
1
CIS 422/522

CIS 422/522 © S. Faulk 1

QA: Testing

• Software testing objectives
• Types of testing
• Testing strategy
• Reflections

CIS 422/522 © S. Faulk 2

QA Planning

• The goal of QA is to build a strong case for 
correctness cost effectively

• The QA plan should give
– Your strategy for accomplishing this
– How QA activities will be integrated into the overall 

effort
– How you will apply testing and reviews to get the best 

return on effort
• Include use and evaluation of results

– Process for tracking and fixing defects found
– Measures of code quality*
– Measures of test quality and completeness*



2
CIS 422/522

CIS 422/522 © S. Faulk 3

Plan for building quality case

• How will we check SRS qualities
– Complete? Consistent? Implementable?
– Customer compliant? Testable?

• Does the design satisfy requirements?
• Are all functional capabilities included?
• Are quality requirements addressed 

(performance, maintainability, etc.)?

• Do the modules work together to implement all 
the functionality?

• Are likely changes encapsulated?
• Is every module well defined

• How will we test to ensure:
– Implement the required functionality?
– Satisfy quality requirements?

Requirements
Analysis

Architectural
Design

Detailed
Design

Code  &  Test

CIS 422/522 © S. Faulk 4

Testing Fundamentals

• Coding produces errors
– Data show 30-85 errors are made per 1000 SLOC

• Testing: processes of executing the code to 
detect errors

• In practice, it is impossible to check for all 
possible errors by testing

• Even checking a useful subset is expensive
– 40%-80% of development cost
– Must be re-done when software changes
– Potentially unbounded effort



3
CIS 422/522

CIS 422/522 © S. Faulk 5

Testing Fundamentals (2)

• Reality: must settle for testing a subset of 
possible inputs
– Even extensively tested software contains 0.5-3 errors 

per 1000 SLOC
• Pesticide Paradox: every method used to prevent or find 

bugs leaves a residue of subtler bugs against which those 
methods are ineffectual [Beizer]

– Always a tradeoff of cost vs. errors found
• Fundamental cost/benefit questions

– Which subsets of possible test cases will find the most 
errors?

– Which will find the most important errors?
– How much testing is enough?

CIS 422/522 © S. Faulk 6

Ideal Testing Goal

• Goal: choose a sufficiently small but 
adequate set of test cases (input domain)
– Small enough to economically run the complete 

set and re-run when software changes
– “Adequate” much harder to define, generally 

means some combination of:
• Acceptably close to required functional behavior
• Contains no catastrophic faults
• Reliable to an acceptable level (mean time to failure)
• Within tolerance levels for qualities like performance, 

security, etc.



4
CIS 422/522

CIS 422/522 © S. Faulk 7

Testing Objectives

• Disagreement over best criteria for choosing 
the test set leads to two general approaches

• Fault Detection: testing intended to find as 
many faults as possible

• Confidence Building: testing with the goal to 
increase confidence that the software works 
as intended

CIS 422/522 © S. Faulk 8

Why continuing disagreement?

• Both approaches have notable weaknesses
• Fault Detection (bug hunt)

– Tests according to coverage criteria
– Equal chance, cost for finding arbitrary error
– Implicitly assumes all bugs are equal, clearly not true in 

many cases
• Confidence Building (usage emulation)

– Tests according to expected use
– Higher chance of finding bugs that users will routinely 

encounter, misses others
– Implicitly assumes that infrequent bugs are 

unimportant, also untrue in many cases



5
CIS 422/522

CIS 422/522 © S. Faulk 9

Methods by Adequacy Criteria

• Test methods typically classified by the criteria 
used to choose the test set

• Classification based on the source of information 
to derive test cases:
– black-box testing (functional, specification-based)
– white-box testing (structural, program-based)

• Classification based on the criterion to measure 
the “adequacy” of a set of test cases:
– coverage-based testing
– fault-based testing
– error-based testing

CIS 422/522 © S. Faulk 10

White-Box Testing

• Also “clear box”
• Testing strategies based on knowledge of the 

code within a program or module
• Generally applies one or more forms of code 

coverage criteria
– Every non-commentary line of code is executed 

(statement coverage)
– Every branch is taken (branch coverage)
– Every block of code is executed (block coverage)
– Every path is executed (path coverage)
– Every defined variable is (correctly) used (define-use 

coverage)



6
CIS 422/522

CIS 422/522 © S. Faulk 11

Black-Box Testing

• Testing strategies based on program or module 
interface specification (but not of the code)

• For module tests:
– Returned values conform to syntactic and semantic 

specifications for the interface
– Inputs beyond parameter bounds, or that violate syntax 

or semantics, throw exceptions
– Performance requirements are met (where defined)

• For integration and system tests
– Sunny day, rainy day scenarios produce expected 

results
– Based on requirements, use cases

CIS 422/522 © S. Faulk 12

Coverage Testing

• Looks at internal code structure (white-box)
• Test set adequacy defined by some form of 

coverage criteria
– E.g., Proportion of statements executed

• Three common techniques:
– control-flow coverage
– data-flow coverage
– coverage-based testing of requirements



7
CIS 422/522

CIS 422/522 © S. Faulk 13

Example: Control Flow Coverage

• Model program as flow graph
– E.g., branches are nodes with multiple edges
– An execution is one path through the graph
– Generally very large number of possible paths

• Adequacy based on coverage of some aspect of 
the graph, in increasing scale:
– Node coverage: execute each statement
– Branch coverage: execute each branch
– Path coverage: execute every path

• % Coverage provides a test-set metric
• Many supporting tools

CIS 422/522 © S. Faulk 14

Control Flow Graph

• Supporting tools
– Generate flow graphs
– Generate test cases,
– Track coverage metrics



8
CIS 422/522

CIS 422/522 © S. Faulk 15

Example: Fault-based Testing

• Does not look at code structure (black-box)
• Looks for a test set with a high ability to 

detect faults
• Two techniques:

– Fault seeding
– Mutation testing

CIS 422/522 © S. Faulk 16

Example: Fault Seeding

• Adequacy of test set judged by ability to find 
seeded errors
– Seeds errors randomly into the code
– Look at percentage of seeded errors found
– Better test sets find more of the seed errors

• Infer that those sets will also find more latent 
errors
– Look for high percentage of seeded to latent errors



9
CIS 422/522

CIS 422/522 © S. Faulk 17

Example: Operational Scenarios

• Focus on confidence building (rather than error-detection), also 
black-box

• Based on knowledge about how users do or will use the system
– Inputs based on statistical analysis of actual inputs
– Inputs based on estimates, use cases, user observation, focus groups, 

etc.
– Inputs based on limited deployment (E.g., Netflix, Amazon)

• Supports statistical inference about the likelihood of a failure in 
actual use (i.e., Cleanroom)
– Usability requirements
– Performance requirements

• Misses unlikely events
– Low-frequency events tend not to be tested (edge cases, exceptions, 

unpredictable behavior)
– Some low frequency events are critical

CIS 422/522 © S. Faulk 18

Experimental Results

• There is no uniformly best technique
• Different techniques tend to reveal different types 

of faults
• Multiple techniques reveal more faults (at a cost)
• Cost-effectiveness of run-time testing is low -

particularly compared to inspections (vast 
majority of tests find no errors)
– Design review: 8.44 errors/unit cost
– Code review: 1.38
– Testing: 0.17



10
CIS 422/522

CIS 422/522 © S. Faulk 19

Interpretation

• A combination of manual and automated 
techniques is most cost effective
– People are better at detecting many kinds of errors 

than machines
– Machines are better at repetitive checks and minute 

details (comparing values)
• Testing works best in a supporting role (checking 

assumptions)
– Activity of producing test cases and results double-

checks other artifacts
• Is it well enough defined to write a good test case?
• Are edge cases defined? Etc.

– Gives feedback on assumptions and expectations: 
does the system do what we expect?

CIS 422/522 © S. Faulk 20

Application

• Start early, test often
– For every work product, we ask: How can I find 

defects as early as possible?
– Create test plans and test cases as a way of 

checking the qualities of requirements, design, etc.
• Use a combination of methods

– Inspections and reviews of every artifact
– Testing at every stage possible

• Manual
• Module
• System



11
CIS 422/522

CIS 422/522 © S. Faulk 21

Application in Process Improvement

• Test results should provide feedback for 
process improvement
– Better QA process
– Better coding practices, etc.
– Better development process

• Look at example plan (Week 4 schedule) 

CIS 422/522 © S. Faulk 22

Questions


