
1
CIS 422/522

CIS 422/522 © S. Faulk 1

Midterm Review
CIS 422/522
Stuart Faulk

CIS 422/522 © S. Faulk 2

Next

• Midterm Wednesday
– Multiple choice, short answer
– Based on lectures
– Review lecture on line: pwd CIS422online

• Project II
– Put up project ideas to share
– Short discussions with instructor for initial

selection

2
CIS 422/522

CIS 422/522 © S. Faulk 3

The “Software Crisis”

• Have been in “crisis” since the advent of big software
(roughly 1965)

• What we want for software development
– Low risk, predictability
– Lower costs and proportionate costs
– Faster turnaround

• What we have:
– High risk, high failure rate
– Poor delivered quality
– Unpredictable schedule, cost, effort
– Examples: Ariane 5, Therac 25, Mars Lander, DFW Airport, FAA

ATC, Cover Oregon
• Characterized by lack of control

CIS 422/522 © S. Faulk 4

Large System Context

• Discuss issues in terms of large, complex systems
– Multi-person: many developers, many stakeholders
– Multi-version: intentional and unintentional evolution

• Quantitatively distinct from small developments
– Complexity of software rises exponentially with size
– Complexity of communication rises exponentially

• Qualitatively distinct from small developments
– Multi-person introduces need for organizational functions,

policies, oversight, etc.
– More stakeholders and more kinds of stakeholders

• We can only approximate this in our projects

3
CIS 422/522

CIS 422/522 © S. Faulk 5

Implications: the Large System Difference

• Small system development is driven by technical issues
(I.e., programming)

• Large system development is dominated by
organizational issues
– Managing complexity, communication, coordination, etc.
– Projects fail when these issues are inadequately addressed

• Lesson #1: programming ¹ software engineering
– Techniques that work for small systems often fail utterly when

scaled up
– Programming alone won’t get you through real developments or

even this course

CIS 422/522 © S. Faulk 6

View of SE in this Course

• The purpose of Software Engineering is to
gain and maintain intellectual and managerial
control over the products and processes of
software development.
– Intellectual control: able to make rational

development decisions based on an
understanding of the downstream effects of those
choices.

– Managerial control means we likewise control
development resources (budget, schedule,
personnel).

4
CIS 422/522

CIS 422/522 © S. Faulk 7

Course Approach

• Learn methods for acquiring and maintaining
control of software projects (two threads)

• Managerial control
– Team organization and people management
– Organizing people and tasks
– Planning and guiding development

• Intellectual control
– Establishing and communicating exactly what should

be built
– Making effective decisions about system properties

(behavioral and developmental)
– Choosing appropriate order for decisions and ensuring

feedback/correction

CIS 422/522 © S. Faulk 8

The Software Lifecycle

5
CIS 422/522

CIS 422/522 © S. Faulk 9

Need to Organize the Work

• Nature of a software project
– Software development produces a set of interlocking,

interdependent work products
• E.g. Requirements -> Design -> Code

– Implies dependencies between tasks
– Implies dependencies between people

• Must organize the work such that:
– Every task gets done
– Tasks get done in the right order
– Tasks are done by the right people
– The product has the desired qualities
– The end product is produced on time

CIS 422/522 © S. Faulk 10

Usefulness of Life Cycle Models

• Application of “divide-and-conquer” to
software processes and products
– Identify distinct process objectives
– Can then address each somewhat separately

• Intended use
– Provide guidance to developers in what to

produce and when to produce it
– Provide a basis for planning and assessing

development progress
• Never an accurate representation of what

really goes on

6
CIS 422/522

CIS 422/522 © S. Faulk 11

A “Waterfall” Model

Design

System Integration
and Testing

Coding

Deployment

Maintenance and
Evolution

Requirements
Analysis

Architecture

1. As a guide: does not address
some common development risks
• What happens if requirements

are wrong?
• Is scheduling or budget is wrong?

2. As a model: unrealistic as a
model of any real development

3. Useful in identifying conceptually
distinct activities

Problems of temporal
distance

CIS 422/522 © S. Faulk 12

Characteristic Processes:
The Iterative Model

• Process is viewed as a sequence of iterations
– Essentially, a series of waterfalls

• Addresses some common waterfall risks
– Risk that software cannot be completed – build incremental subsets
– Risk of building the wrong system – stakeholder have opportunities to see the

software each increment
– Also, can double check feasibility, schedule, budget and others issues

7
CIS 422/522

CIS 422/522 © S. Faulk 13

Characteristic Processes:
The Spiral Model

• Process viewed as
repeating cycles of
increasing scale

• Identify risks and
determine (next set of)
requirements

• Each cycle builds next
version by extension,
increasing scale each
time

• Explicit Go/No-Go
decision points in
process

CIS 422/522 © S. Faulk 14

Spiral Model

determine
goals Risk evaluation

and Mitigation

plan next
phase development

8
CIS 422/522

CIS 422/522 © S. Faulk 15

Characteristic Processes:
Agile (e.g. scrum)

• Process viewed as nested sequence of builds (sprints)
– Each build adds very small feature set (one or two)
– Nightly build/test, frequent customer validation
– Focus on delivering code, little or no time spent on documentation

CIS 422/522 © S. Faulk 16

Process Objectives

• Objective: proceed in a controlled manner from
stakeholder needs to a design that demonstrably
meets those needs, within design and resource
constraints
– Understand that any process description is an abstraction
– Always must compensate for deviation from the ideal
– Still important to have a well-defined process to follow and

measure against
• Choose process to provide an appropriate level of

control for the given product and context
– Sufficient control to achieve results, address risks
– No more than necessary to contain cost and effort

• Question of control vs. cost: processes introduce
overhead

9
CIS 422/522

CIS 422/522 © S. Faulk 17

Example
• Project 1 requirements and constraints

1. Deadline and resources (time, personnel) are fixed
2. Delivered functionality and quality can vary (though they affect the

grade)
3. Risks:

1. Missing the deadline
2. Technology problems
3. Inadequate requirements
4. Learning while doing

• Process model
– All of these risks can be addressed to some extent by building

some version of the product, then improving on it as time allows
(software and docs.)

– Technology risk requires building/finding software and trying it
(prototyping)

– Most forms of incremental development will address these

CIS 422/522 © S. Faulk 18

Project Planning and Management

10
CIS 422/522

CIS 422/522 © S. Faulk 19

Document Types and Purposes

• Management documents
– Basis for managerial control of resources

• Calendar time, skilled man-hours, budget
• Other organizational resources

– Project plan, WBS, Development schedule
– Utility: supports resource allocation to meet time and budget

constraints
• allows managers to track actual against expected use of resources

CIS 422/522 © S. Faulk 20

Project Plan

• Purpose: specifies how project resources will be
organized to:
– Create each deliverable
– Meet quality goals
– Address developmental goals (e.g., mitigate risk)

• Audience: should answer specific kinds of
questions for different types of users, e.g.:
– Customers: When will the product be delivered?
– Stakeholders: What is the development approach?

How does it address project risks?
– Managers: When will tasks be completed? What is the

current progress against the plan?
– Developers: What should I be working on and when?

11
CIS 422/522

CIS 422/522 © S. Faulk 21

From Process to Plan

• Process manifests itself in the project plan
– Process definition is an abstraction
– Many possible ways of implementing the same

process
• Project plan makes process concrete, it

assigns
– People to roles
– Artifacts to deliverables and milestones
– Activities to tasks over time

• Evolves as the project proceeds

CIS 422/522 © S. Faulk 22

Planning Tools

• Work Breakdown Structure: decompose tasks and
allocate responsibilities
– If incomplete, some tasks may not be done
– If imprecise, people do not know exactly what to do
– Without a complete set of tasks, schedules are unrealistic

• PERT charts: identify where ordering of tasks may
cause problems
– Represent precedence or resource constraints
– Identify critical path

• Gantt Charts: method for visualizing project schedule
(tasks, dependencies, timing, persons)

• Note that these help address problems our projects
have encountered

12
CIS 422/522

CIS 422/522 © S. Faulk 23

Intellectual Control

CIS 422/522 © S. Faulk 24

Product Development Cycle

Business Goals
Hardware
Software
Marketing

Product Planning
Development &
Marketing Strategy

Requirements
Functionality
Qualities

Design
Goals/
tradeoffs

Code

Test &
Validate

Intellectual control: delivery of
• Functional capabilities
• Software qualities

Deploy

13
CIS 422/522

CIS 422/522 © S. Faulk 25

Document Types and Purposes

• Development documents
– Basis for intellectual control

• Used for making and communicating engineering decisions
(requirements, design, implementation, verification, etc.)

• Allows developers to track decisions from stakeholder needs to
implementation

– Basis for communicating decisions
– Requirements, Architecture, Detail design, Reviews, Tests

CIS 422/522 © S. Faulk 26

What is a “software requirement?”

• A description of something the software must
do or property it must have

• The set of system requirements denote the
problem to be solved and any constraints on
the solution
– Specifies “what” not “how”
– Bounds the set of acceptable implementations

14
CIS 422/522

CIS 422/522 © S. Faulk 27

Importance of Getting Requirements Right

2. The later that software errors are
detected, the more costly they are

to correct

1. The majority of software errors
are introduced early in software

development

1

2

5

10

20

50

100

design unit test,
integration operationrequirements code

debug
acceptance initial

test

Phase in which error detected

0

10

20

30

40

50

requirements
and

functional
analysis

design construction and
system

development test

acceptance
testing and
operation

Development Phase

$1 error
$100 error

CIS 422/522 © S. Faulk 28

Requirements Phase Goals

• What does “getting the requirements right” mean
in the systems development context?

• Only three goals
1. Understand precisely what is required of the software
2. Communicate that understanding to all of the parties

involved in the development (stakeholders)
3. Control production to ensure the final system satisfies

the requirements
• Sounds easy but hard to do in practice, observed

this and the resulting problems in projects
• Understanding what makes these goals difficult

helps us understand how to mitigate the risks

15
CIS 422/522

CIS 422/522 © S. Faulk 29

What makes requirements difficult?

• Comprehension (understanding)
– People don’t (really) know what they want (…until they see it)
– Superficial grasp is insufficient to build correct software

• Communication
– People work best with regular structures, coherence, and visualization
– Software’s conceptual structures are complex, arbitrary, and difficult to

visualize
• Control (predictability, manageability)

– Difficult to predict which requirements will be hard to meet
– Requirements change all the time
– Together make planning unreliable, cost and schedule unpredictable

• Inseparable Concerns
– Many requirements issues cannot be cleanly separated
– Difficult to apply “divide and conquer,” must make tradeoffs

• Implication: all the requirements goals are difficult to
achieve, must be managed as a risks!

CIS 422/522 © S. Faulk 30

Requirements Communication
(Specification)

• Many potential stakeholders using requirements
for different purposes
– Customers: the requirements document what should

be delivered
– Managers: provides a basis for scheduling and a

yardstick for measuring progress
– Software Designers: provides the “design-to”

specification
– Coders: defines the range of acceptable

implementations
– Quality Assurance: basis for validation, test planning,

and verification
– Also: potentially Marketing, regulatory agencies, etc.

16
CIS 422/522

CIS 422/522 © S. Faulk 31

Needs of Different Audiences

• Customer/User
– Focus on problem

understanding
– Use language of problem

domain
– Technical if problem space

is technical

Developer

Customer

Requirements
Analyst

Problem Understanding/
Business Needs

Detailed technical
Requirements

• Development organization
– Focus on system/software

solutions
– Use language of solution

space (software)
– Precise and detailed enough

to write code, test cases,
etc.

CIS 422/522 © S. Faulk 32

Documentation Approaches

• ConOps: informal requirements to describe the
system’s capabilities from the customer/user
point of view
– Answer the questions, “What is the system for?” and

“How will the user use it?”
– Tells a story: “What does this system do for me?”
– Helps to use a standard template

• SRS: formal, technical requirements for
development team
– Purpose is to answer specific technical questions

about the requirements quickly and precisely
– Precise, unambiguous, complete, and consistent as

practical

17
CIS 422/522

CIS 422/522 © S. Faulk 33

Scenario Analysis and Use Cases

• Common user-centered analysis method
• Requirements Elicitation

– Identify stakeholders who interact with the system
– Collect “user stories” - how people would interact with the

system to perform specific tasks
• Requirements Specification

– Record as use-cases with standard format
– Use templates to standardize, drive elicitation

• Requirements verification and validation
– Review use-cases for consistency, completeness, user

acceptance
– Apply to support prototyping
– Verify against code (e.g., use-case based testing)

CIS 422/522 © S. Faulk 34

Example Use Case

• Avoids design decisions
• References other use

cases
• References more

precise definitions
where necessary

• Some terms need
further definition (e.g.
PIN)

18
CIS 422/522

CIS 422/522 © S. Faulk 35

Benefits and Drawbacks

• Use cases can be an effective tool for:
– Eliciting user-group’s functional requirements
– Communicating to non-technical stakeholders
– Creating initial test cases
– Verifying expected behavior

• Generally inadequate for detailed technical
requirements
– Difficult to find specific requirements
– Inherently ambiguous and imprecise
– Cannot establish completeness or consistency

• True of all informal specification methods

CIS 422/522 © S. Faulk 36

Technical Specification

The SRS
The role of rigorous specification

19
CIS 422/522

CIS 422/522 © S. Faulk 37

Requirements Documentation

• Is a detailed requirements specification necessary?
• How do we know what “correct” means?

– How do we decide exactly what capabilities the modules
should provide?

– How do we know which test cases to write and how to
interpret the results?

– How do we know when we are done implementing?
– How do we know if we’ve built what the customer asked for

(may be distinct from “want” or “need”)?
– Etc…

• Correctness is a relation between a spec and an
implementation (M. Young)
– Implication: until you have a spec, you have no standard for

“correctness”

CIS 422/522 © S. Faulk 38

Technical Requirements

• Focus on developing a technical specification
– Should be straight-forward to determine

acceptable inputs and outputs
– Can systematically check completeness

consistency
• Provides

– Detailed specification of precisely what to build
– Design-to specification
– Build-to specification for coders
– Characterizes expected outputs for testers

• Little application in Project 1

20
CIS 422/522

CIS 422/522 © S. Faulk 39

Quality Requirements

CIS 422/522 © S. Faulk 40

Quality Requirement Types

• Avoid “functional” and non-functional"
classification

• Behavioral Requirements – any requirements or
constraints on the system's run-time behavior
– Measurable qualities (safety, performance, fault-

tolerance)
– In theory all can be validated by observing the running

system and measuring the results
• Developmental Quality Attributes - any

constraints on the system's static construction
– Maintainability, reusability, ease of change (mutability)
– Measures of these qualities are necessarily relativistic

(I.e., in comparison to something else

21
CIS 422/522

CIS 422/522 © S. Faulk 41

Behavioral and Developmental
Requirements

Behavioral (observable)
• Performance
• Security
• Availability
• Reliability
• Usability

Properties resulting from the
behavior of components,
connectors and interfaces
that exist at run time.

Developmental Qualities
• Modifiability(ease of change)
• Portability
• Reusability
• Ease of integration
• Understandability
• Support concurrent

development

Properties resulting from the
structure of components,
connectors and interfaces
that exist at design time
whether or not they have any
distinct run-time
manifestation.

CIS 422/522 © S. Faulk 42

Importance

• Quality requirements are as or more
important to user acceptance than functional
– Every system has critical quality requirements
– The most frequent reason for user dissatisfaction

• Quality requirements are often implicit or
assumed
– E.g., response time, data integrity

• Must be explicit to be controlled
– Implicit requirements cannot be communicated,

tracked, verified, etc.
– Left out at crunch time

22
CIS 422/522

CIS 422/522 © S. Faulk 43

Specifying Quality Requirements

• When using natural language, write
objectively verifiable requirements when
possible
– Load handling: The system will support a

minimum of 15 concurrent users while staying with
required performance bounds.

– Maintainability: “The following kinds of
requirement changes will require changes in no
more than one module of the system…”

– Performance:
• “System output X has a deadline of 5 ms from the input

event.”
• “System output Y must be updated at a frequency of no

less than 20 ms.”

CIS 422/522 © S. Faulk 44

Requirements Validation and Verification

• Feedback-control for requirements
• Should answer two distinct questions:

– Validation: “Are we building to the right requirements?”
– Verification: “Are we building what we specified?”

• Validation requires going back to the stakeholders:
can use many techniques
– Review of specifications
– Prototyping, software review
– Use case walkthroughs

• Verification requires checking work products against
specifications
– Review
– Testing
– Formal modeling and analysis

23
CIS 422/522

CIS 422/522 © S. Faulk 45

Real meaning of “control”

• What does “control” really mean?
• Can we really get everything under control

then run on autopilot?
• Rather control requires continuous feedback

loop
1. Define ideal
2. Make a step
3. Evaluate deviation from idea
4. Correct direction or redefine ideal and

go back to 2

CIS 422/522 © S. Faulk 46

End

24
CIS 422/522

CIS 422/522 © S. Faulk 47

Work Breakdown Structure

1. Software Development
1. Project Management
2. Analysis

1. Glossary
2. Requirements Specification

1. Use Cases
2. Supplementary Specs…

47

Equivalent list format

CIS 422/522 © S. Faulk 48
http://www.conceptdraw.com/samples/project-chart

• Which tasks can we start on?
• Which tasks can be done concurrently?
• Which tasks depend on which other tasks?
• Critical Path: which path has the longest duration?

– Gives minimum length of project

25
CIS 422/522

CIS 422/522 © S. Faulk 49

Example Gantt Chart

CIS 422/522 © S. Faulk 50

Teamwork and
Group Dynamics

26
CIS 422/522

CIS 422/522 © S. Faulk 51

What do software developers do?

-Technical excellence is not enough
Must understand how to work effectively in teams

• Most time is not spent coding
• So how do they spend their time?
• IBM study (McCue, 1978):

– 50% team interactions
– 30% working alone (coding & related)
– 20% not directly productive

CIS 422/522 © S. Faulk 52

Being a Good Team Member

• Attributes most valued by other team
members
– Dependability

• When you say you’ll do something, you do it
• Correctly
• On time

– Carrying your own weight (doing a fair share of the
work)

• People will overlook almost everything else if
you do these

27
CIS 422/522

CIS 422/522 © S. Faulk 53

Consensus decision making

Consensus takes time and work, but is worthwhile

• Consensus is not counting votes
– Democracy is 51% agreement
– Unanimity is 100% agreement

• Consensus is neither
– Everyone has their say
– Everyone accepts the decision, even if they

don't prefer it
– It is "buying in" by group as a whole, including

those who disagree
• Usually best approach for peer groups

