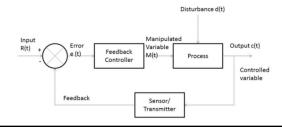
# CIS 422/522 Quality Assurance II Software Reviews

Role of reviews in QA Types of reviews Active review method

CIS 422/522 © S. Faulk


**Product Development Cycle Business Goals** Hardware Software Marketing Product Planning
Development &
Marketing Strategy Requirements Functionality Qualities Design Goals/ tradeoffs Code Goal is to keep system Test & capabilities and business goals Validate in synch! Deploy CIS 422/522 © S. Faulk 2

# Requires Feedback-Control

- Uncertainty means we cannot get everything under control then run on autopilot
- Rather control requires continuous feedback
  - 1. Define ideal
  - 2. Make a step

Role of QA

- 3. Measure deviation from ideal
- 4. Correct direction or redefine ideal and go back to 2



# Quality is Cumulative

#### Requirements Analysis

#### Architectural Design

#### Detailed Design

Coding

- · Are the requirements valid?
- · Complete? Consistent? Implementable?
- · Testable?
- · Does the design satisfy requirements?
- · Are all functional capabilities included?
- Are qualities addressed (performance, maintainability, usability, etc.?
- Do the modules work together to implement all the functionality?
- · Are likely changes encapsulated?
- · Is every module well defined
- Implement the required functionality?
- Race conditions? Memory leaks? Buffer overflow?

CIS 422/522 © S. Faulk

1

#### Human vs. Machine

- Two practical choices: testing by machine or review by a person
- A combination of manual and automated techniques is most cost effective
  - People are better at detecting many kinds of errors than machines
  - Machines are better at repetitive checks and minute details (comparing values)
- Testing works best in a supporting role (checking assumptions)
  - Not applicable unless machine readable
  - Poor at detecting thought errors

CIS 422/522 © S. Faulk

5

#### Peer Review

- Primary defect detection method where automation is not possible or practical
  - E.g. review for meaning, intent, goal satisfaction, human factors, etc.
  - Especially review of upstream artifacts (e.g. requirements, design)
- Very effective if done carefully, systematically
  - Analysis of 12,000 development projects showed defect detection rate of 60-65% for formal inspection 30% for testing
  - Bell-Northern found 1 hour code inspecting saves 2 to 4 hours code testing
  - Effect is magnified in earlier inspections (e.g., 30 times for requirements in one study)

CIS 422/522 © S. Faulk

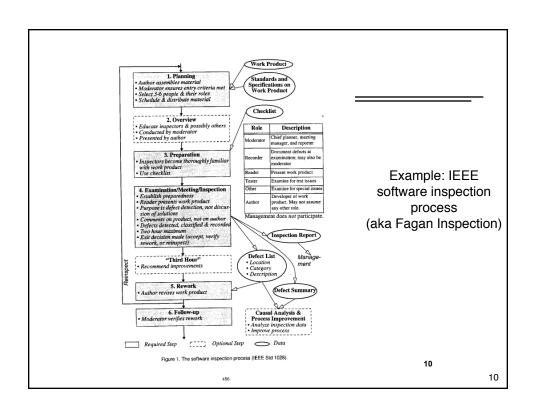
# Terminology: Informal Reviews

- Informal used with two meanings, usually both apply
- "Internal" reviewers a team members (explicitly excludes management)
- 2. "Unstructured"
  - No explicit process or recording of results
    - "Please read this for me" (requirements, design, etc.)
    - · Could be several readers, selected by author
  - Author takes comments and makes revisions as he/she sees fit

CIS 422/522 © S. Faulk

7

#### **Formal Reviews**


- · Includes people outside the team
- · Explicit process, results recorded and tracked
- · Standard types of industry reviews
  - Software peer review: technical review by author's peers (our focus)
  - Software management review: management evaluation of project status
  - Software audit: external review for compliance with standards, regulations, contract, etc.

CIS 422/522 © S. Faulk

# Example: Software Peer Review

- Definition: a form of technical review in which a software product is examined by peers of the product's authors with the goal of finding defects
  - Also called "software inspection"
  - Most common type of technical review in industry
  - Often standardized part of milestone planning
- Formal Meeting held at a pre-defined time and place
  - Reviewers read artifact in advance
  - Facilitator leads discussion of artifact, often on line-by-line basis
  - Issues raised by discussion recorded
  - Author revises artifact after the meeting in response to issues
  - Revised artifact recirculated among reviewers for consensus

CIS 422/522 © S. Faulk



### Peer Review Issues

- Tendency for reviews to be incomplete and shallow
- Reviewers typically swamped with information, much of it irrelevant to the review purpose
- Reviewers lack clear individual responsibility
- Effectiveness depends on reviewers to initiate actions
- Large meeting size hampers effectiveness, increases cost
  - Makes detailed discussion difficult
  - Few present reviewers have expertise on any one issue
  - Wastes everyone else's time and energy
- No way to cross-check unstated assumptions

CIS 422/522 © S. Faulk

11

### **Active Reviews**

Improved Peer Review Method

CIS 422/522 © S. Faulk

#### Qualities of Effective Review

- Ensures adequate coverage of artifact in breadth and depth
- Reviewers review only issues on which they have expertise
- Individual responsibilities are clear and fulfilling them is evidence of a job well done.
  - Review process is active: i.e., performing the review produces visible output
  - Review process focuses on finding specific kinds of errors.
- Limit meetings to focused groups and purposes requiring common understanding or synergy
  - Permit detailed discussion of issues
  - Expose where assumptions differ

CIS 422/522 © S. Faulk

13

#### **Active Review Process**

Goal: Make the reviewer(s) think hard about what they are reviewing

- 1. Identify several types of reviews targeting different types of errors
- 2. Identify appropriate classes of reviewers for each type of review
- 3. Assign reviews to achieve coverage
  - Each applicable type of review is applied to each part of the specification

CIS 422/522 © S. Faulk

### Active Reviews (2)

- 4. Design review questionnaires (key difference)
  - Define questions that the review must answer by using the specification
  - Target questions to bring out key issues
  - Phrase questions to require "active" answers (not just "yes")
- 5. Review consists *using the artifact* to fill out questionnaire
- 6. Review process: overview, review, meet
  - One-on-one or small, group
  - Discuss issues identified in review
  - Track and respond to issues

CIS 422/522 © S. Faulk

15

### Examples

- Active review asks a qualified reviewer to check a specific part of a work product for specific kinds of defects by answering specific questions, e.g.,
  - Ask a designer to check the functional completeness by showing the calls sequences sufficient to implement a set of use cases
  - Ask a systems analyst to check the ability to create required subsets by showing which modules would use which
  - For each access program in the module, what exceptions that can occur?
  - Ask a technical writer to check the SRS for grammatical errors
- Can be applied to any kind of artifact from requirements to code

CIS 422/522 © S. Faulk

### Conventional vs. Active Questions

- Goal: Make the reviewer(s) think hard about what they are reviewing\*
  - · Define questions that the review must answer by using the specification
  - Target questions to bring out key issues
  - · Phrase questions to require "active" answers (not just "yes")

| Conventionat இதுign Review Questions                | ActiveBetter Design Review Questions*                                                                                                                                                                              |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Are exceptions defined for every program?           | For each access program in the module, what exceptions that can occur?                                                                                                                                             |
| Are the right exceptions defined for every program? | What is the the range or set of legal values?                                                                                                                                                                      |
| Are the data types defined?                         | For each data type, what are • an expression for a literal value of that data type; • a declaration statement to declare a variable for that type; • the greatest and least values in the range of that data type? |
| Are the programs sufficient?                        | Write a short pseudo-code program that uses the design to accomplish (some defined task).                                                                                                                          |

CIS 422/522 © S. Faulk

17

# **Applying Use Cases**

- Use cases or scenarios can be effectively used in active review
- Apply requirements scenarios to verify design against requirements
  - "Show the sequence of program calls that would implement use case C"
  - "Which modules would have to change to add feature F (a likely change)?"
- Conversely, can check properties ask the reviewer to construct scenarios
  - "What sequence of actions would result in an exception E?"

CIS 422/522 © S. Faulk

# Why Active Reviews Work

- Focuses reviewer's skills and energies where they have skills and where those skills are needed
- Largest part of review process (filling out questionnaires) is conducted independently and in parallel
- · Reviewers actively use the artifact
- Cost: more work for QA team but...
  - Can be started early and in parallel
  - Can be reused for many artifacts

CIS 422/522 © S. Faulk

19

### For Your Projects

- · Create a plan
- · For non-code artifacts
  - Identify which artifacts will be reviewed, by whom, and when
  - Define the goal of each review
  - Specify the review method
  - Record the results
- Types of reviews
  - Good: Standard review
  - Better: Review with checklist
  - Best: Active review

CIS 422/522 © S. Faulk

# Example: Requirements

- ConOps review
  - When should we review it?
  - Who should review it?
  - What qualities or properties do we review for?
  - Which review method should we use?
  - What should we do with the results?

CIS 422/522 © S. Faulk

21

### **Summary**

- Reviews are usually only practical method for
  - Early artifacts (requirements, etc.)
  - Defects in understanding, some qualities, etc
- Effective method of defect detection
- Active reviews are more effective than standard inspections

CIS 422/522 © S. Faulk

#### Questions?

CIS 422/522 © S. Faulk

23

#### **V&V** Methods

- Most applied V&V uses one of two methods
- · Review: use of human skills to find defects
  - Pro: applies human understanding, skills. Good for detecting logical errors, problem misunderstanding
  - Con: poor at detecting inconsistent assumptions, details of consistency, completeness. Labor intensive
- Testing: use of machine execution
  - Pro: can be automated, repeated. Good at detecting detail errors, checking assumptions
  - Con: cannot establish correctness or quality
- · Tend to reinforce each other

CIS 422/522 © S. Faulk