
1
CIS 422/522

CIS 422/522 ©S. Faulk 1

CIS 422/522
Use Case Summary

In-class Exercise

CIS 422/522 ©S. Faulk 2

Project Planning Notes

• Work assignments
– Tendency to be vague about what must be done

• Tasks open to interpretation
• Results often not what is wanted

– Should tie to specific deliverables, quality goals
• Use grading rubric, examples

• Use scheduling to make sure:
– Every task is owned and tracked
– Key milestones accounted for
– Every team member is adding to progress

• Together make sure all tasks are accounted for
(especially non-coding tasks)

2
CIS 422/522

CIS 422/522 ©S. Faulk 3

Exercise: Plan to Bake a Cake

• How many cooks does
it take to bake a cake?
– Can more people

produce a cake faster?
– Is there a limit to how

fast?
– If you want the cake

ready for a party at 4:00
PM, how late can you
start?

CIS 422/522 ©S. Faulk 4

USE CASES

3
CIS 422/522

CIS 422/522 ©S. Faulk 5

Problems

• How to convey typical usage scenarios to
stakeholders in a way that all can understand
– Customers, marketers, architects, developers, testers
– Provide a lightweight means for exploring requirements

• How to quickly express key requirements for
users in a standardized way

• How to provide a basis for system testing
• How to identify issues for prototyping
• How to start thinking about traceability from

requirements to architecture

“Use Cases” can be an effective technique

CIS 422/522 ©S. Faulk 6

Use Cases

• Use Case: a narrative describing how the
system and a user interact to accomplish a
user task

• A form of User Centered Analysis – capturing
requirements from the user’s point of view
– Identify capabilities required by different types of

users (customer, administrator, etc.)
– Includes only user-visible functional requirements

4
CIS 422/522

CIS 422/522 ©S. Faulk 7

Identifying Actors

• Actors – identifies the roles different users play
with respect to the system
– Roles represent classes of users with different goals
– Actors carry out use cases

• Helps identify requirements for different kinds of
users
– “How would depositors use the system?”
– “How would a library patron use the system?”

• Diverse classes of users may require different
interfaces
– E.g., users vs. administrators vs. content providers

CIS 422/522 ©S. Faulk 8

Scenario Elicitation

• Each class of actor is interviewed and/or
observed
– How do you do task T?
– How will the user interact with the system to do X?

• Collect in the form of use cases
– Document in loose text or standard format
– Identify relative priorities of tasks
– Resolve conflicts, tradeoffs

5
CIS 422/522

CIS 422/522 ©S. Faulk 9

Creating Use Cases (Basic)

• Identify a key actor and purpose
– The purpose informs the use case title and description

• Identify the main flow (ideal path) from the
starting point to the result
– Preconditions: anything that must be true to initiate the

Use Case
– Trigger: event, if any, initiating the Use Case
– Basic Flow: sequence of interactions from the trigger

event to the result
– Alternative Flows: identify sequences branching off the

Basic Flow
– Exceptions: identify responses to error conditions

CIS 422/522 ©S. Faulk 10

Example Use Case

• Avoids design decisions
• References other use

cases
• References more

precise definitions
where necessary

• Some terms need
further definition (e.g.
PIN)

6
CIS 422/522

CIS 422/522 ©S. Faulk 11

Guidelines for Good Use Cases

• Use Cases should express requirements, not
design or implementation
– Focus on important results that provide value to

specific actors
• I.e., if nobody really cares about the outcome, it is not a

good use case
– Focus on what the actor is doing, not the details of how

• Not: “The user left-clicks on the radio button labeled
Balance and presses the Enter button”

• “The user elects the option to view the balance.”
• Looking for a small number of use cases that

capture the most important interactions
– Read the IBM Use Case paper

CIS 422/522 ©S. Faulk 12

Scenario Analysis Process

Applying scenario analysis in the requirements process
•Requirements Elicitation

– Identify stakeholders who interact with the system (actors)
– Collect “user stories” - how people would interact with the

system to perform specific tasks
•Requirements Communication (ConOps)

– Record as use-cases with standard format
– Use templates to standardize, drive elicitation

•Requirements verification and validation
– Review use-cases for consistency, completeness, user

acceptance
– Combine with mock-ups or prototypes
– Verify against code (e.g., use-case based testing)

7
CIS 422/522

CIS 422/522 ©S. Faulk 13

Questions?

CIS 422/522 ©S. Faulk 14

Deliverables Walkthrough

• Consider: What kinds of questions should your documents
answer?
– Assume a manager unfamiliar with the project is reviewing your

status
– Would your documents answer key questions about the project

goals and current status?
• Team page: Who is on the team and what are their skills?
• Project plan

– Who is responsible for which tasks?
– What are the anticipated risks and what are you doing to

mitigate them?
– What is your development process and how does it help

address the risks?
– Detailed Schedule & Milestones

• What is the project schedule of tasks and deliverables?
• What is the current status relative to schedule?

8
CIS 422/522

CIS 422/522 ©S. Faulk 15

Walkthrough (2)

• Software Requirements
– 2. ConOps: What capabilities will the software provide the

user or customer?
– 3. Behavioral Requirements: What are the detailed technical

requirements?
• Specific inputs accepted & outputs generated
• Detailed behavior of any computation (e.g., sort, error responses)

– 4. Quality Requirements: objective requirements for software
qualities (e.g., reliability, performance)

• Software Design
– Architecture: How is the software organized into

components? How does it work (function)? Where is each
requirement implemented (traceability)?

– Module Interfaces: What are the component interfaces?

CIS 422/522 ©S. Faulk 16

Walkthrough (3)

• Quality Assurance: How will you check whether the
software satisfies functional and quality
requirements?
– Reviews: Which artifacts/properties will be checked by

review?
– Test Plans: How will you test the software?

• User Documentation: How will users understand how
to install and use the application?

• Code Documentation: What do I need to know to find
parts of the code responsible for implementing any
given requirement or part of the design?
– How is the code organized in the repository?
– What does this code component do?

