
Notes on Reading Van Vliet (2008)
By Anthony Hornof

Last updated May 30, 2019

These are Anthony Hornof’s notes from:
Hans van Vliet (2008) Software Engineering: Principles and Practice, 3rd edition, John Wiley & Sons.
Rosson, M. B., & Carroll, J. M. (2002). Usability Engineering. San Francisco: Morgan Kaufmann.

The notes were taken to (a) learn and organize an understanding of the material
and (b) prepare lectures. The notes are not at all complete in that all chapters
are not included here, and all of each chapter is not included. Some of the
notes are copied directly from the book.

Table of Contents
Chapter 1 - Introduction 2

Chapter 2 - Introduction to SWE Management 6

Chapter 3 - The Software Lifecycle Revisited 8

Chapter 8 - Project Planning and Control 14

Chapter 9 - Requirements Engineering 16

Chapter 10 - (Software Design) Modeling 20

Chapter 11 - Software Architecture 25

Chapter 12 - Software Design 35

Chapter 13 - Software Testing 38

Chapter 5 (R&C 2002) - Interaction Design 44

Chapter 7 (R&C 2002) - Usability Evaluation 51

!1

Chapter 1 - Introduction
From 1955 to 1985, the percentage of total costs for computers shifted

dramatically from hardware to software development and software
maintenance. The amount of maintenance also increased relative to
development.

Dramatic software failures cause all sorts of calamities. A few specific
examples are offered.

!

1.1 What is software engineering?
The methodological process of building reliable, robust, efficient, accurate, and
useful computer programs. “The engineering metaphor is used to emphasize a
systematic approach to developing systems that satisfy organizational
requirements and constraints.”

4 INTRODUCTION

100

20

955 1 970
Year

1985

Figure 1.1 Relative distribution of hardware and software costs (Source: B.W. Boehm, Soft-
ware Engineering, \EEETransactions on Computers, @ 1975lEEE. Reproduced with permission.)

The issues of cost and productivity of software development deserve our serious
attention. However, this is not the complete story. Society is increasingly dependent
on software. The quality of the systems we develop increasingly determines the
quality of our existence. Consider as an example the following message from a
Dutch newspaper on 6 June 1980, under the heading'Americans saw the Russians
coming':

For a short period last Tuesday, the United States brought their atomic
bombers and nuclear missiles to an increased state of alarm when, because
of a computer error, a false alarm indicated that the Soviet Union had
started a missile attack.

Efforts to repair the error were apparently in vain, for on 9 June 1980, the same
newspaper reported'

For the second time within a few days, a deranged computer reported
that the Soviet Union had started a nuclear attack against the United
States. Last Saturday, the DoD afftrmed the false message, which resulted
in the engines of the planes of the strategic air force being started.

It is not always the world that is in danger. On a smaller scale, errors in sofrware
may have very unfortunate consequences, such as transaction errors in bank traffic;
reminders to pay a bill of $O.OO, a stock control system that issues orders too late and
thus lays off complete divisions of a factory.

The latter example indicates that errors in a software system may have serious
ftnancial consequences for the organi zation using it, One example of such a ftnancial

80

poo().:=60
o
o
c9t 40tso
0-

0

Hardware

!2

What is Software Engineering? (from Stuart Faulk)
Software engineering is the process of gaining and maintaining control over the
products and processes of software development. There are two kinds of
control:
• “Intellectual control” means that we make rational choices based on an
understanding of the effects of those choices on the qualities of the product
and process.

 Such as understanding the implications of using C++ versus python.
• “Managerial control” is related but different in focus: The purpose is to gain
and maintain control of software development resources (money, time,
personnel).

 Such as figuring out whether to try to hire more programmers or delay the
delivery date.

In practice, both necessary and inseparable. It would difficult to have
managerial control if you do not first have intellectual control.
In contrast to computer science (the broad study of the basis and behavior of
computing machines), software engineering is an inherently pragmatic
discipline.

Characteristics of the field of Software Engineering:
• It is concerned with “large” programs.
• It tries to master complex problems: people, processes, programs. A project
must be broken up and managed.

• Software (s/w) evolves. For example: Y2K, Euro, internet, new CPUs, etc.
• Building and maintaining s/w is very time-consuming. “The last 10% takes
90% of the time.”

• S/W development is a people problem. Efforts must be coordinated. People
must be managed.

• Software development is partly a user interface (UI) problem. You must study
people doing their work, understand the context of work, and provide user
documentation and training.

• Developers are not domain experts. They usually lack factual and cultural
knowledge of the target domain.

S/W does not wear out the same way as physical products. It breaks differently.

!3

“90% complete” syndrome: s/w “almost finished” for endless amount of time.
1.2 Phases in the Development of Software

Process Model:
Requirements engineering => Design => Implementation => Testing =>

Maintenance

But it is rarely a truly linear process.

Phases of S/W Development:
1. Requirements engineering: Includes a feasibility study. Produces a

requirements specification.
2. Design: Decompose into modules or components, and interfaces between.

Wrongly seen by some programmers as getting in the way of the “real work”
of programming.

 Architecture: global description of a system.
3. Implementation: Start with a module’s design specification, or “spec”. The

first goal should perhaps be a well-documented, well-organized program, not
necessarily an efficient one.

4. Testing: Not just a phase that follows implementation.
5. Maintenance: Keep the system operational after delivery.
6. Project management: Deliver on time and within budget.

System Documentation: Project plan, quality plan, requirements spec.,
architecture description, design documentation, test plan.

Start writing your documentation early.
User documentation: Task-oriented, not feature-oriented. (Write it first!)

Breakdown of activities: 20% coding. 40% requirements and design. 40%
testing. 40-20-40 rule.

It is called a software life “cycle” in part because it is cyclic, activities loop
back around.

!4

Dramatic software failures:
Adrian 5 rocket blew up, $0.5 billion loss. Overflow converting from 64-bit

float to 16-bit int.
Therac-25 radiation machine delivered radiation doses 100x the intended.

Patients died. Software interlock replaced electromechanical interlock, and
failed.

London Ambulance Service, Computer-Aided Dispatch. Bidder was not
qualified for project. Dispatched ambulances outside of familiar areas.
Memory leak crashed system.

1.6 Quo Vadis - “Where are you going?”
Not yet a fully mature discipline. Trends appear, such as agile methods, the

integration of COTS (commercial off-the-shelf) software, open source
software. But there is no magical solution.

“There is no silver bullet.”
Frederick Brooks “No Silver Bullet: Essence and Accidents of Software

Engineering” landmark software engineering paper in 1987:

 “Of all the monsters who fill the nightmares of our folklore, none terrify
more than were- wolves, because they transform unexpectedly from the
familiar into horrors. For these, one seeks bullets of silver that can magically
lay.them to rest.

 The familiar software project has something of this character (at least as
seen by the non-technical manager), usually innocent and straightforward,
but capable of becoming a monster of missed schedules, blown budgets, and
flawed products. So we hear desperate cries for a silver bullet, something to
make software costs drop as rapidly as computer hardware costs do.

 But, as we look to the horizon of a decade hence, we see no silver
bullet. There is no single development, in either technology or management
technique, which by itself promises even one order of magnitude
improvement in productivity, in reliability, in simplicity.”

!5

Chapter 2 - Introduction to SWE Management
Some reasons that software is delivered late:
- Programmers did not accurately state the status of their code.
- Management underestimated the time needed for the project.
- Management did not allow enough time for project.
- Project status not made clear.
- Programmer productivity was lower than hoped.
- Customer did not know what they wanted.

Information Planning - the meta-project planning process; how this project fits
into other projects and systems within the organization.

!

!6

2.1 Planning a S/W Dev Project

Project Plan: A document that provides a clear picture of how the project will
proceed, to both the customer and development team.

Major constituents of a project plan are:
1. Introduction - background, goals, deliverables, team members, summary.
2. Process model - activities, milestones, deliverables, critical paths.
3. Project organization - relationship of the project to the rest of the

organization, project team roles, reporting structure, how stakeholders
members will interact.

4. Standards, guidelines, procedures - configuration control, quality assurance,
etc.

5. Management activities - status reports, resource balancing, etc.
6. Risks
7. Staffing
8. Methods and techniques
9. Quality assurance
10. Work packages
11. Resources
12. Budget and Schedule ***
13. Changes
14. Delivery

2.2 Controlling a SWD project
Control must be exerted along the following dimensions: time, info,

organization, quality, money

The critical path is the sequence of activities in a project such that, if any of
these activities is delayed, the entire project is delayed.  

!7

Chapter 3 - The Software Lifecycle Revisited
Chapter 1 introduced a simple model of the software life cycle. Phases
included: 
Requirements engineering, design, implementation, testing, and maintenance.
In practice, it is more complicated.

In this view, major milestones generally relate to documents, such as:
 Requirements spec.
 (Technical) specification
 Computer programs
 Test report
Document-driven. The client signs off. (I saw this at DRT Systems.)
Does not readily accommodate maintenance, or going back to previous phases.
Can have excessive maintenance costs. (World Tax Planner.)
————————————————————————————————
Overview: The waterfall model model does not really take maintenance into
account. Evolutionary models do. The model should ideally also take into
consideration product families and long term business goals.

Choose a process model for your project. Making it explicit helps all of the
stakeholders to anticipate what is going to happen, and helps you to gain
control over the development process.
————————————————————————————————
The Waterfall Model
A slight variation from the Chapter 1 model.
Emphasizes the interaction between adjacent phases, with testing in every

phase.
Verification & Validation to compare what is needed to what is generated.
 Verification: Building the system correctly.
 Validation: Building the right system.
Emphasis on getting the client to “sign off” on each phase before proceeding.
Problem: It is difficult to anticipate all requirements. The validation in each

phase may allow for slight adjustments, but not a wildly different direction.

!8

The waterfall model, like Escher’s waterfall on the cover of the book, is
unrealistic.

The strict sequence of activities is not obeyed.
For example, you may do perhaps 50% of the design in the “design” phase,

33% in the “coding” phase, and then another 15% in the testing phase.
(Figure 3.2)

Designers and programmers cross boundaries all the time.
But we teach it! And it is followed! Why? It is understandable. It is a good first

approximation of the phases and the general order in which they are
followed.

!
————————————————————————————————

!9

Agile Methods (added 9/30/10)
Agile (able to move quickly and easily) methods resign themselves to the fact

that the world is fundamentally chaotic, and cannot always be controlled.
(Though, on the other hand, there are many natural forces that prevent
complete entropy, at least in the near term, such as gravity, species survival,
or people achieving goals).

Agile methods emphasize:
 1. People over processes.  

2. Working software over documentation. (Some will think “Hooray!”).  
3. Collaboration over negotiation.  
4. Responding to change over following a plan.

Similar to (the formerly popular approach of) RAD (rapid app. development).
“Extreme Programming” is an agile method, with two programmers working

side-by-side on the same computer, like pilot and co-pilot. “Pair
programing.” (If you do this, take turns.)

————————————————————————————————
Prototyping 

!10

(Figure 3.3 - Prototyping as a tool for
requirements engineering. vanVliet)

 Prototyping Phase Actual Development Phase

A prototype is a working model of a proposed software system, or parts of such
a system.

Often constructed with higher-level languages or tools that are constrained in
what you can build, and that produce inefficient programs. (html is pretty
limited, for example)

The functionality is typically limited.
Prototyping is extremely useful for addressing the problem that customers have

a very difficult time expressing their requirements precisely.
Give the user a UI prototype, let them try it out it in the intended context, and

see if the functionality accurately reflect the true system requirements
BEFORE a huge investment in building a real system.

Potential problem: The client may think that this *is* the real system.
Maintain user expectations.

“Throwaway prototyping” - No code is carried over (in Figure 3.3).
“Evolutionary prototyping” - More common, at least some code is re-used.
Pros and Cons of prototyping in Figure 3.2 (p.58)
Particularly useful when the user requirements are ambiguous, and when the UI

is important.
Customer can get carried away with new features. You have to keep them

focussed on what is truly needed, and limit the number of iterations.
————————————————————————————————
Incremental Development
The system is produced and delivered to customer in small pieces, with each

piece providing a set of independent functionality.
Essential functionality is delivered initially.
————————————————————————————————
Rapid Application Development
Incremental development with “time boxes”: fixed time frames within

which activities are done.
Must be able to sacrifice functionality for schedule.
Requires, close, rapid communication cycles between developers and with

stakeholders
 Peer-to-peer communication between users and developers
 Intense user involvement (and commitment) in negotiating requirements and

testing prototypes Joint Requirements Planning (JRD) and
 Joint Application Design (JAD),

!11

“Cutover” phase in which the system is installed (and abandoned?).
Best suited for small team development and modestly sized projects.
————————————————————————————————
3.5 Maintenance or Evolution?
Can maintenance be thought of as a single box at the end of the lifecycle?

The laws of software evolution:
The law of...
1. ... continuous change: A system that is being used undergoes continuous

change.
2. ... increasing complexity: A program that is changed becomes less

structured. Entropy (disorder) sets in.
3. ... program evolution: Measurable aspects of the program (loc, number of

modules, functions, etc.) may seem to grown in spurts because of short-term
pressure. But in fact they can really only grow at a steady, linear rate,
because after the spurt you need to go back and “clean up the code” and
update the documentation, etc. (Figure 3.8 on p.74)

4. ... invariant work rate: Adding more staff does not increase the speed of
development. Large systems proceed at a saturated rate. (Windows software
is routinely released years late.)

5. ... incremental growth limit: A system can only grow to a certain size, or at a
certain speed (clarify with Stuart) before major problems set in.

6. ... continuing growth: If you build it, they will come... and want bugs fixed,
and new features...

(There are two more laws on on p.73)

Software engineering is in the news daily. “Windows Is So Slow, but Why.pdf”
————————————————————————————————
3.6 The Spiral Model

Considered to be the idealized model for s/w development.
The conventional teaching is: waterfall bad, spiral good.
But much more complex, and more difficult to anticipate specific milestones

and deliverables.
Big emphasis on risk assessment.

!12

!

Subsumes the other process models discussed thus far.
————————————————————————————————
3.9 Summary
Look at the trajectory we have followed:
 Waterfall to prototyping to incremental to agile to spiral.
Perhaps increasing complexity, but also increasing realism.
In all cases, you are trying to model—or simulate—the processes necessary to

develop a system, to gain control over the process.

!13

Chapter 8 - Project Planning and Control
Notes on reading Van Vliet (2008) by Anthony Hornof.

Recall that software engineering is the process of gaining and maintaining
control over the products and processes of software development.
• “Intellectual control” ...
• “Managerial control” focuses on gaining and maintain control over software
development resources (money, time, personnel).

This lecture focuses on control of the resources of time and personnel.
Plans are nothing. Planning is everything. (Attributed to President Eisenhower)
“Begin with the end in mind”. (Franklin Covey. 1989. The 7 Habits of Highly Effective People)

PERT Charts
Process Evaluation and Review Technique
(Developed during the 1950s Polaris missile program.)
The basic idea: Each activity gets a box. Lines indicate the necessary

completion order (because of some kind of constraint).

!
PERT charts emphasize the critical path.
The critical path is the sequence of activities in a project such that, if any of

these activities is delayed, the entire project is delayed.

Plan castle
5 days

Dig moat
7 days

Build walls
20 days

Build tower
20 days

Move in
3 days

Activity
duration

Necessary
completion
order (from
left to right)

Key: critical
path

(can be done in parallel)

!14

You need to always be working on activities that are on the critical path.
Slack time.
In the example above: How many days to complete project? What happens if

the steam shovel breaks you have to dig the moat by hand, for 50 days?

Gantt Charts (Timelines)
Named after Henry Gantt. (He developed them around 1910 to maximize the

productivity of factory workers.)

!
The diagrams are extremely useful for planning and communicating.
They must be updated regularly. Save a dated copy every time you update.
Use a direct diagram editor or spreadsheet, not a complicated task management

software such as Asana. You want easy and direct editing, all one one-page.
These diagrams provide well-established conventions.
If you can communicate irrefutable time and task needs, you get power.
(LTCB story: 1 week, 2 weeks, 3 weeks, 2 weeks.)

rl--1
G
6
v)
t

\

'+/ aw
-'u6,<iu

S uo,$uzrtuo) +% w t6auQ-U lkrd^ofl
+) ulot4,l+or' ',rnl,p)

" *a,6L
zn, ir,f S;Lfa,tr,,r?4,,0 y rn,, d- €(rduqJ -* lPth // o*4fr

&"p U^[yo s -tua uut6u u Qw

,,(t ?sn
"/tl-uunLry '6rrLl.- J

"l
tt\ u,,,tot a) pu -

atb -r ar6uV {yL

(esJlA a)!^ +oU
?1u 8.)

'aL, ofSa1.,w

alT.ttn'.1 af

,A
rl

u n(A
\"4

a))t-))

a

)
d/\>l)f11z,t tAt { }C, tau {sd I}W

5+'rLl) ++r')

" { tloyt/
t)rcl Pl!n 1

,llvln p l."l
J-*ow fi0
,lltvl u2 I <)

6
/)"1^rnn

' /o / f 4t '
U o*ut nP {q

"rzts\2t(d,,t o

l uoN)

/

-z *""1ltS /rt
rets\ /vnwf

afn^ {7r1
)ua sc' +oU

4 utz.) \+o
5t

ft

mT I A) a^0 (,({+
p'r, +d['"^J
so >l 2), uo
paszX Sdtr aA

?l?Jr try+ \\

,f.l
/.

)y'tPzw
qs! vay

(t,*<)
+ot bt

#!'i,s +nq /!t
vo abe

4v tl
+oa

,rtr"\) d
2>
WO Ittft

,4ua-tr!J:J-d-=r, nS"

fite+S1sa l 2+e< (ry! 2\/t27 {VL

N /r"d olu ty ?+u a, ,(tu o il
7,

'ra(c-t

)

(sa" ll a(pt,+) +; r1) ++urg
il

) t)
T*

-+>
{YL 'awLL a)qs cu ',rF;^

1
u
f

tt-+.'n €rV 'P*/<1ty
v 8 l-' Ll),tq^ " I

tL[-wt
sl/

drg,., dzttaqdA>
*o
+)d 1J 'nY

/r\
(+u.ttd,-lSuotluo,fetn I

5*' +) r
ra.*: nyn

7+\ut
V)kan

'Yl-nJ t)
,{.
8L

',, : ',
sl6p

Lh

l,
OZ)dM+

f l:^8

5zarl l"^oYs vle.+sa,
>q

l.t ulauoP
ug.))'tJ0

/+*,Y IA

/ ,'jO+
,(r'oaQ

dlo)
ss)t

(q':)/s tz1vLL)
anltu (/) 4u t!^ a> F, u 'ro.y v nlvt3 w beo t4

?l.t stt\u ;,:zlod sO,bl Gr:'nf pldrp,'aA) +"@Y))t7)

'Lla
+

,'Qp g
1llaJ
"uld

oZ
sfiu,t
f l:/'9

,ul
lr^opr

',.a,r?J6o-rJ

u,, u u ald *ra(UtJ U sru t4)

!15

Chapter 9 - Requirements Engineering
Notes on Reading Van Vliet (2008), continued. By Anthony Hornof.

Requirements describe what the system will do.
Design describes how the system will work.

Requirements engineering (or requirements analysis) is the hardest phase, and
the most important. The longer it takes to find a problem in a project, the
more costly it will be to recover from that problem. Errors not discovered
until after the software is operational cost 10 to 90 times as much to fix as
errors discovered during the requirements analysis phase. If you are
delivering the software and realize your software is not doing what the
customer needs, that is a very costly problem. (Figure 13.1)

Example: From Mom’s work at Tektronix. Major consulting company came in
and only met with managers. Managers did not know how the export
specialists would split orders across invoices to accommodate bureaucratic
needs in foreign customers. Did not get implemented. System was
deployed. Export specialists explained the need. Consultants told them to
just put it onto one order. “We cannot sell to this customer unless we can
split it across invoices.” They had to go back and re-implement major
portions of the system.

How do you get it right?

Requirements engineering...
 1. Elicitation - understanding the problem.
 2. Specification - describing the problem.
 3. Validation - agreeing upon the problem.
All three are critical.

Identify the Problem
A good statement of the problem is critical. Separate the problem from the

proposed solution. This helps enormously to convince the client that you
understand their needs.

 See examples of Problem Statements below.

!16

Elicitation Techniques
Ask: Interview users about the work and their tasks, not the system.
Task analysis: A technique to obtain a hierarchy of a goal-oriented set of

activities. Work (or play) involves people, tasks, artifacts, context. Record
and document these aspects. Watch, observe the users. Get them to “think
aloud”.

Scenario-based analysis: Generate usage scenarios. These are stories that tell
brief narratives of different stakeholders using the system. The Project 1
handout has very brief usage scenarios. The sample SRSs on the course web
page describe stakeholder scenarios. These should be sample stories of real
users doing real tasks. They put the system into a context that helps to
capture and convey some of the explicit and implicit requirements.

Ethnography: Submerge yourself into the foreign culture and learn its subtle
ways.

(Form analysis: Study the paper associated with the current system.)
(Natural language descriptions.)
Derivation from an existing systems: This is certainly done in market-driven

software development.
(Business Process Redesign.)
Prototyping - Ask: What is a software life cycle model that would lend itself to

requirements elicitation?

Market-Driven versus Customer-Driven
“Unfortunately, most requirements engineering techniques offer little support

for market-driven software development.” (p.208) - Agree or disagree?
An example would be the challenges in developing an open source carpool

program that would be useful to a range of different organizations. What is/
was the problem? How did we think to solve the problem?

The conventional approach in software engineering is to discuss requirements
engineering as the process of identifying, documenting, and validating user
requirements.

This makes a huge assumption that users and stakeholders are available to
participate in the process.

Market-driven software.
!17

Book example: Develop a ‘generic’ library application rather than for a
specific library.

COTS: commercial off-the-shelf.
Where does a good open source piece of software fall? Market-driven or

customer-driven?

Specification
You need to organize the document. Section 9.2 on Requirements

Documentation offers example structures.
Functional versus nonfunctional is a typical breakdown.
 Functional: Services provided, or how inputs are mapped to outputs.
 Nonfunctional: System properties, constraints, and qualities. (External

interface requirements, performance requirements, design constraints, and
software system attributes.)

Requirements document should be
* Correct. Solving the right problem in the right way.
* Unambiguous. At some level, to all stakeholders. Define all terms. Must be

well-written.
 The serial order problem, solved with overviews, organization (TOC, lists),

some repetition.
 See Slide (3).
* Complete. Should address all aspects of the system functionality and

constraints.
* Consistent (internally). Should not contradict itself.
* Ranked for importance. Can be explicit or conveyed with words such as

“must” vs. “should.”
* Verifiable. Can objectively determine if each requirement is met. Not just

“fast”, “easy”.
* Modifiable. Requirements will change. You will always need to update your

document.
* Traceable. The origin of each requirement should be documented.

Conclusion: The requirements describe what the system should do and define
the constraints on its operation and implementation.

!18

————————————————————————————————
Problem Statement for a Library Catalog (van Vliet, Figure 12.24)
————————————————————————————————

!
————————————————————————————————
Problem Statement for an Automated Teller Machine (from Rumbaugh et al., 1991, p.151)
————————————————————————————————
Design the software to support a computerized banking network including both
human cashiers and automatic teller machines (ATMs) to be shared by a
consortium of banks.
 Each bank provides its own computer to maintain its own accounts and
process transactions against them. Cashier stations are owned by individual
banks and communicate directly with their own bank’s computers. Human
cashiers enter account and transaction data.
 Automatic teller machines communicate with a central computer which
clears transactions with the appropriate banks. An automatic teller machine
accepts a cash card, interacts with the user, communicates with the central
system to carry out the transaction, dispenses cash, and prints receipts.
 The system requires appropriate recordkeeping and security provisions.
The system must handle concurrent accesses to the same account correctly.
 The banks will provide their own software for their own computers.
 You are to design the software for the ATMs and the network. The cost of
the shared system will be apportioned to the banks according to the number of
customers with cash cards.  

370 SOFTWARE DESIGN

Section 12.2.3. Indeed, the modeling stage of JSD is object-oriented too. The
guidelines presented below are loosely based on (Coad and Yourdon, 1991) and
(Rumbaugh et al., 1991). Their general flavor is similar to that found in other object-
oriented approaches. The global process models of some well-known object-oriented
methods are discussed in Sections 12.3.1and 12.3.2.

The problem statement for a library automation system given in Figure 12.24
will serve as an example to illustrate the major steps in object-oriented analysis and
design. \We will elaborate part of this problem in the text, and leave a number of
detailed issues as exercises.

Problem statement

Design the software to support the operation of a public library. The system has a
number of stations for customer transactions. These stations are operated by library
employees. Vhen a book is borrowed, the identiftcation card of the client is read.
Next, the station's bar code reader reads the book's code. Vhen a book is returned,
the identiffcation card is not needed - only the book's code needs to be read.
Clients may search the library catalog from any of a number of PCs located in the
library. S(hen doing so, the user is ftrst asked to indicate how the search is to be
done' by author, by title, or by keyword.

Special functionality of the system concerns changing the contents of the catalog and
the handling of fines. This functionality is restricted to library personnel. A password
is required for these functions.

Flgure 12.24 problem statement for library automation system

A major guiding principle for identifying objects is to look for important
concepts from the application domain. Objects to be found in a library include
Books, FileCabinets, Cust,omers, etc. In an offtce environment, we may
have Folders, Letters, Clerks, etc. These domain-speciftc entities are our
prime candidates for oblects. They may be real-world objects, such as a book; roles
played, such as the customer of a library; organizational units, such as a department;
locations, such as an offtce; or devices, such as a printer. Potential objects can also
be found by considering existing classiftcation or assembly (whole-part) structures.
From interviews, documentation, and so on, a ftrst inventory of objects can be made.

From the ftrst paragraph of the problem description in Figure 12.24, the following
list of candidate objects can be deduced, simply by listing all the nounS:

software
1 ibrary

!19

Chapter 10 - (Software Design) Modeling
__ Take blank overheads and pens to class. In class, students create dynamic models/diagrams to explain something new about how their project will function.
__ Perhaps print and handout UML quick reference.
__ Find overheads of UML slides from Sommerville?

The chapters introduce a number of diagramming techniques that are
commonly used to communicate aspects of a system design.

The diagrams are called “models” because they serve as small-scale
representations, or paper-based simulations, of aspects of the system.

‘The fundamental driver
behind graphical modeling
languages is that
programming languages
are not at a high enough
level of abstraction to
facilitate discussions about
design.’ (Fowler, 2004.)

The models are static or
dynamic.

 Static show structure.
Dynamic show behavior.

Flowcharts are a classic
dynamic model to show the
flow of control of an
algorithm. UML activity
diagrams are very similar.

UML uses the terms "flow" and
"edge" synonymously. (Fowler)

In any diagram, you generally
need a key that explains what
the boxes and lines represent.

However, if you are correctly
using an established
diagramming technique,
citing a source can suffice.

!20

ptg28043920

118 CHAPTER 11 ACTIVITY DIAGRAMS

because processes often occur in parallel. It’s also useful for concurrent algo-
rithms, in which independent threads can do things in parallel.

When you have parallelism, you’ll need to synchronize. We don’t close the
order until it is delivered and paid for. We show this with the join before the Close
Order action. With a join, the outgoing flow is taken only when all the incom-

[priority order]

[else]

Fill Order
Send Invoice

Receive
Payment

initial node

Regular
Delivery

Overnight
Delivery

action
fork

join

merge

decision

activity final

flow/edge

Receive
Order

Close
Order

Figure 11.1 A simple activity diagram

From the Library of Anthony Hornof

, annotated (Fowler, 2004)

The Unified Modeling Language
Diagramming techniques used in OOA and OOD (analysis and design).
Integrates and “unifies” the notations and methods of Booch, Jacobson, and

Rumbaugh (object modeling technique, OMT), late 1980s and early 1990s.
There is also a UML process, but the language is still useful without the

process.
(UML notes adapted from Sommerville, 2000, Software Engineering.)

There are other standard diagramming (modeling) techniques such as:
1. Entity Relationship Diagrams (ERDs) - similar to UML class diagrams.
2. Data Flow Diagrams - similar to UML sequence diagrams.
This lecture focuses on UML.

There are 13 different UML Diagrams, in the following hierarchy:
Structure: Class
 Component The underlined diagrams are
 Composite Structure those that are perhaps most
 Deployment commonly used.
 Object
 Package
Behavior: Activity
 Use Case
 State Machine
 Interaction: Sequence
 Communication
 Interaction Overview
 Timing

Boxes and lines mean different things in each type of model.
Note how there is a fundamental distinction between static and dynamic.

!21

Major diagrams used in UML
Class diagrams: Static. Descriptions of the types of objects in the system, and

the various kinds of static relationships that exist among them.
State-transition diagrams: Dynamic. Show all possible states (modes) that an

object can get into as a result of events that reach that object.
Sequence diagrams: Dynamic. Describe how groups of objects collaborate in

some behavior. Show the sequence of object interactions
(UML notes adapted from Sommerville, 2000, Software Engineering.)

UML Class diagrams
Descriptions of the types of objects in the system, and the various kinds of

static relationships that exist among them. Static model.
Include: Name of class, attributes and operations, inheritance (specialization).

Associations, such as is-a-member-of, cardinalities.

!
ptg28043920

36 CHAPTER 3 CLASS DIAGRAMS: THE ESSENTIALS

Properties are a single concept, but they appear in two quite distinct nota-
tions: attributes and associations. Although they look quite different on a dia-
gram, they are really the same thing.

Attributes

The attribute notation describes a property as a line of text within the class box
itself. The full form of an attribute is:

visibility name: type multiplicity = default {property-string}

1*
dispatch
close

dateReceived: Date[0..1]
isPrepaid: Boolean[1]
number: String [1]
price: Money

Order

getCreditRating(): String

name [1]
address [0..1]

Customer

billForMonth(Integer)
remind()

contactName
creditRating
creditLimit

Corporate Customer

creditCardNumber

Personal Customer

{if Order.customer.getCreditRating is
"poor" then Order.isPrepaid must be
true}

attributes

operations

constraint

multiplicity

association

classgeneralization

Figure 3.1 A simple class diagram

From the Library of Anthony Hornof

!22

A simple class diagram,
annotated (adapted from

Fowler, 2004, Figure 3.1)

But dynamic models are also necessary to describe how a computer program
works because a program executes over time. (A screenshot does not
describe a user interface; you also need to describe the dynamic aspects.)

UML State Diagrams
A dynamic model illustrates the restricted states of an object or system.
The ovals are states and the arcs are events that cause the state to change.
Can have hierarchies of states, introducing abstraction.
Permit stakeholders to understand the of dynamic aspects of the system.

!
A state diagram for a weather station that, every five minutes,  

collects data, performs some data processing, and transmits this data.
(From Sommerville, 2000, Software Engineering)

UML Sequence Diagrams
Dynamic models that escribe how groups of objects collaborate to produce a

system service or behavior. Shows the sequence of object interactions
Objects and users are shown at the top, each with vertical dashed lifelines.
Rectangles on the lifelines show when the object is active. Time moves down.
Solid lines show messages between objects. Dashed lines indicate a return.

Shutdown Waiting Testing

Transmitting

Collecting
Summarising

Calibrating

transmission done

calibrate ()

test ()startup ()

shutdown ()

calibration OK

test complete

weather summary
complete

clock collection
done

Operation

reportWeather ()

!23

! !
 A UML sequence diagram for The template or key for a
 reserving a title (vanVliet, 2008) sequence diagram (Fowler, 2004)

The difference between a State Diagram and a Sequence Diagram
A state diagram says “All allowable sequences must conform to this state

machine” whereas an interaction diagram says “Here is one possible
sequence of actions.” (Prof. Young, 11-9-2010)

Conclusion: UML evolved from earlier OOA and OOD methods, which
evolved from earlier non-OO diagraming and design techniques.

All diagramming (modeling) techniques arrive at roughly the same models.
When you think about a piece of code that you are going to write, you think

about the static and dynamic aspects of how that code will work.
Use standardized diagramming techniques to sketch out your ideas, both for

yourself to think things through, and to communicate, record, and evaluate
ideas with other team members and stakeholders.

Software design modeling is an important aspect of software engineering, the
study of the full lifecycle of writing the code that run on computers.  

user

284 MODELING

1: look up

reserve title

Flgure 10.12 UML sequence diagram: reseruing a title

is sent to the object that handles reservations. Some time later, that title will become
available again and reservations will be notifted. The object reservations
will then send a message to the catalog to hold that book and will notify the user
that the title is now available. The ordering of those two messages is irrelevant, so
they carry the same sequence number. The user may now borrow the title and the
corresponding reservation will be removed.

Again, UML has a rich notational vocabulary for sequence diagrams. It is possible
to distinguish asynchronous message-passing from synchronous message-passing, to
indicate iteration, to show the creation and destruction of objects, and so on. The
main purpose of the sequence diagram however remains the same, an easy-to-read
overview of the passing of messages in a particular interaction sequence.

10.3.4 The Communication Oiagram

The communication diagram is another way to show one possible scenario for the
interaction between a number of related objects. A communication diagram is a
directed graph where the nodes denote entities and the edges denote communication
between those entities.

Figure 10.13 shows the same sequence of interactions as the scenario depicted
in the sequence diagram in Figure 10.12. Comrnunication diagrams emphasize the

start
catalog

2: title data

3: [not availabl

4: title retumed

6: borrow title

6: remove

5: hold title

5: title available

lation

UML Diagrams
Page 4 of 4

From Fowler, M. (2004). UML Distilled: A Brief Guide to the Standard Object Modeling Language. 3rd Edition. Addison-Wesley Professional.

!24

Chapter 11 - Software Architecture
In computer science:
“Hardware architecture” refers to the the design of the logic circuits in the

chips.
“Software architecture” is what we are talking about today.

Software architecture: The large-scale (or top-level) decomposition of a system
into its major components together with a characterization of how those
components interact.

Typically a static (not dynamic) diagram. “Module” implies static.
Relates to modular programming.

“The design process involves negotiating and balancing functional and quality
requirements on the one hand and possible solutions on the other hand.”(Van Vliet p.290)

!
The software architecture of a packing robot control system (Sommerville).

Chapter 6 ■ Architectural design 149

Vision
System

Object
Identification

System

Arm
Controller

Gripper
Controller

Packaging
Selection
System

Packing
System

Conveyor
Controller

Figure 6.1 The
architecture of a packing
robot control system

Software architecture is important because it affects the performance, robustness,

distributability, and maintainability of a system (Bosch, 2000). As Bosch discusses,

individual components implement the functional system requirements. The non-

functional requirements depend on the system architecture—the way in which these

components are organized and communicate. In many systems, non-functional

requirements are also influenced by individual components, but there is no doubt

that the architecture of the system is the dominant influence.

Bass et al. (2003) discuss three advantages of explicitly designing and document-

ing software architecture:

1. Stakeholder communication The architecture is a high-level presentation of the sys-

tem that may be used as a focus for discussion by a range of different stakeholders.

2. System analysis Making the system architecture explicit at an early stage in the

system development requires some analysis. Architectural design decisions

have a profound effect on whether or not the system can meet critical require-

ments such as performance, reliability, and maintainability.

3. Large-scale reuse A model of a system architecture is a compact, manageable

description of how a system is organized and how the components interoperate.

The system architecture is often the same for systems with similar requirements

and so can support large-scale software reuse. As I explain in Chapter 16, it may

be possible to develop product-line architectures where the same architecture is

reused across a range of related systems.

!25

!
A repository-based software architecture for an integrated development

environment (IDE) (Sommerville).

Software architectures serve three purposes (from van Vliet):
1. Communication among stakeholders.
 Q:Who are the stakeholders in the systems you are building now?
 Stakeholders are all people with an interest in the system.
2. Captures design decisions.  

The global structure of the system. Can provide insights into the software
qualities of the system (reliability, correctness, efficiency, portability, ...) and
work breakdown.

3. Transferable abstraction of a system.  
A basis for reuse. Captures the essential design decisions. Provide a basis
for a family of similar systems, or a product line, a “valued business
entity” (Faulk).

The traditional view is that the requirements determine the structure of a
system. It is increasingly recognized that other forces influence the
architecture and design.

1. Organizational inertia. If you develop a really good code base for interacting
with Google maps, you’re less likely to switch to Yahoo maps.

160 Chapter 6 ■ Architectural design

Project
Repository

Design
Translator

UML
Editors

Code
Generators

Design
Analyser

Report
Generator

Java
Editor

Python
Editor

Figure 6.9 A repository
architecture for an IDE

data is generated by one component and used by another. Examples of this type of

system include command and control systems, management information systems,

CAD systems, and interactive development environments for software.

Figure 6.9 is an illustration of a situation in which a repository might be used.

This diagram shows an IDE that includes different tools to support model-driven

development. The repository in this case might be a version-controlled environment

(as discussed in Chapter 25) that keeps track of changes to software and allows roll-

back to earlier versions.

Organizing tools around a repository is an efficient way to share large amounts of

data. There is no need to transmit data explicitly from one component to another.

However, components must operate around an agreed repository data model.

Inevitably, this is a compromise between the specific needs of each tool and it may

be difficult or impossible to integrate new components if their data models do not fit

the agreed schema. In practice, it may be difficult to distribute the repository over a

number of machines. Although it is possible to distribute a logically centralized

repository, there may be problems with data redundancy and inconsistency.

In the example shown in Figure 6.9, the repository is passive and control is the

responsibility of the components using the repository. An alternative approach,

which has been derived for AI systems, uses a ‘blackboard’ model that triggers com-

ponents when particular data become available. This is appropriate when the form of

the repository data is less well structured. Decisions about which tool to activate can

only be made when the data has been analyzed. This model is introduced by Nii

(1986). Bosch (2000) includes a good discussion of how this style relates to system

quality attributes.

6.3.3 Client–server architecture

The repository pattern is concerned with the static structure of a system and does not

show its run-time organization. My next example illustrates a very commonly used

run-time organization for distributed systems. The Client–server pattern is described

in Figure 6.10.

!26

2. Architect’s expertise. When I have students use a MVC architecture on
Project 1, they almost all use the same on Project 2, even if other
architectures are superior.

3. Technical environment. If a Skype API is implemented, and it provides all
of the telephony functionality that you need, you will incorporate it rather
than build your own module.

The software architecture process is about both making and documenting
design decisions. Not all of them. But all of the major decisions. This is
why I have you explain your design rationale.

One of my goals is to get you to build into your design process a consideration
of alternatives, including alternative architectural designs. See Figure 11.1.

�

Architectural Views
Terms:

!27

• Stakeholder: A person or group with interests in a system.
• View: A representation of a whole system (from the perspective of a

stakeholder).
• Viewpoint: The purpose for, or the techniques for constructing, a view.

Provides the syntax of the view.

Three classes of viewpoints:
• Module viewpoint - static views of the system. Examples: Decomposition

(boxes of boxes), class diagrams. Boxes are components and lines some
kind of relationship.

• Component-and-connector viewpoints - dynamic views of a system Boxes
are components or processes, and lines represent some sort of temporal
order. Example: flowchart.

• Allocation viewpoint - some relationship between the system and the
environment, such as a work assignment chart.

Van Vliet is trying to find abstractions and classifications that can encompass,
tie together, and even prescribe a bunch of different architectural designs.

He wants you to learn the architecture, and also the situations in which you
would use it.

“Design Patterns” in software architecture (See Section 10.3) refer to a book by
Gamma et al. (1995) that discusses solutions to recurring problems in
software construction.

“Design Patterns” in building architecture refer to an approach to design
approach and book (“A Pattern Language,” 1977) by Christopher Alexander.
It is embraced by some architects, mocked and dismissed by others.

Design patterns in building architecture are overplayed a bit in this edition. He
picked a really stupid building design pattern as his example: “Tall buildings
make people crazy.” It is just irresponsible to reprint such trash, but this is
just what happens when people reach across into other disciplines. A little
knowledge can be a dangerous thing.

!28

!
The model-view-controller (MVC) software architecture (and archtype design

pattern). (Sommerville)

But anyway, vanVliet tries to present a bunch of different architectures in the
context of a recipe that incorporates the problem, the context, and the
solution. This is how software patterns are used in computer programming,
and they are used much more precisely than in building architecture. The
rough idea came from Alexander, but the precise implementation for
computer programming came from Gamma et al. Building architects now
point to Gamma et al. as validation of their patterns, which remain loose and
imprecise.

Let me just explain what are the architectures that he is talking about. I will
leave you to read the book to see the recipes. These diagrams are no longer
in the book.

156 Chapter 6 ■ Architectural design

Appleton, 2002), and so on. Architectural patterns were proposed in the 1990s under

the name ‘architectural styles’ (Shaw and Garlan, 1996), with a five-volume series of

handbooks on pattern-oriented software architecture published between 1996 and

2007 (Buschmann et al., 1996; Buschmann et al., 2007a; Buschmann et al., 2007b;

Kircher and Jain, 2004; Schmidt et al., 2000).

In this section, I introduce architectural patterns and briefly describe a selection

of architectural patterns that are commonly used in different types of systems. For

more information about patterns and their use, you should refer to published pattern

handbooks.

You can think of an architectural pattern as a stylized, abstract description of good

practice, which has been tried and tested in different systems and environments. So,

an architectural pattern should describe a system organization that has been success-

ful in previous systems. It should include information of when it is and is not appro-

priate to use that pattern, and the pattern’s strengths and weaknesses.

For example, Figure 6.2 describes the well-known Model-View-Controller pattern.

This pattern is the basis of interaction management in many web-based systems. The

stylized pattern description includes the pattern name, a brief description (with an

associated graphical model), and an example of the type of system where the pattern

is used (again, perhaps with a graphical model). You should also include information

about when the pattern should be used and its advantages and disadvantages.

Graphical models of the architecture associated with the MVC pattern are shown in

Figures 6.3 and 6.4. These present the architecture from different views—Figure 6.3

is a conceptual view and Figure 6.4 shows a possible run-time architecture when this

pattern is used for interaction management in a web-based system.

In a short section of a general chapter, it is impossible to describe all of the

generic patterns that can be used in software development. Rather, I present some

selected examples of patterns that are widely used and which capture good architec-

tural design principles. I have included some further examples of generic architec-

tural patterns on the book’s web pages.

Controller View

Model

View
Selection

State
Change

Change
Notification

State
Query

User Events

Maps User Actions
to Model Updates
Selects View

Renders Model
Requests Model Updates
Sends User Events to
Controller

Encapsulates Application
State
Notifies View of State
Changes

Figure 6.3 The
organization of the MVC

!29

KWIC-Index Example
A classic example from Parnass (1972) though not thought of as an example of

“software architecture” until 1996. (I got this 2nd detail from the footnote at
the bottom of p.259)

The problem: You want a list of all of the titles in the collection such that all of
the titles are included once for every word in the title, with every word
featured once as the first word. And you wanted it sorted by the first word of
every title regardless of its reordering. This way, you can efficiently find all
of the titles that have a certain phrase in it by just going to that one part of
the list.

So “Introduction to HCI” and “HCI Handbook” with both be next to each
other:

 ... 
 Handbook HCI

 HCI Handbook
 HCI Introduction to  

 Introduction to HCI  
 to HCI Introduction  
 ...

The input is a list of titles. The output is a sorted list of duplicated and shifted
titles.

How do you do it? Perhaps have students draw them on the board, and try to
critique.

Four tasks must be accomplished: Read input, determine shifts, sort shifts,
write output.

Modular decomposition dictates one module per task.
But how do they communicate, coordinate, and share data?
These are architectural decisions.

Design #1. Shared Data - Main program and subroutines
Multiple modules share data structures.

!30

Input into one table. Shift into another, keeping a reference back to the original
title. Sort into a third table, drawing from the shift, but keeping a reference
back into the original titles.

This is somewhat akin to a design in which you input the data into a single data
structure, and then manipulate all the data within that structure.

Common approach. All modules need access to all data. Decisions about data
representation have to be made very early. Procedural interfaces also have to
be decided early.

!

Design #2. Abstract Data Type
Rather than all modules having an explicit agreement about the exact structure

of each table, the modules have a shared understanding about the general, or
abstract, way that the data will be stored. Such as a set of numbered lines,
with each line have a set of numbered words.

!31

The procedures access and manipulate these abstract data types.  
For example: lines() returns the number of lines, and words(r) the number of
words in line r.

!
Design decisions made locally.
It is relatively easy to change the data representations and algorithms, but hard

to change the functionality.
To not output the lines that start with “the”, you would either (1) add a module

between sort and output (which would waste time because the shifts have
already been made) or (2) change the shift module to skip over the lines (but
the module starts to move further from its simple functionality).

Design #3. Implicit Invocation
Event-based. Each module processes a line, or a batch, and deposits into a

store. The next module down the line is listening for that event and when it
happens, processes the new data.

!32

!
This can perhaps handle changes in functionality better.

Design #4. Pipes and Filters.
Separate program, or filter, for each. Batch processing.
The final program, Unix: Input < input | Shift | Sort | Output > output

!33

!
Easy to plug in another filter. Can’t use data from any module but the previous.
Does not handle errors well. Errors must be passed through successive filters.

These designs all have strengths and weaknesses, and software qualities of the
ultimate system start to appear, at the architectural level.

How good is each
architecture for...

#1. Main program
and subroutines
with shared data

#2. Abstract data
types

#3. Implicit
invocation

#4. Pipes and
filters

Changes in
functionality, such
as skipping lines
starting with “the”

Neutral, though
might require
excessive tinkering
with existing code.

Hard because the
processing
algorithm tends to
be spread across
components.

Particularly good. Functional changes can
generally just be added on to the existing
chain of modules.

Decomposibility for
independent
development

Hard - all
developers need to
know all data
structures

Good. Just need to agree on the way
functions are called.

Good. Just need to
communicate with
one upstream and
one downstream
component.

Performance Good. There is very little redundant or
extraneous processing. Modules quickly
and directly manipulate the data.

Bad—overhead in
the scheduling of
events.

Bad—requires
parsing and
unparsing at every
stage.

!34

Chapter 12 - Software Design
You consult a map before starting a trip. It outweighs the misery of time lost

by going down the wrong road. (This is a pre-GPS statement.)

Design Considerations
1. Abstraction
2. Modularity (coupling and cohesion)
3. Information hiding
4. Complexity (size based, structure based)
5. System structure

Abstraction
Abstraction is the process or outcome of concentrating on the essential

properties of, and ignoring the details of, a set of related things.
Concentrate on the essential features and ignore—abstract from—those

irrelevant to the current level. (For example, the sorting module sorts. You
don’t really care how.)

Procedural abstraction: The process or outcome of concentrating on the
essential properties of, and ignoring the details of, services or functions.
Examples: a read, sort, or compute module.

Data abstraction: The process or outcome of concentrating on the essential
properties of, and ignoring the details of, information or information
structures. Examples: a queue, a customer class. Object-oriented design
identifies an abstract hierarchy in the program’s data. Primitive structures
such as booleans, ints chars, strings, are a form of data abstraction.

More examples of abstractions:
(This list is possibly from Michal Young.)

Interface Provides abstract service Abstracts over
TCP Reliable communication. Routing, transport, comm. protocols.
(Transmission Control Protocol)

SQL Relational database. Storage structure, concurrency
control.

(Structured Query Language)

Java Swing GUI widgets, interaction. OSs, window system, graphics
toolkits.

!35

Modularity
Modules are separable pieces of code. The function of each module and each

interface between modules needs to be defined precisely.
Parnas (1972) states the benefits of modular design:

(1) Managerial: Development time should be shortened because separate
groups can work in parallel, with minimal communication.

(2) Product flexibility: It should be possible to make drastic changes to one
module without changing the others.

(3) Comprehensibility: It should be possible to study and understand one
module at a time.

Comparing different modular decompositions and interfaces reveals two
structural design criteria: Coupling and Cohesion.

Coupling is a measure of the strength or number of intermodule connections. In
general you do not want strong dependence between modules. Rather, you
want “loose” coupling between modules so that modules can be understood
and developed independently. Tight coupling would result in any changes
creating a large ripple effect across other modules.

Loose coupling might be achieved in different ways for different programs,
such as sometimes by grouping similar services (putting all the reading and
writing functions in one module), and sometimes by grouping services for a
particular kind of data (putting all the functions for modifying customer
records in one module).

Cohesion is a measure of the similarity, or mutual affinity, of the components
within a module. You want “strong” cohesion within a module, meaning that
similar components are grouped together. Cohesion is like the “glue” the
holds a module together.

There are many ways to group components into modules: logical (input versus
output), temporal, procedural, communication with other systems. You
should be able to write down a single purpose for each module.

!36

Information Hiding
Information hiding is the process or outcome of keeping implementation details

hidden within a component, such as within a module, function, or data
structure. It does not relate to data security, such as making sure that certain
users don’t have access to certain data. It does relate to the data and functions
in a component (such as a class or a module) that are made available to other
components, such as through “getters” and “setters”, or through an
application programming interface (API). It helps you to organize your code.

(It is a little like the hints or mnemonics you use to remember someone’s name.
Don’t tell them!)

It is usually easier to use a software interface if its behavior is well-specified,
and you only need to know how to use it, not how it works internally.

When designing a program, you need to decide what can be kept a secret, and
what other components “need to know”.

Information hiding is related to abstraction, cohesion, and coupling.
Information hiding can improve cohesion and decrease coupling.

Good in-class exercises:
(a) Work in pairs and focus on one or more of these design considerations as

you design or re-design your architecture or a component.
(b) Identify how these design considerations have already influenced your

architectures or the plan for a component.

!37

Chapter 13 - Software Testing
(Some of the ideas in the lecture come from Greg Foltz, a software tester from Microsoft who guest lectured in this class on 11-7-04.)

Topics:
• Testing across the lifecycle. (Draw it and check off the boxes.)
• MS interview question
• Three approaches to testing.
• First Principles

The conventional breakdown of the software development process puts testing
as a phase that occurs between implementation and maintenance.

The fact is, testing is an activity that occurs throughout the entire process.

The longer it takes to find an error, the more costly it is, and the cost goes up
exponentially with each phase. Excellent graph. Conveys a lot of
information, but is drawn to make a central point. (The median is the value
that separates one half from the other.)

!

SOFTWARE TEST]NG

reported that cheap seats were sold out when this was, in fact, not the case. As
a consequence, clients were referred to other companies. The problems were not
discovered until quarterly results were found to lag considerably behind those of their
competitors.

Testing is often taken to mean executing a program to see whether it produces
the correct output for a given input. This involves testing the end-product, the
software itself. As a consequence, the testing activity often does not get the attention
it deserves. By the time the software has been written, we are often pressed for time,
which does not encourage thorough testing.

Postponing test activities for too long is one of the most severe mistakes often
made in software development projects. This postponement makes testing a rather
costly affair. Figure 13.1 shows the results of a 1980 study by Boehm about the
cost of effor correction relative to the phase in which the error is discovered. This
picture shows that errors which are not discovered until after the software has become

2

Requirements Design Code Development Acceptance Operationtest test
Phase in which error was detected and corrected

Figure 13.1 Relative cost of error correction (Source: Barry B. Boehm, Software engineering
Economics, FiSure 4.2, p.40, @1981, Reprinted by permission of Prentice Hall, tnc. Englewood
cliffs, NJ.)

407

e
ox
o
ooo
o
(d
Etr

1000

500

200

100

50

20

10

5

GTE

H

A

o

..0 A
o

SAFEGUARD

Large software projects

IBM.SSD

H
o

80"/o
Median (TRW survey)
2Oo/o

AAI
+

,I
I A

A 0

Smaller sottware projects

! - teoenm, 19801

!38

The graph reminds us how even the waterfall model has V&V in every phase.

Validation - Are we building the right product? Will it satisfy the requirements,
the customer’s needs?

Verification - Are we building the product right? Will it work? Will it accept
the correct range of inputs, and map them to the correct outputs?

Requirements: What the system will do.
Design: How the system will do it.
MS hires roughly one tester for each developer. The test team becomes the

model user, the lead advocate for the user.

Testing in the Requirements Phase is mostly Validation
Requirements: Is this what the customer wants? Are the features correctly

prioritized? Do we have a good set of requirements to start the design?
Requirements must be

• feasible (can it be built? tested? Easy to develop ≠ easy to test.)
• testable (objectively verifiable),
• consistent (internally (no conflict w/ others) and externally (w/ other

components))
• complete (covers all cases, hardest to accomplish)

When I critique your requirements and tell you to make them more objectively
verifiable, it’s not just an exercise in documentation. I’m trying to help you
learn how to build better software systems by showing you how to evaluate,
you might say test, your requirements.

How do you do it with these projects? As a group, have a session where you go
through every single requirement, discuss whether it meets all of the above
criteria. That is what we did with the NRL Dual Task Experiment software. It
had to be implemented, and the main programmer and unit tester was one of
the stakeholders—he needed to know what to do.

Note how the SRS for VizFix is less precise, and closer to what you have been
producing. I thought through the problem after developing one similar
system, and by myself thought through a better system, and just wrote down

!39

my ideas. But they are less feasible, testable, consistent, and complete. Use
the Multimodal Experiment software as an example, not the VizFix.

Testing in the Design Phase - Validation and Verification:
Design must also be
 • feasible 

• testable 
• consistent 
• complete

When I critique your designs and ask for more diagrams and specification of
how the system is going to work, how it is going to be built, it’s not (just) an
exercise in writing specs or diagrams, it is to give you the opportunity to
evaluate whether the thing will actually work. Many problems that come up
near the end (such as the difficulty in both recording and listening to Skype
audio, or whatever that was) could have been identified earlier on through a
rigorous design process, and consistency checking with external components.

Testing in the Implementation Phase
This is where we typically think of the testing being done.

Unit testing of components, done in conjunction with coding. Usually
individually. Done during implementation.

Integration testing of whole system. Done when modules are put together.
Involves the team. Done during the "testing" phase.

(Van Vliet organizes around) three approaches to testing:
• Coverage-based: Makes sure that some aspect of the product is evaluated

exhaustively. Such as, every function call is called at least once, or every
requirement is specifically evaluated.

• Fault-based: Generate a large number of mutated (errored) variants of a
program, and see if your testing process finds all of the errors.

• Error-based: Focus on situations or places in which problems are likely to
occur. Such as looking at the boundary conditions (where errors likely
occur).

!40

In all cases, you compare the real output to the expected output:

!
Figure 13.2 Global view of the test process.

Interview question from Microsoft Interview:
A function takes a description of two rectangles in 2D space, and returns True if

the two rectangles overlap, and False otherwise.
How would you test a function that returns the intersection of two rectangles?

Specifically, what are all the inputs that you would provide to the test
function? Presume that each rectangle is described by either (a) two (x, y)
coordinates or (b) one (x, y) coordinate, an l, and a w. (droppeimage.pdf below in Pages)

 !
Coverage-Based Techniques

Path-testing or control-flow coverage. !
Branch coverage.
Data-flow coverage - how variables are treated down various paths.

Equivalence partitioning: Break the input into domains and assume that all
inputs in a given range are equivalent. (You can do the same for ranges of
output.)

 For example, your function expects a number between 1 and 100, inclusive.
 You test in each region: ! You assume equivalence within

the partitions, or walls. (For output, you might have three dialog boxes, and
you just make sure that each will appear at one correct time.)

 Same class: !

oracle

P
P test

strategy
compare

input

subset of
input

subset of
input

expected
output

real
output

test
results

on top
of
each

Y

N

1 100

!41

Fault-Based Techniques
Fault-based techniques do not directly test the code but instead test your testing

procedure. The idea is, if your testing procedure is thorough and adequate, it
should catch all possible errors in the code.

Mutation testing is most common. Automatically mutate the code by  
• replacing one constant or variable with another  
• change “if n<0” to “if n<1” 
(See Table 13.5 for more.)

See if your testing procedure finds all the errors.
(A problem: Some planted bugs do not change the nature of the program.)
The nerdy jargon is “What percent of the mutants did you kill?”
This is a real thing. (Prof. Young, 2019)

Error-Based Techniques
Complementary to coverage-based.
Identify where errors are likely to occur. Such as on the boundaries, “fencepost

errors” and other “off by one” errors. Test right on, and around each

boundary: !
Faults are likely to occur when two modules developed by different teams

interact, so focus testing on the interaction between the these modules.

Another way to organize testing approaches:
• Black-box testing (functional or specification-based). Test cases derived from

specifications with little consideration of implementation details.

 !  
Examples: Equivalence classes and boundary testing.

• White-box testing (structural or program-based). Puts more emphasis on how
the software works internally.

1 100

systemi o

!42

 !
 Example: You have to test a function that reverses a string. A naive way to

program the function is to create a new string. A better way is to reverse in
place. What are two different important test cases? Strings of even and odd
length, to make sure the item in the middle is handled correctly in the strings

of odd length. !

Testing in the Test Phase
“Code complete.” All features are implemented. (Jargon. Book by McConnell.)
System testing, often driven by use case scenarios, how the system would likely

be used.
System test days - at MS, the developers or testers would try to do a real project

with the system.
Regression testing: After a system is modified, you make sure new bugs were

not introduced, that the code did not regress (go backwards). “Code churn
causes bugs.” 0.5 million bugs in building MS Office.

Testing in the Maintenance Phase
Continue with all of the activities above as long as your software is being used.

If your software is used, it will be modified.

First Principles
• Bugs happen. Faults are an integral part of the s/w development process.

Anticipate them. But...
• Impossible to test everything.
• And... Testing shows the presence of bugs, not their absence.
 So...
• Develop a plan. Develop a system, an approach to do your testing.
• Test early: Early fault detection is important.
• Test often: In every phase.  

system
i o

swap

!43

Chapter 5 (R&C 2002) - Interaction Design
Notes from Rosson & Carroll (2002) by A. Hornof in 2012, 2015.

Information design focused on figuring out what task objects and actions to
show, and how to represent them. The goal of interaction design is to specify
the mechanisms for accessing and manipulating task information.

(Don Norman’s example of a wall of doors with identical handles.)
Interaction design tries to make sure that people can do the right things at the
right time.

The interaction design that you build into a system will determine the activities
that your users can engage in.

The human-computer interaction cycle: Establish a human goal, translate it into
a system goal, develop an action plan, execute the plan, perceive the results of
the execution, interpret the results, and decide whether the goal has been
accomplished.

The plan-execute-perceive cycle of human-computer interaction

!

!44

Interaction design relates to how easy it is for a user to (a) translate his or her
goals into the procedures for using a system to accomplish those goals, (b)
carry out those procedures, and (c) determine that he or she is making progress
towards his or her goals.
(Example: Installing Keynote on iPad.)

5.1 Selecting a System Goal
People approach a computer with a human goal. They translate it into a system
goal and determine and execute an appropriate task strategy to accomplish the
human goal using the system.

An affordance refers to perceivable characteristics of an object that helps a
person to know (not “that makes it obvious” as the book defines) what the
object can do, and how it can be manipulated. It relates to “stimulus-response
compatibility”, which is a measure of the speed and accuracy with which a
person can learn, execute, and retain knowledge of the mappings between
stimuli and responses. Such as, the mappings between four lights and four
buttons.

 !
 Stimulus-response compatible mappings: 1J 2K 3L 4;
 Stimulus-response incompatible mappings: 1L 2J 3; 4K

The gulf of execution refers to the difficulty that people have in determining
the physical actions needed to accomplish a task with an interface. The gulf of
evaluation refers to the difficulty that people have in determining whether they
are making progress towards those goals after executing an action. (Neither is
the “psychological distance” of anything as the book states because there is no
such measure.) These two “gulf of” terms are not actually used very often, but
they are terms from an 1980s book popularizing human factors (Norman’s
POET book). And the fundamental concepts are very important in UI design
and analysis (but I prefer plain words).

J K L ;

1 2 3 4When one of these lights turn on

Press the button it is mapped to

!45

Direct manipulation is thought to make computers easy to use by introducing
graphical user interfaces (GUIs) rather than command-line interfaces because
GUIs perhaps reduce the gulf of execution by making screen objects look and
sort-of behave like things in the world. And because it makes it difficult for
programmers to get away with assigning radically different functions to the
same actions. Though they sometimes do, such as how dragging a file or a
folder to the trash deletes it, but dragging a floppy disk to the trash ejects it.

Direct manipulation started with WIMP interfaces: Windows, Icons, Menus,
Pointers. Touchscreen displays, such as with tablets and smartphones, take
direct manipulation to a greater extreme. But all kinds of inconsistencies are
introduced. For example, what is “clickable” still needs to be made very clear,
and often is not. Direct manipulation is not a magical way to make interfaces
easier to use. For example, on a touchscreen, there is no “right click” to see a
number of potential commands for an object. And you cannot rest your finger
on a button while deciding whether to press it, or touch type. And it introduces
many, many modes.

5.2 Planning an action sequence: People develop and execute task strategies.
When interacting with computers, these typically include perceptual and motor.
They can also be purely cognitive. They can be planned ahead, prepared. So
consistency matters a lot, because they permit a user to plan a few steps in
advance based on how they expect the functionality to be accessed, and how
the computer will behave. (Such as, when you encounter a couple fields that
say “username” and “password,” to be able to type your username, tab, your
password, and enter. This was not the case on DuckWeb a few years ago.)

!

Action sequences, or cognitive strategies, are planned and executed on the
micro level (tasks that last a few seconds, such as above) as well as the macro
level (tasks that last minutes, such as connecting to a network and sending a
print job to a printer).

!46

The UI designer’s challenge is to support the user at every step in their action
plan, and to make it clear to them what functionality is available so that the
users can map that functionality to their tasks and goals. Such as, if a user
wants to print double-sided, make it clear whether that functionality is
available, and if it is how to access it.

Consistency is important. People can chunk interaction sequences such as
typing in a username and password, copying and pasting, opening applications.
To “chunk” is to join several interrelated pieces of data into a single piece of
data. Such as how encoding LBT WCP ULO may require more than just three
chunks, but other arrangements should take just three chunks. You can also
chunk procedural knowledge, such as how scrolling down in a document
should be consistent across all applications, and the same actions should always
accomplish it (whether it be two fingers up—or down—on a trackpad, moving
your hand to and rolling the scroll wheel on the mouse in a manner that can be
prepared before your hand arrives.

A expert-user command sequence for....
 Opening a program: Command-Space and the first few chars of the
application name.
 Googling something: Command-Space, “Fire”, Enter, Command-L Tab.
 Turning off unwanted “help” in PyCharm: See “+Notes on Using
PyCharm IDE.pages”

Action sequences—or task strategies—should be consistent across applications,
and should not conflict. This permits the user to plan and prepare the execution
of the strategy before initiating the task. When the system fails to support the
prepared and executed action sequence, not only does the user have to
diagnose, troubleshoot, and experiment to figure out how to do it; but all of the
preparation for the initial execution is also wasted. And the interaction with the
device becomes the primary task, not the human-centered goal that initiated the
interaction. For example: You go to print or scan a document, and it doesn’t
work.

!47

Mistakes: An inappropriate intention is established and pursued. More common
among novice users. Buying a copy of “Garage Band” because you want to
start a band in your garage.

Slip: The correct goal is attempted, but a problem arises along the way. More
common among experts. Example: The goal is to get cash from an ATM; you
do it but you leave your ATM card. Can often be avoided by improving the
interaction design, such as by giving back the card before the cash.

More examples on page 169, with design approaches to avoid the problems.

Modes should, in general, be avoided in UI design. Modes are restricted
interaction states in which only certain actions are possible. Such as a “modal”
dialog box that requires a response before you can do anything else with your
computer; some reminders software work this way, such as to alert you of a
scheduled event. A pop-up window on a web page asking you to take a survey
is a modal dialog box within the context of that web page. Smartphones use
modes extensively; it contribute to their reconfigurable flexibility, but it also
requires lots and lots of extra button presses and swipes to switch from one
mode to another.

Articulatory directness—how directly a device maps to its input requirements
—is interesting to think about in terms of touch-displays. Spreading two fingers
is surely like stretching something, to zoom, but a four-finger versus a three-
finger swipe does not seem to have articulatory directness with anything in
particular.

Interpreting System Feedback
Give the user feedback with regards to how they are progressing towards their
goals, at multiple time scales, including responding to any input within 100 ms,
just to show that the system received your command, but also on the time scale
of seconds, showing progress towards the goal. (Unix does not give great
feedback. Many direct manipulation interfaces do.)

Storyboards
A storyboard is an event-by-event description of a sequence of interactions
between a user and a device. They are named after the comic-book-like
sequences that are used to plan movie shots.

!48

!
A storyboard of the start of the bank robbery in Batman - The Dark Knight (2008)

http://s3images.coroflot.com/user_files/individual_files/152129_WOEkopMM6ezXqt52G9vrtE758.jpg

!
From Figure 5.7 in Rosson & Carroll

!
Part of a storyboard for an “iFound” app, which would interact with “iLost”.

http://web.mit.edu/2.744/www/Project/Assignments/userExperienceDesign/ifound.jpg

Visitor List

EXCEL
CHARTS

CHAT
nntrtr!u
NT

5.4 Science Fair Case Study: Interaction Design T9L

Visitor List

EXC
CHAI EXCEL

PROGRAM
OPENS

CHAT !f rETETln
2. The Excel application is launched on
the data files Sally has provided; Delia
works with Excel independently of
the exhibit.

Visitor List

STAR
ANIMATION CEL

JRAM
ENS

CHAT
ntrnt]trtrntr

4. An animated demo of stars
forming and repositioning is
displayed.

5. The exhibit window surfaces,
with the star model still selected,
and the final frame of the
animation in view.

1. Alicia and Delia look at the
Excel charts Sally has prepared.

3. The exhibit window surfaces,
with the Excel miniature
still selected.

5. Alicia and Delia see Sally's
instructions about how to run her
star simulation.

Delia double-clicks on the
Excel miniature...

Alicia clicks the miniature
for the slide show of the
start model...

They take a look, then use
the close box to dismiss the
star simulation...

Delia clicks on any part
of the exhibit to
reactivate it...

Visitor List

EXCEL
CHARTS KCEL

)GRAM
PENS

CHAT
!ntrtrnnnn

Alicia double-clicks on
the star model
miniature to see
what will
happen...

Visitor List

SIMULATION
INSTRUCTIONS

Visitor List

FINAL
ANIMATION

FRAME
CEL
JRAM
ENS

CHAT
ntrnntrnn!

Figure 5.7 A simple storyboard sketching interactions with the miniature windows.

!49

http://s3images.coroflot.com/user_files/individual_files/152129_WOEkopMM6ezXqt52G9vrtE758.jpg
http://web.mit.edu/2.744/www/Project/Assignments/userExperienceDesign/ifound.jpg

Storyboards are not interfaces but they capture, in a static representation, the
time-based element of the interface, which makes it easier to consider
alternative designs side-by-side.
(Perhaps show the EyeMusic storyboards, annotating sound file, and the NIME
promo video.)

How can you represent interaction sequences? Remember, a screenshot is not
an interface. You must show how an interface evolves over time, such as with a
storyboard. “Here is what the user sees. If they click here, then they see this....”
The challenge is to represent a dynamic artifact.

Action sequences can be studied, and improved, at different time scales,
including the fractions of a second needed to move the mouse to click on a
target, or press keystrokes.

Fitts’ law predicts pointing time as a function of distance (d) and width (w).
There is a logarithmic relationship between d/w and pointing time. MT = a + b
log (d/w) + 1. The main point is that tiny targets are very slow and difficult to
click on, and the edges of the screen have certain advantages. But overall
pointing-and-clicking is quite slow for time-pressured practiced tasks. You
should learn keyboard shortcuts, even for responding to dialog boxes. (It is sort
of foolish not to.) A good interface design should support keyboard shortcuts.
One of the big differences between software for the masses like iPhoto and
software for the pros such as Lightroom is that the pro versions support lots of
keyboard shortcuts, such as to rate a photo and advance to the next photo with a
single keystroke. (My friend Mark in NYC took my advice.)

!50

Chapter 7 (R&C 2002) - Usability Evaluation
7.1 - Usability Specification for Evaluation

A usability evaluation is a study to determine the ease of use and ease of
learning of a system. Ease of use is a measure of how well a system supports
users accomplishing tasks.

Formative Evaluation vs. Summative Evaluation
takes place during the design takes place after the design
process—how are we doing? process—how did we do?

How usability evaluation fits into a software development process model:

!

Identify tasks

Specify/Revise design

Build prototype

User test

Problems?

Build system

Final user test

Analytic evaluation

Problems?

Yes

No

No
Yes

!51

7.3 - Analytical Methods

Analytic Evaluation vs. Empirical Evaluation
Studying or modeling the interface Observe real users doing real tasks.
 without users. Slow, expensive, does not always
Cheaper, faster, sometimes can help reveal why better or worse.
 to show what is wrong. Follows the pattern of a
 psychological experiment.

Two examples of analytic evaluation techniques:

The keystroke level model (KLM) is an analytic usability evaluation
technique in which you basically:

1. Count the number of keystrokes and mouse moves and clicks (or touchscreen
presses and swipes) necessary to do a task with a particular UI or UI design.

2. Assign appropriate timings to each keystroke (0.28s) and mouse move and
click (1.3s).

3. Add up the time required to do all of the actions.
4. Use that time as a basis for comparison to benchmarks, or comparison to

alternative designs.
(See Card, Moran, and Newell, 1983, for more information on KLM.)

!52

Heuristic Evaluation (Nielsen, from 1994 Usability Inspection Methods) is an
analytic usability evaluation technique in which you make passes through the
interface, inspecting for problems based on these heuristics, or guidelines:

• Visibility of system status: The system should always keep users informed
about what is going on, through appropriate feedback within reasonable time.

• Match between system and the real world: The system should speak the users’
language, with words, phrases, and concepts familiar to the user, rather than
system-oriented terms. Follow real-world conventions, making information
appear in a natural and logical order.

• User control and freedom: Users often choose system functions by mistake
and will need a clearly marked “emergency exit” to leave the unwanted state
without having to go through an extended dialogue. Support undo and redo.

• Consistency and standards: Users should not have to wonder whether
different words, situations, or actions mean the same thing. Follow platform
conventions.

• Error prevention: Even better than good error messages is a careful design
which prevents a problem from occurring in the first place.

• Recognition rather than recall: Make objects, actions, and options visible.
The user should not have to remember information from one part of the
dialogue to another. Instructions for use of the system should be visible or
easily retrievable whenever appropriate.

• Flexibility and efficiency of use: Accelerators—unseen by the novice user—
may often speed up the interaction for the expert user to such an extent that
the system can cater to both inexperienced and experienced users. Allow
users to tailor frequent actions.

• Aesthetic and minimalist design: Dialogues should not contain information
which is irrelevant or rarely needed. Every extra unit of information in a
dialogue competes with the relevant units of information and diminishes their
relative visibility.

• Help users recognize, diagnose, and recover from errors: Error messages
should be expressed in plain language (no codes), precisely indicate the
problem, and constructively suggest a solution.

• Help and documentation: Even though it is better if the system can be used
without documentation, it may be necessary to provide help and
documentation. Any such information should be easy to search, focused on
the user's task, list concrete steps to be carried out, and not be too large.  

!53

7.3 - Empirical Methods

This section in the textbook provides a very accurate and relevant discussion of
how to conduct a usability study. This is perhaps the most important section
in the textbook for you to learn. All of the terms that are in bold in this
section are very important terms.

(The Appendix on "Inferential Statistics" is also very good, on p.363.)
“The gold standard for usability evaluation is empirical data.”
 Empirical: Based on observation (not theory or conjecture).
You are looking to establish a cause-and-effect relationship between

characteristics of the system and ease of use. You want to claim that your
interface causes a task to be easy to perform for a population.

Validity
You want your experiment to have good “validity”.
Validity refers to the best available approximation to the truth of propositions.
External validity is the extent to which the experiment measures and shows

something that is true about the world.
Internal validity is the extent to which the experiment truly measures what it

tries to measure; that is, within the context of this particular experiment.

!

242

ls the prototype missing
any important features?

Will people be more
distracted in their offices?

ls this really the kind of
person who will use our system?

Test participant working
on a task in a usability lab

Chapter 7 Usability Evaluation

How much of what I see is
specific to this user?

Will our actual users do
tasks like these?

Figure 7.3 Validity concerns that arise in usability testing done in a laboratory.

The prototype or mock-up tested in a laboratory study may also differ from
the final system in key respects. The IBM PCir failed in part because of the rub-
bery feel of its keyboard. Studies of keyboard prototypes focusing only on the
small size of the miniature keyboard would have missed this critical element. The
printed graphics pasted onto a cardboard mock-up may have a higher resolution
than the resolution real users will experience with cheap displays. What if users
working with such displays cannot see the critical cues?

The tasks tested in the laboratory may not be the ones that people will ulti-
mately undertake with the system. Initially, the significance of the World Wide
Web was thought to be its improved user interface for transferring files over the
network. Spreadsheets were thought to be tools for arithmetic calculation; only
later did it become clear that users would also use spreadsheets for planning,
reporting, and communication tasks (Nielsen, et al. 1986).

Ironically, another concern for usability testing is the usability laboratory
itself! A usability lab is a specially constructed observation room that is set up
to simulate a work environment (e.g., an office), and instrumented with various
data collection devices (e.g., video, one-way observation windows, and screen
capture). Users are brought into the lab to perform and comment about care-
fully constructed test tasks. However, the participants in these studies are in-
sulated from normal work distractions and deprived of many of their daily
workplace resources. For example, most work environments involve significant
interaction among employees, but this is very difficult to simulate in a labora-
tory environment.

!54

Example script for a usability study

Roles: Test monitor, technicians, users or “participants”.
Recruitment criteria (for this example):
1. Users who have never used an iPad, iPhone, or iPod touch.
2. Users who have used the iPhone (or iPod touch) calendar (at least once a day

for at least a year? month? And who find it relatively easy to use). And who
love their iPhone?

Purpose of observation: I am trying to learn how people might use the iPod
Touch (or iPhone) to enter an appointment in a calendar.

This study should take about five to ten minutes. Feel free to quit any time.
I would like to ask you to think-aloud while you do the task. By this I mean to

say what comes to your mind as you are working. To help you do this, I am
going to ask the two of you to work together and to agree on every action
that you take, and to make sure that both of you understand what is
happening all the time. (The think-aloud protocol can be facilitated by two
users doing “co-discovery.”)

Your first task is to create an appointment this Saturday from noon to 4PM to
grade papers.

Your second task is create an appointment on June 13 to attend commencement.

Debriefing questions:
1. What did you think?
2. How did you do the tasks?
3. How did you figure out how the calendar worked?
4. Did the system respond as you expected? Always?

!55

5. Was there anything about the task that seemed particularly easy or difficult?
6. What were some of the feelings that you had as you did the task?
7. Do you think the calendar is easy or difficult to use?
8. Is there anything else that you would like to share about this?
9. Those are all of my questions. The study was designed for the hypothesis

below. Do you have any questions for me?

My hypothesis is that the iPhone calendar interface causes difficulty in
recording appointments. (I have told you before that this is an unnecessarily
difficult task.) I will operational my hypotheses to be:

H1: In order to enter an appointment, a novice user will require at least twenty
screen touches (in which a swipe will count as two screen touches) in
addition to the appointment’s text string.

H2: In order to enter an appointment, even an expert user will require at least
twenty screen touches (in which a swipe will count as two screen touches) in
addition to the appointment’s text string. And at least one error will occur for
every appointment entered, in which an “error” is any undesired system
response that requires the user to make an extra movement.

!56

!

Important Topics in Empirical Methods

Think-aloud protocol - prompting a user to verbalize what they are doing as
they proceed.

Co-discovery - having two users work together and agree on each step aloud.

Controlled experiments versus field studies.

Independent variable - characteristic that is manipulated to create different
experimental conditions.

Dependent variable - an experimental outcome.

248

Activity, information, a nd
interaction claims:

identify key design features
to be tested.

Design scenarios:
extract motivation and context

for subtasks to be tested.

Estimates of behavior:
published or pilot data of
expected user behavior.

Chapter 7 Usability Evaluation

U sa b i I ity specifi cati o ns:
a list of subtasks with

performance and
satisfaction parameters.

Figure 7.4 Developing usability specifications for formative evaluation.

provide the motivation and activity context for a set of sequential subtasks that
will be evaluated repeatedly as benchmarks of the system's usability. The claims
analyses are used to identify the subtasks to be tested-recall that claims have
been used throughout to track design features with important usability implica-
tions. For each subtask, outcome measures of users' performance and satisfaction
are defined, creating a testable set of usability specifications (Canoll & Rosson
198s).

The high-level goal of any usability evaluation is to determine to what
extent a design is easy or hard to learn and use, and is more or less satisfying.
Usability specifications make this highJevel goal more precise, transforming it
into a set of empirically testable questions. The repeated testing of these tasks
ascertains whether the project is meeting its usability goals, and if not, which
design features are most in need of attention.

7.4.1 Usabilitylnspection

As we have seen, analytic evaluation takes place constantly in SBD when writing
scenarios and claims. This ongoing analytic work forms a skeleton for empirical
studies. Other analytic evaluation methods can be useful as well. For example,

!57

Hypotheses - predictions of causal relationships between dependent and
independent variables.

Experimental design - the details of how a cause-and-effect relationship is
explored between independent and dependent variables.

Within-subject - all participants see all conditions.
Between-subject - different groups see different conditions.
Random assignment to remove order effects.
A major goal in experimental design is remove alternative explanations as to

why the dependent variables changed when you changed the independent
variables.

Informed consent - confidentiality, can quit any time without penalty. This is to
protect participants.

The VSF examples are very good. The assistance policy, for example.

!58

