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ABSTRACT
The growing demand for an ever-increasing number of cloud ser-

vices is profoundly transforming the Internet’s interconnection or

peering ecosystem, and one example is the emergence of “virtual

private interconnections (VPIs)". However, due to the underlying

technologies, these VPIs are not publicly visible and traffic travers-

ing them remains largely hidden as it bypasses the public Internet.

In particular, existing techniques for inferring Internet intercon-

nections are unable to detect these VPIs and are also incapable of

mapping them to the physical facility or geographic region where

they are established.

In this paper, we present a third-party measurement study aimed

at revealing all the peerings between Amazon and the rest of the

Internet. We describe our technique for inferring these peering

links and pay special attention to inferring the VPIs associated

with this largest cloud provider. We also present and evaluate a

new method for pinning (i.e., geo-locating) each end of the inferred

interconnections or peering links. Our study provides a first look

at Amazon’s peering fabric. In particular, by grouping Amazon’s

peerings based on their key features, we illustrate the specific role

that each group plays in how Amazon peers with other networks.

CCS CONCEPTS
•Networks→Routers;Networkmeasurement;Physical topolo-
gies; Logical / virtual topologies; Cloud computing;

1 INTRODUCTION
A myriad of new cloud service offerings made possible by modern-

day cloud computing is fundamentally changing how business is

conducted in all segments of the private and public sectors. This, in

turn, has transformed the way these companies connect to major

cloud service providers to utilize these services. In particular, many

companies prefer to bypass the public Internet and directly connect

to major cloud service providers at a close-by colocation (or colo)

facility to experience better performance when using these cloud

services. In response to these demands, some of the major colo
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facilities have started to deploy and operate new switching infras-

tructure called cloud exchanges [23, 25]. Importantly, in conjunction

with this new infrastructure, these colo providers have also intro-

duced a new interconnection service offering called “virtual private
interconnection (VPI)" [3, 43, 58]. By purchasing a single port on

the cloud exchange switching fabric in a given facility, VPIs en-

able enterprises that are either natively deployed in that facility or

“brought” into the facility by their upstream providers to establish

direct peering to any number of cloud service providers that are

present on that exchange.

The implications of this transformation for the Internet’s inter-

connection ecosystem have been profound. First, the on-demand

nature of VPIs introduces a degree of dynamism into the Internet

interconnection fabric that has been missing in the past where set-

ting up traditional interconnections of the public or private peering

types took days or weeks. Second, once the growing volume of an

enterprise’s traffic enters an existing VPI to a cloud provider, it is

handled entirely by that cloud provider’s private infrastructure (i.e.,

the cloud provider’s private backbone that interconnects its own

datacenters) and completely bypasses the public Internet. Finally,

none of these VPIs are visible to existing methods and tools that

have been specifically designed to infer and/or map the intercon-

nections in today’s Internet [2, 55, 57, 62].

Among the reasons for this shortcoming of the existing inference

or mapping tools is the fact that, due to their traceroute-based

nature and their reliance on conventional measurement platforms,

they lack cloud-centric vantage points (e.g., Virtual Machines (VMs)

running in Amazon AWS). A second and more important reason

is that the existing techniques for inferring interconnections are,

in general, incapable of revealing the connectivity at the newly

emerging switching fabrics (e.g., cloud exchanges), mainly because

of these fabrics’ reliance on layer-2 technologies. In short, from an

Internet measurement perspective, not only are VPIs by and large

invisible to existingmethods for Internet connectivity discovery, but

any traffic traversing these VPIs is only visible to the corresponding

cloud provider and can therefore no longer be accounted for by

traditional traffic monitoring or traffic estimation efforts.

This paper’s main contribution consists of presenting a third-

party, cloud-centric measurement study aimed at discovering and

characterizing the unique peerings (along with their types) of Ama-

zon, the largest cloud service provider in the US and worldwide.

Each peering typically consists of one or multiple (unique) intercon-

nections between Amazon and a neighboring Autonomous System

(AS) that are typically established at different colocation facilities

around the globe. Our study only utilizes publicly available infor-

mation and data (i.e., no Amazon-proprietary data is used) and is

https://doi.org/10.1145/3355369.3355602
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therefore also applicable for discovering the peerings of other large

cloud providers.
1

We start by presenting the required background on Amazon’s

serving infrastructure, including the different types of peerings an

enterprise network can establish with Amazon at a colo facility. We

also provide a summary of prior work in this area in § 2. § 3 describes

the first round of our data collection; that is, launching cloud-centric

traceroute probes from different regions of Amazon’s infrastructure

toward all the /24 (IPv4) prefixes to infer a subset of Amazon’s

peerings. We present our methodology for inferring Amazon’s

peerings across the captured traceroutes in § 4.1. Our second round

of data collection consists of using traceroute probes that target the

prefixes around the peerings discovered in the first round and are

intended to identify all the remaining (IPv4) peerings of Amazon

(§ 4.2). In § 5, we present a number of heuristics to resolve the

inherent ambiguity in inferring the specific traceroute segment

that is associated with a peering. We further confirm our inferred

peerings by assessing the consistency of border interfaces at both

the Amazon side and client side of an inferred interconnection.

Pinning (or geo-locating) each end of individual interconnections

associated with Amazon’s peerings at the metro level forms another

contribution of this study (§ 6). To this end, we develop a number of

methods to identify border interfaces that have a reliable location

and which we refer to as anchors. Next, we establish a set of co-

presence rules to conservatively propagate the location of anchors

to other close-by interfaces. We then identify the main factors that

limit our ability to pin all border interfaces at the metro level and

present ways to pin most of the interfaces at the regional level.

Finally, we evaluate the accuracy and coverage of our pinning

technique and characterize the pinned interconnections.

The final contribution of this paper is a newmethod for inferring

the client border interface that is associated with that client’s VPI

with Amazon. In particular, by examining the reachability of a given

client border interface from a number of other cloud providers (§ 7)

and identifying overlapping interfaces between Amazon and those

other cloud providers, our method provides a lower bound on the

number of Amazon’s VPIs. We then assign all inferred Amazon

peerings to different groups based on their key attributes such as

being public or private, visible or not visible in BGP, and physical or

virtual. We then carefully examine these groups of peerings to infer

their purpose and explore hybrid peering scenarios. In particular, we

show that one-third of Amazon’s inferred peerings are either virtual

or not visible in BGP and thus hidden from public measurement.

Finally, we characterize the inferred Amazon connectivity graph as

a whole.

Overall, our analysis of Amazon’s peering fabric highlights how

(e.g., using virtual and non-BGP peerings) and where (e.g., at which

metro) Amazon’s cloud traffic “goes hiding"; that is, bypasses the

public Internet. In particular, we show that as large cloud providers

such as Amazon aggressively pursue new connect locations closer

to the Internet’s edge, VPIs are an attractive interconnection option

as they (i) create shortcuts between enterprises at the edge of the

network and the large cloud providers (i.e., further contributing

to the flattening of the Internet) and (ii) ensure that cloud-related
traffic is primarily carried over the large cloud providers’ private

1
As long as the cloud provider does not filter traceroute probes.
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Figure 1: Overview of Amazon’s peering fabric. Native
routers of Amazon &Microsoft (orange & blue) establishing
private interconnections (AS3 - yellow router), public peer-
ing through IXP switch (AS4 - red router), and virtual pri-
vate interconnections through cloud exchange switch (AS1,
AS2, and AS5 - green routers) with other networks. Remote
peering (AS5) as well as connectivity to non-ASN businesses
through layer-2 tunnels (dashed lines) happens through con-
nectivity partners.

backbones (i.e., not exposed to the unpredictability of the best-effort

public Internet).

2 BACKGROUND AND RELATEDWORK
Amazon’s Ecosystem. The focus of our study of peerings in to-

day’s Internet is Amazon, arguably the largest cloud service provider

in the US and worldwide. Amazon operates several data centers

worldwide. While these data centers’ street addresses are not ex-
plicitly published by Amazon, their geographic locations have been

reported elsewhere [14, 24, 60, 68, 79, 80]. Each data center hosts a

large number of Amazon servers that, in turn, host user VMs as well

as other services (e.g., Lambda). Amazon’s data center locations

are divided into independent and distinct geographic regions to
achieve fault tolerance/stability. Specifically, each region has multi-

ple, isolated availability zones (AZs) that provide redundancy and

offer high availability in case of failures. AZs are virtual and their

mapping to a specific location within their region is not known [8].

As of 2018, Amazon had 18 regions (55 AZs) across the world, with
five of them (four public + one US government cloud) located in the

US. For our study, we were not able to utilize three of these regions.

Two of them are located in China, are not offered on Amazon’s

AWS portal, and require approval requests by Amazon staff. The

third region is assigned to the US government and is not offered to

the public.

Peering with Amazon at Colo Facilities. Clients can connect to

Amazon through a specific set of colo facilities. Amazon is consid-

ered a native tenant in these facilities, and their locations are pub-

licly announced by Amazon [4]. Amazon is also reachable through
a number of other colo facilities via layer-2 connectivity offered by

third-party providers (e.g., Megaport).
2

Figure 1 depicts an example of different types of peerings offered

by cloud providers at two colo facilities. Both Amazon (AWS) and

Microsoft (Azure) are native (i.e., house their border routers) in the

CoreSite LA1 colo facility and are both present at that facility’s IXP

2
These entities are called “AWS Direct Connect Partners" at a particular facility and

are listed online along with their points of presence [6].
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and cloud exchange. (Open) cloud exchanges are switching fabrics

specifically designed to facilitate interconnections among network

providers, cloud providers, and enterprises in ways that provide

the scalability and elasticity essential for cloud-based services and

applications (e.g., see [23, 34]). Major colo facility providers (e.g.,

Equinix and CoreSite) also offer a new interconnection service

option called “virtual private interconnection (VPI).” VPIs enable

local enterprises (that may or may not own an ASN) to connect

to multiple cloud providers that are present at the cloud exchange

switching fabric bymeans of purchasing a single port on that switch.

In addition, VPIs provide their customers access to a programmable,

real-time cloud interconnection management portal. Through this

portal, the operators of these new switching fabrics make it possible

for individual enterprises to establish their VPIs in a highly-flexible,

on-demand, and near real-time manner. This portal also enables

enterprises to monitor in real-time the performance of their cloud-

related traffic that traverses these VPIs.

While cloud exchanges rely on switching fabrics that are similar

to those used by IXPs, there are two important differences. For

one, cloud exchanges enable each customer to establish virtualized

peerings with multiple cloud providers through a single port. More-

over, they provide exclusive client connectivity to cloud providers

without requiring a client to use its pre-allocated IP addresses. Op-

erationally, a cloud customer establishes VPIs using either public

or private IP addresses depending on the set of cloud services that

this customer is trying to reach through these interconnections.

On the one hand, VPIs relying on private addresses are limited to

the customer’s virtual private cloud (VPC) through VLAN isolation.

On the other hand, VPIs with public addresses can reach compute

resources in addition to other AWS offerings such as S3 and Dy-

namoDB [5]. Given the isolation of network paths for VPIs with

private addresses, any peerings associated with these VPIs are not

visible to the probes from VMs owned by other Amazon customers.

This makes it, in practice, impossible to discover established VPIs

that rely on private addresses. In Figure 1, the different colors of the

client routers indicate the type of their peerings; e.g., public peer-

ing through the IXP (for AS4), direct physical interconnection (also

called “cross-connect") (forAS3), private virtual peerings that are ei-
ther local (forAS1 andAS2) or remote (forAS5). Here, a local virtual
private peering (e.g., AS2) could be associated with an enterprise

that is brought to the cloud exchange by its access network (e.g.,

Comcast) using layer-2 technology; based on traceroute measure-

ments, such a peering would appear to be between Amazon and the

access network. In contrast, a remote private virtual peering could

be established by an enterprise (e.g., AS5) that is present at a colo
facility (e.g., Databank in Salt Lake City in Figure 1) where Amazon

is not native but that houses an “AWS Direct Connect Partner" (e.g.,

Megaport) which in turn provides layer-2 connectivity to AWS.

Related Work. Discovering the AS-level topology of the Internet

has been of interest to the networking community for decades [20,

27, 29, 30, 40, 51, 52, 70]. Another body of work focuses on provid-

ing a physical map of the Internet infrastructure (e.g., colocation

facilities, fiber-optic cables). Commonly-used techniques in this

domain include parsing of DNS names to extract details about

infrastructure and geography [19, 46, 61, 66, 75–77], performing

extensive web searches [31, 33], relying on geolocation informa-

tion [35, 36, 45, 48, 65, 69, 78, 82], and leveraging RTT-based esti-

mation techniques [17, 18, 40].

Recent studies have limited their focus to identifying intercon-

nections and sub-structures of the Internet such as identifying

POPs [9, 76], elucidating public peerings at Internet Exchange

Points (IXPs) [1, 10, 21, 42, 71, 83], enhancing connectivity dis-

covery using hybrid approaches [32], and identifying interconnec-

tions [51, 55, 57]. Other studies in this area focus on how IXPs

are reshaping the Internet’s AS-level topology from a pronounced

hierarchical construct to a more mesh-like network [26, 39]. Yet

other efforts are expanded to develop different alias resolution

techniques to enhance the accuracy of inferred router-level topolo-

gies [12, 49, 50, 73, 74]. Our work is complementary to these studies

and describes the yet largely unknown contributions of the largest

cloud providers to the connectivity fabric of today’s Internet.

Our work is closely related to recent studies that concern the

serving infrastructures and especially the peering fabrics of the

large content providers in today’s Internet. While [72, 84] provide

only a qualitative description of Google’s and Facebook’s peering

fabrics, [81] reports on a detailed analysis of proprietary data to

identify the full set of peerings leveraged by Akamai to serve con-

tent to its end users. Our work is also concerned with identifying all

peerings between a provider and the rest of the Internet, but in our

case, the provider of interest is the largest cloud service provider

(i.e., Amazon) and not a large CDN (i.e., Akamai), and instead of re-

lying on proprietary data, our study only utilizes publicly available

information.

In terms of methodology, our effort is similar to recent work

described in [2, 55, 57, 62] which aims at developing techniques

and tools for inferring inter-AS connections by solely relying on

data-plane measurements in the form of traceroutes. Among the

resulting tools, MAP-IT and bdrmapIT were developed as generic

topology discovery tools, but as stated by the authors of [2, 57],

these tools are not applicable within settings where layer-2 switch-

ing fabrics (not counting IXPs) are employed at the network borders.

Since this assumption does not hold for cloud exchanges where

today’s VPIs are established, the tools cannot be used for our pur-

pose. A third tool described in [55] is called bdrmap and appears

to be directly applicable to our setting as it attempts to identify

all inter-AS connections between a single network and the rest

of the Internet. However, upon closer examination, we find that

bdrmap is prone to produce inconsistent inference results (see § 8).

Finally, mi2 is a new technique for inferring all interconnections at

a given colocation facility and geo-locating them to the inside (or

outside) of that facility [62]. However, because of the technique’s

inability to deal with layer-2 fabrics like cloud exchanges, the tool is

not suitable for inferring cloud-specific interconnections. In other

closely related work (e.g., see Chiu et al. [22]), cloud-centric probes

were used to aid the discovery of AS paths and their length. In

contrast, in this paper, we rely on cloud-centric probes to discover

the peering fabric of the largest cloud provider and classify the

identified peerings by their type, paying special attention to VPIs.
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A recent study [41] casts pinning as a constrained facility search
(CFS) problem and leverages various data sources (including tar-

geted traceroute probes) to create sufficient constraints to pin an in-

ferred interconnection to a single facility. Constrained-based search

is certainly feasible for narrowing down possible colos for pin-

ning Amazon’s interconnections. However, the limited visibility

of Amazon’s peering in BGP (as we show in § 7) makes further

probing by CFS-like approaches problematic. Furthermore, no code

or implementation of CFS that is applicable to the pinning problem

considered in this paper is available.

3 DATA COLLECTION & PROCESSING
To infer all peerings between Amazon and the rest of the Inter-

net, we perform traceroute campaigns from Amazon’s 15 avail-

able global regions to a .1 in each /24 prefix of the IPv4 address
space.

3
To this end, we create a t2-micro instance VM within each

of the 15 regions and break down the IPv4 address space into /24
prefixes. While we exclude broadcast and multicast prefixes, we

deliberately consider addresses that are associated with private and

shared address spaces since these addresses can be used internally

in Amazon’s own network. This process resulted in 15.6M target

IPv4 addresses.

To probe these target IPs from our VMs, we use the Scamper

tool [53] with UDP probes as they provide the highest visibility (i.e.,

response rate). Individual probes are terminated upon encountering

five consecutive unresponsive hops in order to limit the overall

measurement time while reaching Amazon’s border routers. We

empirically set our probing rate to 300pps to prevent blacklisting

or rate control of our probe packets by Amazon. With this probing

rate, our traceroute campaign took nearly 16 days to complete (from

08/03/2018 to 08/19/2018). Each collected traceroute is associated

with a status flag indicating how the probe was terminated. We

observed that the total number of completed traceroutes across

different regions is fairly consistent but rather small (mean 7.7%

and std 5 ∗ 10−4) which suggests a limited yield. However, since our

main objective is to identify Amazon interconnections and not to
maximize traceroute yield, we consider any traceroute that leaves

Amazon’s network (i.e., reaches an IP outside of Amazon’s network)

as a candidate for revealing the presence of an interconnection, and

the percentage of these traceroutes is about 77%.

Annotating Traceroute Data. To identify any Amazon intercon-

nection traversed by our traceroutes, we annotate every IP hop

with the following information: (i) its corresponding ASN, (ii) its
organization (ORG), and (iii) whether it belongs to an IXP prefix.

To map each IP address to its ASN, we rely on BGP snapshots from

RouteViews and RIPE RIS (taken at the same time as our traceroute

campaign). For ORG, we rely on CAIDA’s AS-to-ORG dataset [47]

and map the inferred ASN of each hop from the previous step to

its unique ORG identifier. ORG information allows us to correctly

identify the border interface of a customer in cases where tracer-

oute traverses through hops in multiple Amazon ASes prior to

reaching a customer network
4
. Finally, to determine if an IP hop

3
We observed a negligible difference in the visibility of interconnections across probes

from different AZs in each region. Therefore, we only consider a single AZ from each

region.

4
We observed AS7224, AS16509, AS19047, AS14618, AS38895, AS39111, AS8987, and

AS9059 for Amazon.
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Figure 2: Illustrating potential error in detecting the inter-
connection segment between Amazon and a client when
Amazon provides the IP addresses for both ends of the phys-
ical interconnection.

is part of an IX prefix, we rely on PeeringDB [67], Packet Clearing

House (PCH) [64], and CAIDA’s IXP dataset [16] to obtain prefixes

assigned to IXPs.

In our traceroutes, we observe IP hops that do not map to any

ASN. These IPs can be divided into two groups. The first group

consists of the IPs that belong to either a private or a shared address

space (20.3%); we set the ASN of these IPs to 0. The second group

consists of all the IPs that belong to the public address space but

were not announced by any AS during our traceroute campaign

(7%); for these IPs, we infer the AS owner by relying on WHOIS-

provided information (i.e., name or ASN of the entity/company

assigned by an RIR).

4 INFERRING INTERCONNECTIONS
In this section, we describe our basic inference strategy for identi-

fying an Amazon-related interconnection segment across a given

traceroute probe (§ 4.1) and discuss the potential ambiguity in the

output of this strategy. We then discuss the extra steps we take to

leverage these identified segments in an effort to efficiently expand

the number of discovered Amazon-related interconnections (§ 4.2).

4.1 Basic Inference Strategy
Given the ASN-annotated traceroute data, we start from the source

and sequentially examine each hop until we detect a hop that be-

longs to an organization other than Amazon (i.e., its ORG number

is neither 0 nor 7224, which is Amazon). We refer to this hop as

customer border hop and to its IP as a Customer Border Interface (CBI).
The presence of a CBI indicates that the traceroute has exited Ama-

zon’s network; that is, the traceroute hop right before a CBI is the
Amazon Border Interface (ABI), and the corresponding traceroute

probe thus must have traversed an Amazon-related interconnection
segment. For the remainder of our analysis, we only consider these

initial portions of traceroutes between a source and an encountered

CBI .5 Next, for each CBI , we check to confirm that the AS owners

of all the downstream hops in each traceroute does not include any

ASN owned by Amazon (i.e., a sanity check that the traceroute does

not re-enter Amazon); all of our traceroutes meet this condition. Fi-

nally, because of their unreliable nature, we exclude all traceroutes

that contain either an (IP-level) loop, unresponsive hop(s) prior to

Amazon’s border, a CBI as the destination of a traceroute [11], or

duplicate hops before Amazon’s border. The first two rows of Table

1 summarize the number of ABIs and CBIs that we identified in our

5
In fact, we only need the CBI and the prior two ABIs.
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Table 1: Number of unique ABIs and CBIs along with their
fraction with various meta data, prior (rows 2-3) and after
(rows 4-5) /24 expansion probing.

All BGP% Whois% IXP%

ABI 3.68k 38.4% 61.6% -

CBI 21.73k 54.74% 24.8% 20.46%

eABI 3.78k 38.85% 61.15% -

eCBI 24.75k 79.82% 2.32% 17.86%

traceroute data, along with the fraction of interfaces in each group

for which we have BGP, Whois, and IXP-association information.

Ambiguity of Interconnection Segments. In certain cases, our

basic strategy may not identify the correct Amazon-related inter-

connection segment on a given traceroute. To illustrate, consider

traceroute probes that reveal the linear topology of three routers

depicted in Figure 2. Suppose the physical link IPy′ − IPy between

the left two routers represents the interconnection link. The as-

signed IP addresses for the interfaces y and y′ should be from the

same (/30 or /31) prefix that is provided either by the client (top) or

Amazon (bottom). This is known as address sharing.
6
The color of

observed interfaces (and routers) in Figure 2 indicates the inferred

AS owner by our basic strategy (§ 4.1) in these two cases. Given

that our traceroutes are always launched from Amazon to a client’s

network, this figure clearly shows that when Amazon provides

addresses for the physical interconnection, our strategy incorrectly

identifies the next downstream segment as an interconnection [5].

In summary, the describedmethod always reveals the presence of an
Amazon-related interconnection segment in a traceroute. The actual
Amazon-specific interconnection segment is either the one between
the identified ABI and CBI or the immediately preceding segment.
Because of this ambiguity in accurately inferring the Amazon-specific
interconnection segments, we refer to them as candidate intercon-
nection segments. In § 5, we present techniques for a more precise
determination of these inferred candidate interconnection segments.

4.2 Second Round of Probing to Expand
Coverage

We perform our traceroute probes from each Amazon’s region

in two rounds. First, as described in § 4.1, we target .1 in each

/24 prefix of the IPv4 address space (§ 3) and identify the pool of

candidate interconnection segments. However, it is unlikely that our

traceroute probes in this first round traverse through all the Amazon

interconnections. Therefore, to increase the number of discovered

interconnections, in a second round, we launch traceroutes from

each region towards all other IP addresses in the /24 prefixes that

are associated with each CBI that we discovered in the first round.

Our reasoning for this “expansion probing" is that the IPs in these

prefixes have a better chance to be allocated to CBIs than the IPs

in other prefixes. Similar to round one, we annotate the resulting

traceroutes and identify their interconnection segments (and the

corresponding ABIs and CBIs). The bottom two rows in Table 1

show the total number of identified ABIs and CBIs after processing
the collected expansion probes. In particular, while the first column

6
This address sharing makes it even more difficult to accurately detect an interconnec-

tion segment between two ASNs in the middle of a traceroute [55].
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Figure 3: Illustration of a hybrid interface (a) that has both
Amazon and client-owned interfaces as next hop.

of Table 1 shows a significant increase in the number of discovered

CBIs (from 21.73k to 24.99k) and even some increase in the number

of peering ASNs (from 3.52k to 3.55k) as a result of the expansion

probing, the number of ABIs remains relatively constant.

5 VERIFYING INTERCONNECTIONS
To address the potential ambiguity in identifying the correct Amazon-

specific segment of each inferred interconnection (§ 4.1), we first

check these interconnections against three different heuristics (§ 5.1)

and then rely on the router-level connectivity among border routers

(§ 5.2) to verify (and possibly correct) the inferred ABIs and CBIs.

5.1 Checking Against Heuristics
We develop a few heuristics to check the aforementioned ambiguity

of our approach with respect to inferring the correct interconnec-

tion segment. Since the actual interconnection segment could be the

segment prior to the identified candidate segment (i.e., we might

have to shift the interconnection to the previous segment), our

heuristics basically check for specific pieces of evidence to decide

whether an inferred ABI is correct or should be changed to its cor-

responding CBI . Once an ABI is confirmed, all of its corresponding

CBIs are also confirmed. The heuristics are described below and

are ordered (high to low) based on our level of confidence in their

outcome.

IXP-Client. An IP address that is part of an IXP prefix always

belongs to a specific IXP member. Therefore, if the IP address for a

CBI in a candidate interconnection segment is part of an IXP prefix,

then that CBI and its corresponding ABI are correctly identified

[63].

Hybrid IPs.We observe ABI interfaces with hybrid connectivity.

For example, in Figure 3, interface a represents such an interface

with hybrid connectivity; it appears prior to the client interface b
in one traceroute and prior to the Amazon interface c in another

traceroute. Even if we are uncertain about the owner of an interface

c (i.e., it may belong to the same or different Amazon client), we

can reliably conclude that interface a has hybrid connectivity and

must be an ABI .
Interface Reachability.Our empirical examination of traceroutes

revealed that while ABIs are generally reachable from their cor-

responding clients, for security reasons, they are often not visi-

ble/reachable from the public Internet (e.g., a campus or residential

networks). However, depending on the client configuration, CBIs
may or may not be publicly reachable. Based on this empirical

observation, we apply a heuristic that probes all candidate ABIs
and CBIs from a vantage point in the public Internet (i.e., a node

at the University of Oregon). Reachability (or unreachability) of a

candidate CBI (or ABIs) from the public Internet offers independent

evidence in support of our inference.
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Table 2: Number of candidateABIs (and correspondingCBIs)
that are confirmed by individual (first row) and cumulative
(second row) heuristics.

IXP Hybrid Reachable

Individual 0.83k (13.66k) 2.05k (14.44k) 2.8k (15.14k)

Cumulative 0.83k (13.66k) 2.26k (15.14k) 3.31k (24.23k)

Table 2 summarizes the fraction of identified ABIs (and thus their
corresponding CBIs) that are confirmed by our individual (first row)

and combined (second row) heuristics, respectively. We observe

that our heuristics collectively confirmed 87.8% of all the inferred

ABIs and thus 96.96% of the CBIs. The remaining 0.37k (or 9.81%)

ABIs that do not match with any heuristic are interconnected with

one (or multiple) CBIs that belong to a single organization. The

resulting low rate of error in detecting the correct interconnection

segments implies high confidence in the correctness of our inferred

Amazon peerings.

5.2 Verifying Against Alias Sets
To further improve our ability to eliminate possible ambiguities in

inferring the correct interconnection segments, we infer the router-

level topology associated with all the candidate interconnections

segments and determine the AS owner of individual routers. We

consider any inferred interconnection segment to be correct if its

ABI is on an Amazon router and its CBI is on a client router. In turn,

for any incorrect segment, we first adjust the ownership of its cor-

responding ABI and CBI so as to be consistent with the determined

router ownership and then identify the correct interconnection

segment.

To this end, we utilize MIDAR [12] to perform alias resolution

from VMs in all the regions where all the candidate ABIs and CBIs
were observed. Each instance of this alias resolution effort outputs

a set of (two or more) interfaces that reside on a single router.

Given the potentially limited visibility of routers from different

regions, we combine the alias sets from different regions that have

any overlapping interfaces. Overall, we identify 2.64k alias sets

containing 8.68k (2.31k ABI plus 6.37k CBI ) interfaces and their

sizes have a skewed distribution.

The direction of our traceroute probes (from Amazon towards

client networks) and the fact that each router typically responds

with the incoming interface suggest that the observed interfaces of

individual Amazon (or client) border routers in our traceroute (i.e.,

IPs in each alias set) should typically belong to the same AS. This

implies that there should be a majority AS owner among interfaces

in an alias set. To identify the AS owner of each router, we simply

examine the AS owner of individual IPs in the corresponding alias

set. The AS that owns a clear majority of interfaces in an alias set

is considered as the owner of the corresponding router and all the

interfaces in the alias set.
7
We observe that for more than 94% (92%)

of all alias sets, there is a single AS that owns >50% (100%) of all of

an alias set’s interfaces. The remaining 6% of alias sets comprises

7
We also examined router ownership at the organization level by considering all ASNs

that belong to a single organization. This strategy allows us to group all Amazon/client

interfaces regardless of their ASN to accurately detect the AS owner. However, since

we observed one ASN per ORG in 99% of the identified alias sets, we present here only

the owner AS of each router.

343 interfaces with a median set size of 2. We consider the majority

AS owner of each alias set as the AS owner of (all interfaces for)

that router. Using this information, we check all of the inferred ABIs
and CBIs to ensure that they are on a router owned by Amazon and

the corresponding client, respectively. Otherwise, we change their

labels. This consistency check results in changing the status of only

45 interfaces (i.e., 18, 2, and 25 change from ABI → CBI, CBI → ABI,
and CBI → CBI8, respectively). These changes ultimately result in
3.77k ABIs and 24.76k CBIs associated with 3.55k unique ASes.

6 PINNING INTERFACES
In this section, we first explore techniques to pin (i.e., geo-locate)

each end of the inferred Amazon peerings (i.e., all ABIs and CBIs)
to a specific colo facility, metro area, or a region and then evaluate

our pinning methodology.

6.1 Methodology for Pinning
Our method for pinning individual interfaces to specific locations

involves two basic steps. In a first step, we identify a set of border

interfaces with known locations that we call anchors. Then, in a

second step, we establish two co-presence rules to iteratively infer

the location of individual unpinned interfaces based on the location

of co-located anchors or other already pinned interfaces. That is,

in each iteration, we propagate the location of pinned interfaces to

their co-located unpinned neighbors.

Identifying Anchors. For ABIs or CBIs to serve as anchors for

pinning other interfaces, we leverage the following four sources of

information and consider them as reliable indicators of interface-

specific locations.

DNS Information (CBIs): A CBI9 with specific location infor-

mation embedded in its DNS name can be pinned to the corre-

sponding colo or metro area. For example, a DNS name such as

ae-4.amazon.atlnga05.us.bb.gin.ntt.net indicates that the

CBI associated with NTT interconnects with Amazon in Atlanta,

GA (atlnga). We use DNS parsing tools such as DRoP [46] along

with a collection of hand-crafted rules to extract the location in-

formation (using 3-letter airport codes and full city names) from

the DNS names of identified CBIs. In the absence of any ground

truth, we check the inferred geolocation against the footprint of

the corresponding AS from its PeeringDB listings or information

on its webpage. Furthermore, we perform an RTT-constraint check

using the measured RTTs from different Amazon regions to en-

sure that the inferred geolocation is feasible. This check, similar

to DRoP [46], conservatively excludes 0.87k CBIs for which their

inferred locations do not satisfy this RTT constraint.

IXP Association (CBIs): CBIs that are part of an IXP prefix can

be pinned to the colo(s) in a metro area where the IXP is present.

In total we have identified 671 IXPs within 471 (117) unique cities

(countries) but exclude 10 IXPs (and their corresponding 366 CBIs)
that are present in multiple metro areas as they cannot be pinned to

a specific colo or metro area. Furthermore, we exclude all interfaces

belonging to members that peer remotely. To determine those mem-

bers, we first identified minIXRegion, the closest Amazon region

to each IXP. We did this by measuring minIXRTT, the minimum

8
This simply implies that the CBI interface belongs to another client.

9
None of the ABIs had a reverse domain name associated with them.
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Figure 4: (a) Distribution ofmin-RTT forABIs from the clos-
est Amazon region, and (b) Distribution of min-RTT differ-
ence between ABI and CBI for individual peering links.

RTT between the various regions and all interfaces that are part of

the IXP and selecting minIXRegion as the Amazon region where

minIXRTT is attained. Then we measure the minimum RTT be-

tween all interfaces and minIXRegion and label an interface as

“local" if its RTT value is no more than 2ms higher than minIXRTT.

We note that for about 80% of IXPs, the measured minIXRTT is less

than 1.5ms (i.e., most IXPs are in very close proximity to at least

one AWS region). This effort results in labeling about 2k out of the

encountered 3.5k IXP interfaces in our measurements as “local."

Conversely, there are some 1.5k interfaces belonging to members

that peer remotely.

Single Colo/Metro Footprint (CBIs): CBIs of an AS that are present

only at a single colo or at multiple colos in a given metro area can

be pinned to that metro area. To identify those ASes that are only

present in a single colo or a single metro area, we collect the list of

all tenant ASes for 2.6k colo facilities from PeeringDB [52] as well

as the list of all IXP participants from PeeringDB and PCH.

Native Amazon Colos (ABIs): Intuitively, ABIs that are located
at colo facilities where Amazon is native (i.e., facilities that house

Amazon’s main border routers) must exhibit the shortest RTT from

the VM in the corresponding region. To examine this intuition,

we use two data sources for RTT measurements: (i) RTT values

obtained through active probing
10

of CBIs and ABIs; and (ii) RTT
values collected as part of the traceroute campaign. Figure 4a shows

the distribution of the minimum RTT between VMs in different

regions of Amazon and individual ABIs. We observe a clear knee at

2ms where around 40% of all the ABIs exhibit shorter RTT from a

single VM. Given that all Amazon peerings have to be established

through colo facilities where Amazon is native, we pin all these

ABIs to the native colo closest to the corresponding VM. In some

metro areas where Amazon has more than one native colo, we

conservatively pinned the ABIs to the corresponding metro area

rather than to a specific native colo.

Consistency Checking of Anchors.We perform two sets of con-

sistency checks on the identified anchors. First, we check whether

the inferred locations are consistent for those interfaces (i.e., 1.1k

in total) that satisfy more than one of the four indicators we used to

classify them as anchors. Second, we check for consistency across

the inferred geolocation of different interfaces in any given alias

set. These checks flagged a total of 66 (48 and 18) interfaces that

had inconsistent geolocations and that we therefore excluded from

10
This probing was done for a full day and used exclusively ICMP echo reply messages

that can only be generated by intermediate hops and not by the target itself.

Table 3: The exclusive and cumulative number of anchor in-
terfaces by each type of evidence and pinned interfaces by
our co-presence rules.

Anchor Interface Pinned Interface
DNS IXP Metro Native Alias min-RTT

Exc. 5.31k 2.0k 1.66k 1.42k 0.65k 5.38k

Cum. 5.31k 6.73k 7.22k 8.64k 9.21k 14.37k

our anchor list. These checks also highlight the conservative na-

ture of our approach. In particular, by removing any anchors with

inconsistent locations, we avoid the propagation of unreliable lo-

cation information in our subsequent iterative pinning procedure

(see below). The middle part of Table 3 presents the exclusive and

cumulative numbers of CBI and ABI anchors (excluding the flagged
ones) that resulted from leveraging the four utilized source of in-

formation.

Inferring Co-located Interfaces.We use two co-presence rules

to infer whether two interfaces are co-located in the same facility

or same metro area. (i) Rule 1 (Alias sets): This rule states that all
interfaces in an alias set must be co-located in the same facility.

Therefore, if an alias set contains one (or more) anchor(s), all in-

terfaces in that set can be pinned to the location of that (those)

anchor(s). (ii) Rule 2 (Interconnections in a Single Metro Area): An
Amazon peering is established between an Amazon border router

and a client border router, and these routers are either in the same

or in different colo/metro areas. Therefore, a small RTT between

the two ends of an interconnection segment is an indication of

their co-presence in at least the same metro area. The key issue is

to determine a proper threshold for RTT delay to identify these

co-located pairs. To this end, Figure 4b shows the distribution of

the min-RTT differences between the two ends of all the inferred

Amazon interconnection segments. While the min-RTT difference

varies widely across all interconnection segments, the distribution

exhibits a pronounced knee at 2ms, with approximately half of

the inferred interconnection segments having min-RTT values less

than this threshold. We use this threshold to separate interconnec-

tion segments that reside within a metro area (i.e., both ends are

in the metro area) from those that extend beyond the metro area.

Therefore, if one end of such a “short" interconnection segment is

pinned, its other end can be pinned to the same metro area.

Iterative Pinning. Given a set of initial anchors at known loca-

tions as input, we identify and pin the following two groups of

interfaces in an iterative fashion: (i) all unpinned alias sets that

contain one (or more) anchor(s), and (ii) the unpinned end of all the
short interconnection segments that have only one end pinned. For

both steps, we extend our pinning knowledge to other interfaces

only if all anchors unanimously agree with the geolocation of the
unpinned interface 11

. This iterative process ends when there is

no more interface that meets our co-presence rules. Our pinning

process requires only four rounds to complete. The right-hand side

of Table 3 summarizes the exclusive and cumulative number of in-

terfaces pinned by each co-presence rule. Including all the anchors,

we are able to pin 45.05% (75.87%) of all the inferred CBIs (ABIs), and
50.21% of all border interfaces associated with Amazon’s peerings.

11
We observed such a conflict in the propagation of pinning information only for 179

(1.2%) interfaces
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Figure 5: Distribution of the ratio of two lowest min-RTT
from different Amazon regions to individual unpinned bor-
der interfaces.

Pinning at a Coarser Resolution. To better understand the rea-

sons for being able to map only about half of all inferred interfaces

associated with Amazon at the metro level, we next explore whether

the remaining (14.21k) unpinned interfaces can be associated with

a specific Amazon region based on their relative RTT distance. To

this end, we examine the ratio of the two smallest min-RTT values

for individual unpinned interfaces from each of the 15 Amazon

regions. 1.11k of these interfaces are only visible from a single re-

gion and therefore the aforementioned ratio is not defined for these

interfaces. We associate these interfaces to the only region from

which they are visible. Figure 5 depicts the CDF of the ratio for the

remaining (13.1k) unpinned interfaces that are reachable from at

least two regions and shows that for 57% of these interfaces the

ratio of two lowest min-RTT is larger than 1.5, i.e., the interface’s

RTT is 50% larger for one region. We map these interfaces to the re-

gion with the lowest delay. The relatively balanced min-RTT values

for the remaining 43% of interfaces is mainly caused by the limited

geographic separation of some regions. For example, the relatively

short distance between Virginia and Canada, or between neighbor-

ing European countries makes it difficult to reliably associate some

of the interfaces that are located between them using min-RTT

values. This coarser pinning strategy can map 8.67k (30.37%) of the
remaining interfaces (0.62k ABIs and 8.05k CBIs) to a specific region
which improves the overall coverage of the pinning process to a total
of 80.58%. However, because of the coarser nature of pinning, we do
not consider these 30.37% of interfaces for the rest of our analysis

and only focus on those 50.21% that we pinned at the metro (or

finer) level.

6.2 Evaluation of Pinning
Accuracy. Given the lack of ground truth information for the ex-

act location of Amazon’s peering interfaces, we perform cross-

validation on the set of identified anchors to enhance the confi-

dence in our pinning results. Specifically, we perform a 10-fold

stratified cross-validation with a 70-30 split for train-test samples.

We employ stratified sampling [28] to maintain the distribution of

anchors within each metro area and avoid cases where test sam-

ples are selected from metro areas with fewer anchors. We run our

pinning process over the training set and measure both the number

of pinned interfaces that match the test set (recall) and the number

of pinned interfaces which agree geolocation-wise with the test

set (precision). The results across all rounds are very consistent,

with a mean value of 99.34% (57.21%) for precision (recall) and a

standard deviation of 1.6∗10−3 (5.5∗10−3). The relatively low recall

can be attributed to the lack of known anchors in certain metro

areas that prevented pinning information from propagating. The

high precision attests to the conservative nature of our propagation

technique (i.e., inconsistent anchors are removed and interfaces are

only pinned when reliable (location) information is available) and

highlights the low false positive rate of our pinning approach.

Geographic Coverage.We examine the coverage of our pinning

results by comparing the cities where Amazon is known to be

present against the metros where we have pinned border interfaces.

Combining the reported list of served cities by Amazon [4] and the

list of PeeringDB-provided cities [67] where Amazon establishes

public or private peerings shows that Amazon is present in 74 metro

areas. Our pinning strategy has geo-located Amazon-related border

interfaces to 305 different metro areas across the world that cover

all but three metro areas from Amazon’s list, namely Bangalore

(India), Zhongwei (China), and Cape Town (South Africa). While

it is possible for some of our discovered, but unpinned CBIs to be

located in these metros, we lack anchors in these three metros to

reliably pin any interface to these locations. Finally, that our pinning

strategy results in a significantly larger number of observed metros

than the 74 metro areas reported by Amazon should not come as a

surprise in view of the many inferred remote peerings where we

have sufficient evidence to reliably pin the corresponding CBIs.

7 AMAZON’S PEERING FABRIC
In this section, we first present a method to detect whether an

inferred Amazon-related interconnection is virtual (§ 7.1). Then we

utilize various attributes of Amazon’s inferred peerings to group

them based on their type (§ 7.2) and reason about the differences in

peerings across the identified groups (§ 7.3). Finally, we characterize

the entire inferred Amazon connectivity graph (§ 7.4).

7.1 Detecting Virtual Interconnections
To identify private peerings that rely on virtual interconnections, we

recall that a VPI is associated with a single (CBI ) port that is utilized
by a client to exchange traffic with one or more cloud providers (or

other networks) over a layer-2 switching fabric. Therefore, a CBI
that is common to two or more cloud providers must be associated

with a VPI. Motivated by this observation, our method for detecting

VPIs consists of the following three steps. First, we create a pool of

target IP addresses that is composed of all identified non-IXP CBIs
for Amazon, each of their +1 next IP address, and all the destination

IPs of those traceroutes that led to the discovery of individual unique

CBIs. Second, we probe each of these target IPs from a number of

major cloud providers other than Amazon and infer all the ABIs and
CBIs along with the probes that were launched from these other

cloud providers (using themethodology described in § 4). Finally, we

identify any overlapping CBIs that were visible from two (or more)

cloud providers and consider the corresponding interconnection to

be a VPI. Note that this method yields a lower bound for the number

of Amazon-related VPIs as it can only identify VPIs whose CBIs are
visible from the considered cloud service providers. Any VPI that
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Table 4: Number (and percentage) of Amazon’s VPIs. These areCBIs that are also observed by probes originated fromMicrosoft,
Google, IBM, and Oracle’s cloud networks.

Microsoft (%) Google (%) IBM (%) Oracle (%)
Pairwise 4.69k (18.93) 0.79k (3.17) 0.23k (0.94) 0 (0)

Cumulative 4.69k (18.93) 4.93k (19.91) 5.01k (20.23) 5.01k (20.23)

is not used for exchanging traffic with multiple cloud provider is

not identified by this method. Furthermore, we are only capable of

identifying VPIs which utilize public IP addresses for their CBIs [5].
VPIs utilizing private addresses are confined to the virtual private

cloud (VPC) of the customer and are not visible from anywhere

within or outside of Amazon’s network.

Applying this method, we probed nearly 327k IPs in our pool

of target IP addresses from VMs in all regions of each one of the

following four large cloud providers: Microsoft, Google, IBM, and

Oracle. The results are shown in Table 4 where the first row shows

the number of pairwise common CBIs between Amazon and other

cloud providers. The second row shows the cumulative number of

overlapping CBIs. From this table, we observe that roughly 20% of

Amazon’s CBIs are related to VPIs as they are visible from at least

one other of the four considered cloud provider. While roughly

19% of VPIs are common between Amazon and Microsoft, there

is no overlap in VPIs between Amazon and Oracle. Only 0.1% of

Amazon’s CBIs are common with Microsoft, Google and IBM.

Note that our method incorrectly identifies a VPI if a customer’s

border router is directly connected to Amazon but responds to our

probe with a default or 3rd party interface. However, either of these

two scenarios is very unlikely. For one, recall (§ 4) that we use UDP

probes and do not consider a target interface as a CBI to avoid a

response by the default interface [11]. Furthermore, our method se-

lects +1 IP addresses as traceroute targets (i.e., during the expansion

probing) to increase the likelihood that the corresponding tracer-

outes cross the same CBI without directly probing the CBI itself.
Also, the presence of a customer border router that responds with

a third party interface implies that the customer relies on the third

party for reaching Amazon while directly receiving downstream

traffic from Amazon. However, such a setting is very unlikely for

Amazon customers.

7.2 Grouping Amazon’s Peerings
To study Amazon’s inferred peering fabric, we first group all the

inferred peerings/interconnections based on the following three

key attributes: (i) whether the type of peering relationship is public

or private, (ii) whether the corresponding AS link is present in

public BGP feeds, and (iii) in the case of private peerings, whether

the corresponding interconnection is physical or virtual (VPI). A

peering is considered to be public (bi-lateral or multi-lateral) if

its CBI belongs to an IXP prefix. We also check whether the cor-

responding AS relationship is present in the public BGP data by

utilizing CAIDA’s AS Relationships dataset [15] corresponding to

the dates of our data collection. Although this dataset is widely

used for AS relationship information, its coverage is known to be

limited by the number and placement of BGP feed collectors (e.g.,

see [56] and references therein).

Table 5 gives the breakdown of all of Amazon’s inferred peer-

ings into six groups based on the aforementioned three attributes.

Table 5: Breakdown of all Amazon peerings based on their
key attributes.

Group ASes(%) CBIs(%) ABIs(%)

Pb-nB 2.52k (71) 3.93k (16) 0.79k (21)

Pb-B 0.20k (5) 0.56k (2) 0.56k (15)

Pb 2.69k (76) 4.46k (18) 0.83k (22)

Pr-nB-V 0.24k (7) 2.99k (12) 0.54k (14)

Pr-nB-nV 1.1k (31) 10.24k (41) 2.59k (69)

Pr-nB 1.18k (33) 13.24k (53) 2.68k (71)

Pr-B-nV 0.11k (3) 5.67k (23) 2.07k (55)

Pr-B-V 0.06k (2) 2.09k (8) 0.33k (9)

Pr-B 0.12k (3) 7.76k (31) 2.11k (56)

We use the labels Pr/Pb to denote private/public peerings, B/nB

for being visible/not visible in public BGP feeds, and V/nV for

virtual/non-virtual peerings (applies only in the case of private

interconnections). For example, Pr-nB-nV refers to the number

of Amazon’s (unique) inferred private peerings that are not seen

in public BGP feeds and are not virtual (e.g., cross connections).

Each row in Table 5 shows the number (and percentage) of unique

AS peers that establish certain types of peerings, along with the

number (and percentage) of corresponding CBIs and ABIs for those
peers. Since there are overlapping ASes and interfaces between

different groups, Table 5 also presents three rows (i.e., rows 3, 6,

and 9 with italic fonts) that aggregate the information for the two

closely related prior pair of rows/groups. These three aggregate

rows provide an overall view of Amazon’s inferred peering fabric

that highlight two points of general interest: (i) While 76% of Ama-

zon’s peers use Pb peering, only 33% of Amazon’s peers use Pr-nB

(virtual or physical) peerings, with the overlap of about 10% of peer

ASes relying on both Pr-nB and Pb peerings, and the fraction of

Pr-B peerings being very small (3%). (ii) The average number of

CBIs (and ABIs) for ASes that use Pr-B, Pr-nB and Pb peerings to

interconnect with Amazon is 65 (17), 11 (2), and 2 (0.3), respectively.

Hidden Peerings.Note that there are groups of Amazon’s inferred

peerings shown in Table 5 (together with their associated traffic)

that remain in general hidden from the measurement techniques

that are commonly used for inferring peerings (e.g., traceroute). One

such group consists of all the virtual peerings (Pr-*-V) since they are

used to exchange traffic between customer ASes of Amazon (or their

downstream ASes) and Amazon. The second group is made up of all

other non-virtual peerings that are not visible in BGP data, namely

Pr-nB-nV and even Pb-nB. The presence of these peerings cannot

be inferred from public BGP data and their associated traffic is only

visible along the short AS path to the customer AS. These hidden

peerings make up 33.29% of all of Amazon’s inferred peerings and

their associated traffic is carried over Amazon’s private backbone

and not over the public Internet.
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Table 6: Hybrid peering groups along with the number of
unique ASes for each group.

Different Types of Hybrid Peering #ASN

Pb-nB 2187

Pr-nB-nV 686

Pr-nB-nV; Pb-nB 207

Pb-B 117

Pr-nB-nV; Pr-nB-V 83

Pr-nB-nV; Pb-nB; Pr-nB-V 60

Pb-nB; Pr-nB-V 41

Pr-nB-V 38

Pr-B-nV; Pb-B 37

Pr-B-V; Pr-B-nV; Pb-B 31

Pr-B-nV 24

Pr-B-V; Pr-B-nV 16

Pr-nB-nV; Pr-B-nV; Pr-B-V 5

Pr-B-V; Pb-B 4

Pr-B-V 4

Pb-nB; Pb-B 2

Pr-nB-nV; Pr-B-nV; Pr-B-V; Pb-B 2

Pr-nB-nV; Pr-B-nV 1

Pr-nB-nV; Pr-B-nV; Pb-B 1

Pr-nB-nV; Pr-nB-V; Pr-B-nV 1

Pr-nB-nV; Pr-nB-V; Pr-B-nV; Pr-B-V; Pb-B 1

Hybrid Peering. Individual ASes may establish multiple peerings

of different types (referred to as “hybrid" peering) with Amazon;

that is, appear as a member of two (or more) groups in Table 5.

We group all ASes that establish such hybrid peering based on the

combination of peering types that are listed in Table 5 types and

that they maintain with Amazon. The following are two of the most

common hybrid peering scenarios we observe. Pr-nB-nV + Pb-
nB:With 207 ASes, this is the largest group of ASes which utilize

hybrid peering. Members of this group use both types of peerings

to exchange their own traffic with Amazon and include ASes such

as Akamai, Intercloud, Datapipe, Cloudnet, and Dell. Pr-nB-nV;
Pb-nB; Pr-nB-V: This group is similar to the first group one but

its members also utilize virtual peerings to exchange their own

traffic with Amazon. This group consists of 60 ASes that include

large providers such as Google, Microsoft, Facebook, and Limelight.

Table 6 gives a detailed breakdown of the observed hybrid (and

non-hybrid) peering groups and shows for each group the number

of ASes that use that peering group. Note that each AS is counted

only once in the group that has the most specific peering types.

7.3 Inferring the Purpose of Peerings
In an attempt to gain insight into how each of the six different

groups of Amazon’s peerings is being used in practice, we consider

a number of additional characteristics of the peers in each group

and depict those characteristics using stacked boxplots as shown

in Figure 6. In particular, starting with the top row in Figure 6, we

consider summary distributions of
12 (i) size of customer cone of

peering AS (i.e., number of /24 prefixes that are reachable through

the AS (labeled as "BGP /24"); (ii) number of /24 prefixes that are

12
For ASes that utilize hybrid peering with Amazon, the reported information in each

group only includes peerings related to that group.

reachable from Amazon through the identified CBIs associated with
each peering; (iii) number of ABIs for individual peering AS; (iv)
number of CBIs for individual peering AS; (v) min RTT difference

between both ends of individual peering; (vi) number of unique

metro areas that the CBIs of each peering AS have been pinned to

(see § 6).

For example, we view the number of /24 prefixes in the customer

cone of an AS to reflect the AS’s size/role (i.e., as tier-1 or tier-2

AS) in routing Internet traffic. Moreover, comparing the number

of /24 prefixes in the customer cone with the number of reachable

/24 prefixes through a specific peering for an AS reveals the pur-

pose of the corresponding peering to route traffic to/from Amazon

from/to its downstream networks. In the following, we discuss how

the combined information in Table 5 and Figure 6 sheds light on

Amazon’s global-scale peering fabric and illuminates the different

roles of the six groups of peering ASes.

Pb-nB. The peers in this group are typically edge networks with

a small customer cone (including content, enterprise, and smaller

transit/access networks) that exchange trafficwith Amazon through

a single CBI at an IXP. The corresponding routes are between Ama-

zon and these edge networks and are thus not announced in BGP.

Peers in this group include CDNs like Akamai, small transit/access

providers like Etisalat, BT, and Floridanet, and enterprises such

as Adobe, Cloudflare, Datapipe (Rackspace), Google, Symantec,

LinkedIn, and Yandex.

Pb-B. This group consists mostly of tier-2 transit networks with

moderate-sized customer cones. These networks are present at

a number of IXPs to connect their their downstream customer

networks to Amazon. The corresponding routes must be announced

to downstream ASes and are thus visible in BGP. Example peers in

this group are CW, DigitalOcean, Fastweb, Seabone, Shaw Cable,

Google Fiber, and Vodafone.

Pr-nB-V. The peers in this group are a combination of small transit

providers and some content and enterprise networks. They establish

VPIs at a single location to exchange either their own traffic or the

traffic of their downstream networks with Amazon through a VPI.

Therefore, their peering is not visible in BGP. About 85% of these

peers are visible from two cloud providers while the rest is visible

from more than two cloud providers. Examples of enterprise and

content networks in this group are Apple, UCSD, UIOWA, LG, and

Edgecast, and examples of transit networks are Rogers, Charter,

and CenturyLink.

Pr-nB-nV. These peers appear to establish physical interconnec-

tions (i.e., cross-connects) with Amazon since they are not reachable

from other cloud providers. However, given the earlier-mentioned

under-counting of VPIs by our method, we hypothesize that some

or all of these peerings could be associated with VPIs, similar to

the previous group. The composition of the peers in this group

is comparable to Pr-nB-V but includes a larger fraction of en-

terprise networks (i.e., main users of VPIs) which in turn is con-

sistent with our hypothesis. Examples of peers in this group are

enterprises such as Datapipe (Rackspace), Chevron, Vox-Media,

UToronto, and Georgia-Tech, CDNs such as Akamai and Lime-

light and transit/access providers like Comcast. To further examine

our hypothesis, we parse the DNS names of 4.85k CBIs associated
with peers in the Pr-nB group. 170 of these DNS names (100 from
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Figure 6: Key features of the six groups of Amazon’s peer-
ings (presented in Table 5) showing (from top to bottom):
the number of /24 prefixes within the customer cone of peer-
ing AS, the number of probed /24 prefixes that are reachable
through the CBIs of associated peerings of an AS, the num-
ber of ABIs and CBIs of associated of an AS, the difference
in RTT of both ends of associated peerings of an AS, and the
number of metro areas which the CBIs of each peering AS
have been pinned to.

Pr-nB-nV and 70 from Pr-nB-V interfaces) contain VLAN tags, in-

dicating the presence of a virtual private interconnection. We also

observe some commonly used (albeit not required) keywords [7]

such as dxvif (Amazon terminology for “direct connect virtual in-

terface"), dxcon, awsdx and aws-dx for 125 (out of 170) CBIs where
the “dx"-notation is synonymous with an interface’s use for “direct

interconnections". We consider the appearance of these keywords

in the DNS names of CBIs for this group of peerings (and only in

this group) as strong evidence that the interconnections in question

are indeed VPIs. Therefore, a subset of Pr-nB-nV interconnections

is likely to be virtual as well.

Pr-B-nV. The peers in this group are very large transit networks

that establish cross-connections at various locations (many CBIs
and ABIs) across the world). The large number of prefixes that are

reachable through them from Amazon and the visibility of the peer-

ings in BGP suggest that these peers simply provide connectivity

for their downstream clients to Amazon. Given the large size of

these transit networks, the visibility of these peerings in BGP is due

to the announcement of routes from Amazon to all of their down-

stream networks. Intuitively, given the volume of aggregate traffic

exchanged between Amazon and these large transit networks, the

peers in this group have the largest number of CBIs, and these

CBIs are located at different metro areas across the world. Example

networks in this group are AT&T, Level3 (now CenturyLink), GTT,

Cogent, HE, XO, Zayo, and NTT.

Pr-B-V. This group consists mostly a subset of the very large transit

networks in Pr-B-nV and the peers in this group also establish a

few VPIs (at different locations) with Amazon. The small number of

prefixes that are reachable from Amazon through these peers along

with the large number of CBIs per peer indicates that these peers
bring specific Amazon clients (a provider or enterprise, perhaps

even without an ASN) to a colo facility to exchange traffic with

Amazon [6]. The presence of these peerings in BGP is due to the role

they play as transit networks in the Pr-B-nV group that is separate

from peers in this group using virtual peerings. Example networks

in this group are Cogent, Comcast, CW, GTT, CenturyLink, HE, and

TimeWarner, all of which are listed as Amazon cloud connectivity

partners [6, 44, 59]) and connect enterprises to Amazon. When

examining the min RTT difference between both ends of peerings

across different groups (row 5 in Figure 6), we observe that both

groups with virtual interconnections (Pr-B-V and Pr-nB-V) have

in general larger values than the other groups. This observation is

in agreement with the fact that many of these VPIs are associated

with enterprises that are brought to the cloud exchange by access

networks using layer-2 connections.

Coverage of Amazon’s Interconnections. Although the total

number of peerings that Amazon has with its customers is not

known, our goal here is to provide a baseline comparison between

Amazon’s peering fabric that is visible in public BGP data and

Amazon’s peering fabric as inferred by our approach. Using our

approach, we have identified 3.3k unique peerings for Amazon. In

contrast, there are only 250 unique Amazon peerings reported in

BGP, and 226 of them are also discovered by our approach. Upon

closer examination, for some of the 24 peerings that are seen in BGP

but not by our approach, we observed a sibling of the corresponding

peer ASes. This brings the total coverage of ourmethod to about 93%

of all reported Amazon peerings in BGP. In addition, we report on

more than 3k unique Amazon peerings that are not visible in public

BGP data. These peerings with Amazon and their associated traffic

are not visible when relying on more conventional measurement

techniques.

7.4 Characterizing Amazon’s Connectivity
Graph

Having focused so far on groups of peerings of certain types or indi-

vidual AS peers, we next provide a more holistic view of Amazon’s

inferred peering graph and examine some of its basic characteristics.

We first produce the Interface Connectivity Graph (ICG) between

all the inferred border interfaces. ICG is a bipartite graph where

each node is a border interface (an ABI or a CBI ) and each edge cor-

responds to the traceroute interconnection segment (ICS) between

an ABI and a CBI . We also annotate each edge with the difference

in the minimum RTT from the closest VM to each end of the ICS.
13

Intuitively, we expect the resulting ICG to have a separate partition

13
We identify the VM that has the shortest RTT from an ABI and use the min-RTT of

the same VM from the corresponding CBI to determine the RTT of an ICS.
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Figure 7: Distribution of ABIs (log scale) and CBIs degree in
left and right figures accordingly.

that consists of interconnections associated with each region, i.e.,

ABIs of a region connecting to CBIs that are supported by them.

However, we observe that the ICG’s largest connected component

consists of the vast majority (92.3%) of all nodes. This implies that

there are links between ABIs in each Amazon region and CBIs in
several other regions. Upon closer examination of 57.85% of all

the peerings that have both of their ends pinned, we notice that a

majority of these peerings (98%) are indeed contained within indi-

vidual Amazon regions. However, we do encounter remote peerings

between regions that are a significant geographical distance apart.

For example, there are peerings between FR and KR, US-VA and SG,

AU and CA. The large fraction of peerings with only one end or no

end pinned (about 42%) suggests that the actual number of remote

peerings is likely to be much larger. These remote peerings are

the main reason for why the ICG’s largest connected component

contains more than 92% of all border interfaces.

To illustrate the basic connectivity features of the bi-partite

ICG, Figures 7a and 7b show the distributions of the number of

CBIs that are associated with each individual ABIs (degree of ABIs)
and the number of ABIs associated with individual CBIs (degree
of CBIs). We observe a skewed distribution for ABI degree where
30%, 70%, and 95% of ABIs are associated with 1, <10, and <100

CBIs, respectively. Roughly 50% (90%) of CBIs are associated with

a single (≤ 8) ABIs. A closer examination shows that high degree

CBIs are mainly associated with Amazon’s public peerings with

large transit networks (e.g., GTT, Cogent, NTT, CenturyLink). In

contrast, a majority of high degree ABIs is associated with private,

non-BGP, non-virtual peerings (see § 7).

8 INFERRING PEERINGWITH BDRMAP
As stated earlier in § 2, bdrmap [55]

14
is the only other existing

tool for inferring border routers of a given network from traceroute

data. With Amazon as the network of interest, our setting appears

to be a perfect fit for the type of target settings assumed by bdrmap.
However, there are two important differences between the cloud

service provider networks we are interested in (e.g., Amazon) and

the more traditional service provider network that bdrmap targets

(e.g., a large US Tier-1 network). First, not only can the visibility

of different prefixes vary widely across different Amazon regions,

but roughly one-third of Amazon’s peerings are not visible in BGP

and even some of the BGP-visible peerings of a network are related

to other instances of its peerings with Amazon (§ 7). At the same

time, bdrmap relies on peering relationships in BGP to determine

14MAP-IT [57] and bdrmapIT [2] are not suitable for this setting since we have layer-2

devices at the border.

the targets for its traceroute probes and also uses them as input for

some of its heuristics. Therefore, bdrmap’s outcome is affected by

any inconsistent or missing peering relationship in BGP. Second, as

noted earlier, our traceroute probes reveal hybrid Amazon border

routers that have both Amazon and client routers as their next hop

and connect to them. This setting is not consistent with bdrmap’s
assumption that border routers should be situated exclusively in the

host or peering network. Given these differences, the comparison

below is intended as a guideline for how bdrmap could be improved

to apply in a cloud-centric setting.

Thanks to special efforts by the authors of bdrmap who modi-

fied their tool so it could be used for launching traceroutes from

cloud-based vantage points (i.e., VMs), we were able to run it in all

Amazon regions to compare the bdrmap-inferred border routers

with our inference results. bdrmap identified 4.83k ABIs and 9.65k

CBIs associated with 2.66k ASes from all global regions. 3.23k of

these CBIs belong to IXP prefixes and are associated with 1.81k

ASes. Given bdrmap’s customized probing strategy and its exten-

sive use of different heuristics, it is not feasible to identify the exact

reasons for all the observed differences between bdrmap’s and our

findings. However, we were able to identify the following three

major inconsistencies in bdrmap’s output.
First, bdrmap does not report an AS owner for 0.32k of its inferred

CBIs (i.e., owner is AS0). Second, instances of bdrmap that run in

different Amazon regions report different AS owners for more than

500 CBIs, sometimes as many as 4 or 5 different AS owners for an

interface. Third, running instances of bdrmap in different Amazon

regions results in inconsistent views of individual border router

interfaces; e.g., one and the same interface is inferred to be an ABI
from one region and a CBI from another region. We identified 872

interfaces that exhibit this inconsistency. Furthermore, the fact that

97% (846 out of 872) of the interfaces with this type of inconsistency

are advertised by Amazon’s ASNs indicates that the AS owner for

these interfaces have been inferred by bdrmap’s heuristics.
When comparing the findings of bdrmap against our methodol-

ogy in more detail, we observed that our methodology and bdrmap
have 1.85k, 5.48k, and 2k ABI , CBI , and ASes in common. However,

without access to ground truth, a full investigation into the various

points of disagreement is problematic. To make the problem more

tractable, we limit our investigation to the 0.65k ASes that were

exclusively identified by bdrmap and try to rely on other sources

of information to confirm or dismiss bdrmap’s findings. These ex-
clusive ASNs belong to 0.18k (0.49k) IXP (private) peerings. For

IXP peerings, we compare bdrmap’s findings against IP-to-ASN
mappings that are published by IXP operators or rely on embedded

information within DNS names. The inferences of bdrmap is only

aligned for 42 of these peers. For the 0.49k private peerings we focus

on inferences that were made by the thirdparty heuristic as it consti-

tutes the largest (62%) fraction of bdrmap-exclusive private peerings
(for details, see § 5.4 in [55]). These ASes are associated with 375

CBIs and we observe 66 (60 ASNs) of these interfaces in our data.

For each of these 66 CBIs, we calculate the set of reachable destina-
tion ASNs through these CBIs and determine the upstream provider

network for each one of these destination ASes using BGP data [15].

Observing more than one or no common provider network among

reachable destination ASes for individual CBIs would invalidate the
application of bdrmap’s thirdparty heuristic, i.e., bdrmap wouldn’t
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have applied this heuristic if it had done more extensive probing

that revealed an additional set of reachable destination ASes for

these CBIs. We find that 50 (44 ASNs) out of the 66 common CBIs
have more than one or no common providers for the target ASNs.

Note that this observation does not invalidate bdrmap’s thirdparty
heuristics but highlights its reliance on high-quality BGP snapshots

and AS-relationship information.

9 LIMITATIONS OF OUR STUDY
As a third-party measurement study of Amazon’s peering fabric

that makes no use of Amazon-proprietary data and only relies on

generally-available measurement techniques, there are inherent

limitations to our efforts aimed at inferring and geo-locating all

interconnections between Amazon and the rest of the Internet. This

section collects and organizes the key limitations in one place and

details their impact on our findings.

Inferring Interconnections. Border routers responding to tracer-
oute probes using a third-party address are a well-known cause for

artifacts in traceroute measurement output, and our IXP-client and

Hybrid-IP heuristics used in § 5.1 are not immune to this problem.

However, as reported in [54], the fraction of routers that respond

with their incoming interface is in general above 50% and typically

even higher in the U.S.

In contrast, because of the isolation of network paths for VPIs of

Amazon’s clients that use private addresses, any peerings associated

with these VPIs are not visible to probes from VMs owned by

other Amazon customers. As a result, our inference methodology

described in § 4 cannot discover established VPIs that leverage

private IP addresses.

Pinning Interconnections. In § 6, we reported being able to pin

only about half of all the inferred peering interfaces at the metro

level. In an attempt to understand what is limiting our ability to pin

the rest of the inferred interfaces, we identified two main reasons.

First, there is a lack of anchors in certain regions, and second,

there is the common use of remote peering. These two factors in

conjunction with our conservative iterative strategy for pinning

interfaces to the metro level make it difficult to provide enough and

sufficiently reliable indicators of interface-specific locations.

One way to overcome some of these limiting factors is by using

a coarser scale for pinning (e.g., regional level). In fact, as shown

in § 6, at the regional level, we are able to pin some 30% of the

remaining interfaces which improves the overall coverage of our

pinning strategy at the granularity of regions to about 80%.

Other Observations. Although our study does not consider IPv6

addresses, we argue that the proposed methodology only requires

minimal modifications (e.g., incorporating IPv6 target selection

techniques [13, 38]) to be applicable to infer IPv6 peerings. We will

explore IPv6 peerings as part of future work.

Like others before us, as third-party researchers, we found it chal-

lenging to validate our Amazon-specific findings. Like most of the

large commercial provider networks, Amazon makes little, if any,

ground truth data about its global-scale serving infrastructure pub-

licly available, and our attempts at obtaining peering-related ground

truth information from either Amazon, Amazon’s customers, op-

erators of colo facilities where Amazon is native, or AWS Direct

Connect Partners have been futile.

Faced with the reality of a dearth of ground truth data, whenever

possible, we relied on extensive consistency-checking of our results

(e.g., see § 5, § 6). At the same time, many of our heuristics are con-

servative in nature, typically requiring agreement when provided

with input from multiple complementary sources of information.

As a result, the reported quantities in this paper are in general lower

bounds but nevertheless demonstrate the existence of a substantial

number of Amazon-related peerings that are not visible to more

conventional measurement studies and/or inference techniques.

10 SUMMARY
In this paper, we present a measurement study of the intercon-

nection fabric that Amazon utilizes in the US to run its various

businesses, including AWS. We show that in addition to some 0.12k

private peerings and about 2.69k pubic peerings (i.e., bi-lateral

and multi-lateral peerings), Amazon also utilizes at least 0.24k (and

likely many more) virtual private interconnections or VPIs. VPIs are

a new and increasingly popular interconnection option for entities

such as enterprises that desire highly elastic and flexible connec-

tions to the cloud providers that offer the type of services that these

entities deem critical for running their business. Our study makes

no use of Amazon-proprietary data and can be used to map the

interconnection fabric of any large cloud provider, provided the

provider in question does not filter traceroute probes.

Our findings emphasize that new methods are needed to track

and study the type of “hybrid" connectivity that is in use today at

the Internet’s edge. This hybrid connectivity describes an emerging

strategy whereby one part of an Internet player’s traffic bypasses

the public Internet (i.e., cloud service-related traffic traversing cloud

exchange-provided VPIs), another part is handled by its upstream

ISP (i.e., traversing colo-provided private interconnections), and yet

another portion of its traffic is exchanged over a colo-owned and

colo-operated IXP. As the number of businesses investing in cloud

services is expected to continue to increase rapidly, multi-cloud

strategies are predicted to become mainstream, and the majority

of future workload-related traffic is anticipated to be handled by

cloud-enabled colos [37], tracking and studying this hybrid con-

nectivity will require significant research efforts on parts of the

networking community. Knowing the structure of this hybrid con-

nectivity, for instance, is a prerequisite for studying which types of

interconnections will handle the bulk of tomorrow’s Internet traffic,

and how much of that traffic will bypass the public Internet, with

implications on the role that traditional players such as Internet

transit providers and emerging players such as cloud-centric data

center providers may play in the future Internet.
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