CIS 422/522

CIS 422/522
Course Overview

Admin: Projects and Schedule
Grading
Lecture/Disc: What is Software Engineering?

CIS 422/522 © S. Faulk 1

Contact Information

* Instructor contact
Stuart Faulk
faulk@cs.uoregon.edu
346-1350

Deschutes 354

Computer and Information Science
University of Oregon

Eugene, OR 97403

+ Office Hours: 11:00 - 12:00 class days, by
appointment, or any time my door is open
— | respond most quickly to email

CIS 422/522 © S. Faulk 2

CIS 422/522

Instructor Background

Real World Experience (20+ years)

— R&D U.S. Naval Research Lab

— R&D Aerospace industry

— Consulting (DoD, Sharp, Sun, etc.)

Teaching industry professionals (15+ years)
— Oregon Master of Software Engineering
Perspective on Software Engineering as an
applied discipline (i.e., what actually works)

CIS 422/522 © S. Faulk 3

CIS 422 Course Format

Single Quarter Project Course

— Lectures, reading: theory, principles, and methods

— Projects: learn how to apply SE concepts by doing

— Project Meetings: learn effective teamwork

— Project evaluations: critique and guidance

Two project iterations

— First for perspective on SE issues, team development
— Second to demonstrate ability to apply lessons learned
Two exams assess individual understanding
(midterm, 2"d midterm)

CIS 422/522 © S. Faulk 4

CIS 422/522

Emphasis is on Life-Cycle
Management and Teamwork

+ Participate in collaborative design

+ Work as a member of a project team,
assuming various roles

+ Create and follow project plans

+ Create the full range of work products
associated with a software product

« Complete project deliverables on time
+ Key point: coding is only part of the work

CIS 422/522 © S. Faulk 5

Projects

+ 2 projects: 4 weeks, 6 weeks

— Project 1: same basic requirements for everyone
+ Simple but extensible application
+ Focus on project planning and teamwork
+ Understand what can go wrong
— Project 2: a selection of projects
+ Instructor suggested or team choice
+ Focus on disciplined development

+ Technically simple, but high expectations
— Solid freeware quality application

— Complete documentation: requirements, design,
test, user guides
CIS 422/522 © S. Faulk 6

CIS 422/522

Teams

Form teams of 5-6 people from surveys
— At least one common programming language
— Cross-section of skills

Project grades are a combination of group
grade, individual contributions, and peer
evaluation

— Overall grade for project

— Evaluation of individual contributions
+ Peer evaluation by teammates
+ Record of contributions from Developer Log

CIS 422/522 © S. Faulk 7

Grading

60% Projects (20+40)
— Includes presentations, intermediate deliverables

30% Exams (15+15)
— Test for understanding of lectures & reading

10% Class Participation: includes but is not

limited to...
* Required attendance at class, team meetings
+ Participation in class discussions, interactive questions

+ Appropriate behavior in the classroom (i.e. no cell
phones, beepers, trolling web)

CIS 422/522 © S. Faulk 8

CIS 422/522

Grading Constraints

To pass the course you must meet all of
these criteria:

+ 65 or better on the project
+ 65 or better average on the exams

+ Appropriate team interactions (i.e.,
appropriate language, civil, professional, etc.)

CIS 422/522 © S. Faulk 9

Class Website

« Use class website to track class events

+ Schedule page most important
— Lecture schedule, link to slides
— Readings due for each lecture
— Project due dates
— Examples of work products

+ Home page: announcements
+ Project page: project description, constraints
* Project grading: how work will be evaluated

CIS 422/522 © S. Faulk 10

CIS 422/522

Additional Resources

Assembla: team online collaboration sites

Piazza: forum for discussion, questions
(including anonymous)

Provide summaries of lectures

Video lectures: in place of in-class lectures for
some classes; links provided as needed

CIS 422/522 © S. Faulk 1

What is Software Engineering?

CIS 422/522 © S. Faulk 12

CIS 422/522

The “Software Crisis”

« What we have:

Have been in “crisis” since the advent of “big”
software (roughly 1965)
What we want for software development
— Low risk, predictability (time, cost, functionality, quality)
— Lower costs and proportionate costs
— Faster turnaround

— High risk, high failure rate

— Inconsistent delivered quality

— Unpredictable schedule, cost, effort

Characterized by lack of control (inability plan the
work, work the plan)

CIS 422/522 © S. Faulk 13

Symptoms of the “Crisis”

One of every four large software project is cancelled

Average project overshoots schedule by 50%, large
project often do much worse

75% of large systems do not operate as intended

— E.g., Ariane 5, Therac 25, Mars Lander, FAA ATC,
Universal Credit, Cover Oregon, etc. :
— Many fail to deliver a single working
line of code

Really the “state of practice”

CIS 422/522 © S. Faulk

CIS 422/522

Discussion Context

Focus on large, complex systems

— Multi-person: many developers, many stakeholders
— Multi-version: intentional and unintentional evolution
Quantitatively distinct from small developments
— Software complexity grows non-linearly with size

— Communication complexity grows exponentially
Qualitatively distinct from small developments

— Multi-person implies need for organizational functions
(management, accounting,), policies, oversight, etc.

— More stakeholders and more kinds of stakeholders

Rule of thumb: project starts to be “large”
development team can’t fit around a table.

CIS 422/522 © S. Faulk 15

Implications

Small system development is driven by technical issues
(l.e., programming, technical understanding)

Large system development is dominated by
organizational issues

— Problem understanding, managing complexity, communication,
coordination, etc.

— Projects fail when these issues are inadequately addressed

Key Lesson #1: programming = software engineering

— Techniques that work for small systems fail utterly when
scaled up

— Programming skills alone won’t get you through real
developments (or even this course)

CIS 422/522 © S. Faulk 16

CIS 422/522

Programming View

Get Requirements

Write
Program

Test
Program

CIS 422/522 © S. Faulk 17
Review Document Review Phase Document -
Project Project Ope rational
Requireraents Specification Readiness Dl:‘;}]};ii;
Review Review (by site)
’ B
E’ Project Project Operational . Initial g
2% Pl Plan Readiness Initial Deployrent 2
g-g Review Review De ploymext Review &
3
L]) - -
[=] ProjectIT ProjectIT ProjectIT Aeceptance SAT [BrstemBuseline]
Support Support Support Review Test gy
Review Definition Definition Report :
A4
& Swpem Systern Syter SAT Test Inwgration SAT [Release Buseli]
2 Requirements Requirerents [Segyent Readiness & Testing Test
- iew Analysis Specification Review Description
& Systern Syter Integration Test cr Inhgmﬁnlrmj
Design Design ness Integration Test %
Review Specification Review & Testing Description =
k] & CI Software Cl CI Software CI Test CI Code CI <
ﬁ’& Specification Reqlurem{ems Requireraents Readiness & Unit Testing Test 5
= Review Analysis Specification Review Description O
‘_E b CI Prelirinary CI CI Software CI Crifical CI CI Software § E
R £ Design Prelirinary Design Design Detailed Design 2
< Review Design Description Review Design Description A
CIS 422/522 © S. Faulk 18

CIS 422/522

Origins of SE

« Term “software engineering” was coined at 1968 NATO
conference:

“Software engineering is the establishment and use of sound
engineering principles in order to obtain economically software
that is reliable and works efficiently on real machines.”

+ Response to “software crisis”

+ Desire for software development to be more like
mature engineering disciplines
— Analytical, predictable, manageable
— But, stated as an aspiration, not the state of practice

CIS 422/522 © S. Faulk 19

What has changed since ‘687

+ Incorrect to conclude that no progress has been
made
— Better understanding of issues
— Substantial improvements in programming languages, tools
— Better understanding and control of software processes

+ But the problems have also changed
— Improved capabilities often overcome by larger problems,
greater complexity
— Orders of magnitude more code, faster pace of technology,
accelerated delivery schedules, etc.

CIS 422/522 © S. Faulk 20

10

CIS 422/522

What has not changed?

Still not an engineering discipline in classic sense

— Lack of applied mathematics and systematic methods to
develop and assess product properties

— Not taught, licensed, or regulated as an engineering
discipline (most of USA)
Worse, practitioners often don’t apply what we know
— Existing SE methods, models often not understood or used
in industry

— Little attention is given to processes or products other than
code

— Upshot: quality of products depends on qualities of the
individuals rather than qualities of engineering practices
Development continues to be characterized by lack
of control

CIS 422/522 © S. Faulk

21

View of SE in this Course

The purpose of software engineering is to

gain and maintain intellectual and managerial

control over the products and processes of

software development

— “Intellectual control” means that we are able make
rational choices based on an understanding of the
downstream effects of those choices (e.g., on
system properties).

— Managerial control similarly means we are able to
make rational choices about development
resources (budget, schedule, personnel).

Memorize this!

CIS 422/522 © S. Faulk

22

11

CIS 422/522

Both are necessary for success!

Intellectual control implies
— We understand what we are trying to achieve
— Can distinguish good choices from bad

— We can reliably and predictably build to our goals
» Functional behavior
» Software Qualities (reliability, security, usability, etc.)

Managerial control implies

— We make accurate estimations

— We deliver on schedule and within budget

Assertion: managerial control is not really possible
without intellectual control (no matter what the
Harvard School of Business says)

CIS 422/522 © S. Faulk 23

Course Approach

Will learn practical methods for acquiring and
maintaining control of software projects
Intellectual control
— Methods for software requirements, architecture, design, test
— Modeling methods and notations
— What to produce, how to make decisions, how to check
correctness
Managerial control
— Planning and controlling development
— Process models addressing development
— People management and team organization
Caveat: we can only simulate the problems of large
developments

CIS 422/522 © S. Faulk 24

12

CIS 422/522

Assignments

Read through the class web site

— Make sure you understand what is expected of
you and how the course is graded

— Understand how the schedule page works, this
should be checked before class

Read the project description

Read through the Team Roles page and
consider which roles interest you

Read the Process Models reference before
next class

CIS 422/522 © S. Faulk

25

Questions?

CIS 422/522 © S. Faulk

26

13

