of 1000 tasks to the edge 
network, and these two algorithms deploy tasks 
into edge servers. The number of edge servers 
is set to 50. As shown in Fig. 4b, the FIFO algo-
rithm deploys every task until there is not enough 
capability and bandwidth. Thus, after deploying 
360 tasks, the FIFO algorithm pops out the first 
deployed tasks for appending the following tasks. 
LBF is similar to FIFO when the capacity and band-
width are enough. When there is no space for 
deploying the following tasks, LBF removes the 
task with maximum bandwidth requirement. Our 
online algorithm will decide whether the following 
task should be deployed into edge servers. Thus, 
when the number of input tasks is near 600, the 
online algorithm deploys more tasks than FIFO. 
When the number of input tasks is near 800, the 
online algorithm deploys more tasks than LBF. As 
a result, our algorithm outperforms FIFO and LBF 
algorithms over a long time period.

Conclusion and Future Work
In this article, we introduce deep learning for IoT 
into the edge computing environment to optimize 
network performance and protect user privacy 
in uploading data. The edge computing structure 

FIGURE 3. Reduced data and operations in deep 
learning networks.

Number of layers
1

0.2Re
du

ce
d 

da
ta

 si
ze

 ra
tio

O
pe

ra
tio

ns
 (

10
9 )

0.0

0.4

0.6

0.8

1.0

102

103

101

100

2 3 4 5

CNN1
CNN2

FIGURE 4. Number of deployed tasks with different algorithms: a) layer sheduling and fixed mode with differ-
ent number of edge servers; b) online algorithm and FIFO algorithm.

Number of edge servers
(a)

30

200

Nu
m

be
r o

f d
ep

lo
ye

d 
ta

sk
s

0

400

600

800

20 6040 50 70 80 90
Number of input tasks

(b)

100

Nu
m

be
r o

f d
ep

lo
ye

d 
ta

sk
s

0

200

300

400

500

600

800600200 4000 1000

FIFO
Online
LBF

Layer scheduling
Fixed mode (one)
Fixed mode (two)
Fixed mode (three)
Fixed mode (four)
Fixed mode (five)

A deep learning network usually has multiple layers. The input data will be processed in these layers. 
Each layer processes the intermediate features generated by the previous layer and then generates 

new features. Finally, the extracted features generated by the last deep learning network layer will be 
processed by a classifier and recognized as the output.



IEEE Network • January 2018 101

reduces the network traffic from IoT devices to 
cloud servers since edge nodes upload reduced 
intermediate data instead of input data. We also 
consider the limited service capability of edge 
nodes and propose algorithms to maximize the 
number of tasks in the edge computing environ-
ment. In the experiments, we choose 10 differ-
ent CNN models as the deep learning networks 
and collect the intermediate data size and com-
putational overhead from practical deep learning 
applications. The results of the performance eval-
uation show that our solutions can increase the 
number of tasks deployed in edge servers with 
guaranteed QoS requirements. As future work, 
we plan to deploy deep learning applications in a 
real-world edge computing environment with our 
algorithms.

Acknowledgments
This work is supported by JSPS KAKENHI Grant 
Numbers JP16K00117, JP15K15976, and 
JP17K12669, the KDDI Foundation, and the 
Research Fund for Postdoctoral Program of Mur-
oran Institute of Technology. Mianxiong Dong is 
the corresponding author.

References
[1] Z. Fadlullah et al., “State-of-the-Art Deep Learning: Evolv-

ing Machine Intelligence Toward Tomorrow’s Intelligent 
Network Traffic Control Systems,” IEEE Commun. Surveys & 
Tutorials, DOI: 10.1109/COMST.2017.2707140.

[2] N. Kato et al., “The Deep Learning Vision for Hetero-
geneous Network Traffic Control: Proposal, Challeng-
es, and Future Perspective,” IEEE Wireless  Commun., 
vol. 24, no. 3, June 2017, pp. 146–53. DOI: 10.1109/
MWC.2016.1600317WC.  

[3] S. Verma et al., “A Survey on Network Methodologies for 
Real-Time Analytics of Massive Iot Data and Open Research 
Issues,” IEEE Commun. Surveys & Tutorials. DOI: 10.1109/
COMST.2017.2694469.  

[4] L. Li, K. Ota, and M. Dong, “When Weather Matters: IoT-
Based Electrical Load Forecasting for Smart Grid,” IEEE Com-
mun. Mag., vol. 55, no. 10, Oct. 2017, pp. 46–51.  

[5] T. G. Rodrigues et al., “Hybrid Method for Minimizing Ser-
vice Delay in Edge Cloud Computing through VM Migration 
and Transmission Power Control,” IEEE Trans. Computers, 
vol. 66, no. 5, May 2017, pp. 810–19.  

[6] Y. Zhang et al., “A Survey on Emerging Computing Para-
digms for Big Data,” Chinese J. Electronics, vol. 26, no. 1, 
2017, pp. 1–12.  

[7] J. Ren et al., “Serving at the Edge: A Scalable IoT Architec-
ture Based on Transparent Computing,” IEEE Network, 2017.  

[8] J. Liu et al., “Energy Consumption Minimization for FiWi 
Enhanced Lte-A Hetnets with UE Connection Constraint,” 
IEEE  Commun. Mag., vol. 54, no. 11, Nov. 2016, pp. 56–62.  

[9] J. Liu et al., “New Perspectives on Future Smart FiWi Net-
works: Scalability, Reliability, and Energy Efficiency,” IEEE 
Commun. Surveys & Tutorials, vol. 18, no. 2, 2nd qtr. 2016, 
pp. 1045–72.  

[10] N. D. Lane, P. Georgiev, and L. Qendro, “Deepear: Robust 
Smartphone Audio Sensing in Unconstrained Acoustic 
Environments Using Deep Learning,” Proc. 2015 ACM Int’l. 
Joint Conf. Pervasive  and Ubiquitous Computing, 2015, pp. 
283–94.  

[11] L. Li et al., “Eyes in the Dark: Distributed Scene Understand-
ing for Disaster Management,” IEEE Trans. Parallel Distrib. 
Systems, 2017. DOI: 10.1109/TPDS.2017.2740294.  

[12] S. Bhattacharya and N. D. Lane, “Sparsification and Sepa-
ration of Deep Learning Layers for Constrained Resource 
Inference on Wearables,” Proc. 14th ACM Conf. Embedded 
Network Sensor  Systems CD-ROM, ser. SenSys ‘16, 2016, 
pp. 176–89.  

[13] M. A. Alsheikh et al., “Mobile Big Data Analytics Using 
Deep Learning and Apache Spark,” IEEE Network, vol. 30, 
no. 3, May/June 2016, pp. 22–29.  

[14] T. X. Tran et al., “Collaborative Mobile Edge Computing in 
5G Networks: New Paradigms, Scenarios, and Challenges,” 
IEEE Commun. Mag., vol. 55, no. 4, Apr. 2017, pp. 54–61.  

[15] C. Liu et al., “A New Deep Learning-Based Food Recogni-
tion System for Dietary Assessment on an Edge Computing 
Service Infrastructure,” IEEE Trans. Services Computing. DOI: 
10.1109/TSC.2017.2662008.

Biographies
He Li received his B.S., and M.S. degrees in computer sci-
ence and engineering from Huazhong University of Science 
and Technology in 2007 and 2009, respectively, and his Ph.D. 
degree in computer science and engineering from the University 
of Aizu, Japan, in 2015. He is currently a postdoctoral fellow 
with the Department of Information and Electronic Engineering, 
Muroran Institute of Technology, Japan. His research interests 
include cloud computing and software defined networking.

Kaoru Ota received her M.S. degree in computer science from 
Oklahoma State University in 2008, and her B.S. and Ph.D. 
degrees in computer science and engineering from the Univer-
sity of Aizu in 2006 and 2012, respectively. She is currently an 
assistant professor with the Department of Information and Elec-
tronic Engineering, Muroran Institute of Technology. She serves 
as an Editor for IEEE Communications Letters.

Mianxiong Dong received his B.S., M.S., and Ph.D. in com-
puter science and engineering from the University of Aizu. He 
is currently an associate professor in the Department of Infor-
mation and Electronic Engineering at Muroran Institute of Tech-
nology, Japan. He serves as an Editor for IEEE Communications 
Surveys & Tutorials, IEEE Network, IEEE Wireless Communications 
Letters, IEEE Cloud Computing, and IEEE Access.

The results of the performance evaluation show that our solutions can increase the number of tasks 
deployed in edge servers with guaranteed QoS requirements. As future work, we plan to deploy deep 

learning applications in a real-world edge computing environment with our algorithms.


